
FEND: A Future Enhanced Distribution-Aware Contrastive Learning
Framework for Long-tail Trajectory Prediction

Yuning Wang 1*, Pu Zhang 2*, Lei Bai 3, Jianru Xue 1†

1 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, China
2 DiDi Chuxing, China

3 Shanghai AI Laboratory, China
wangyn@stu.xjtu.edu.cn, {zhangpu94,baisanshi}@gmail.com, jrxue@mails.xjtu.edu.cn

Abstract

Predicting the future trajectories of the traffic agents is
a gordian technique in autonomous driving. However, tra-
jectory prediction suffers from data imbalance in the preva-
lent datasets, and the tailed data is often more complicated
and safety-critical. In this paper, we focus on dealing with
the long-tail phenomenon in trajectory prediction. Previ-
ous methods dealing with long-tail data did not take into
account the variety of motion patterns in the tailed data.
In this paper, we put forward a future enhanced contrastive
learning framework to recognize tail trajectory patterns and
form a feature space with separate pattern clusters. Fur-
thermore, a distribution aware hyper predictor is brought
up to better utilize the shaped feature space. Our method is
a model-agnostic framework and can be plugged into many
well-known baselines. Experimental results show that our
framework outperforms the state-of-the-art long-tail pre-
diction method on tailed samples by 9.5% on ADE and 8.5%
on FDE, while maintaining or slightly improving the aver-
aged performance. Our method also surpasses many long-
tail techniques on trajectory prediction task.

1. Introduction
Trajectory prediction is of great importance in au-

tonomous driving scenarios [27]. It aims to predict a series
of future positions for the agents on the road given the ob-
served past tracks. There have been many recent methods
in trajectory prediction, both unimodal [1, 48] and multi-
modal [10, 37, 38, 49].

Despite the high accuracy those prediction methods have
achieved, most of them treat the samples in the datasets
equally in both training and evaluation phases. But there
is a long-tailed phenomenon in prevalent datasets [28]. For

*Equal contributions.
†Corresponding author.

Figure 1. The long-tailed final displacement errors of the state-
of-the-art prediction network: Trajectron++ EWTA [28] on ETH-
UCY. The long-tail part of the dataset contains various compli-
cated motion patterns, and predicting them is challenging.

example, in real traffic scenes, most of the trajectories fol-
low certain simple kinematic rules, while deviating and
collision-avoiding circumstances are scarce. Therefore, the
frequent cases are often simple and easy to predict, while
the tail cases are often complicated with many motion pat-
terns and suffer from large prediction errors, which makes
them more safety-critical, as shown in Fig. 1 for the univ
dataset. Despite of its significance, the long-tail prediction
problem have been rarely discussed in literature.

It has been pointed out that the feature encoders largely
suffer from long-tail data. In the training process, the head
samples are encountered more often and dominate the la-
tent space, while the tailed samples will be modeled insuf-
ficiently, as discussed in [24, 28, 39]. Feature embeddings
of the tailed data can even be mixed up with the ones of the
head data as discussed in [28], therefore the performances
of the tailed samples could be harmed.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1400



In this paper, we pick up the general idea of using con-
trastive learning to enhance the model ability on long-tailed
data. A new framework is developed called FEND: Future
ENhanced Distribution-aware contrastive trajectory predic-
tion, which is a pattern-based contrastive feature learning
framework enhanced by future trajectory information. An
offline trajectory clustering process and prototypical con-
trastive learning are introduced for recognizing and sepa-
rating different trajectory patterns to boost the tail samples
modeling. To deal with the afore mentioned problem, the
features of trajectories within the same pattern cluster are
pulled together, while the features from different pattern
clusters will be pushed apart. Moreover, a more flexible
network structure of the decoder is introduced to exploit the
shaped feature embedding space with different pattern clus-
ters. Our contribution can be summarized as follows:

• We propose a future enhanced contrastive feature
learning framework for long-tailed trajectory predic-
tion, which can better distinguish tail patterns from
head patterns, and the different patterns are repre-
sented by different cluster prototypes to enhance the
modeling of the tailed data.

• We propose a distribution-aware hyper predictor, aim-
ing at providing separated decoder parameters for tra-
jectory inputs with different patterns.

• Experimental results show that our proposed frame-
work can outperform start-of-the-art methods.

2. Related Work
2.1. Trajectory Prediction

Deep learning has become a mainstream trajectory pre-
diction method because of its powerful representational
ability. Some studies [1, 32, 43, 46, 48] focus on bet-
ter modeling subtle relationship such as social interactions
to make their prediction more precise, and some works
[29, 33, 35, 36, 50] aim to produce more diverse trajec-
tory proposals. Strong baselines [30, 38, 40, 47] have been
brought up. Although the trajectory prediction methods be-
come increasingly accurate, the long-tail issue in the task of
trajectory prediction has been rarely discussed.

Trajectory prediction approaches based on cluster-
ing. Existing methods [5, 42, 44] have used trajectory clus-
tering for trajectory prediction. MultiPath [5] performs
Kmeans with the square distances between the trajectories
to get anchor trajectory sets. PCCS-Net [42] decouples mul-
timodal trajectory prediction into three steps: feature clus-
tering, cluster selecting, and synthesizing. Memo-Net [44]
clusters trajectories in the original coordinates and uses an
attention network for better cluster selecting. All existing
methods that use trajectory clustering are aiming at select-
ing future modalities for trajectory decoders and producing

Codes available at https://github.com/ynw2021/FEND.

more diverse trajectories, which is different from our goal
to distinguish tail patterns from head patterns and optimize
the feature embedding space.

Trajectory prediction approaches based on con-
trastive learning. Contrastive learning [34] is a self-
supervised method to improve the representation ability of
the network given the similarities between sample pairs, and
has many variants [4, 8, 19, 20] with different ways of se-
lecting positive and negative samples and calculating con-
trastive loss. Prototypical Contrastive Learning (PCL) [23]
is a variant of contrastive learning that can preserve local
smoothness therefore induce semantically hierarchical clus-
tered feature space [23]. Contrastive learning has also been
incorporated into trajectory prediction. DisDis [7] uses con-
trastive learning in a CVAE framework to discriminate the
latent variable distributions and make the predictions more
diverse. ABC+ [12] uses action labels from their datasets
and contrasts according to them. Social-NCE [26] uses con-
trastive learning to make the predictions away from their
simulated collision cases. None of those above-mentioned
methods have discussed long-tail prediction. The most rel-
evant work is from Makansi et al. [28], which also tries
to solve the long-tail prediction problem with contrastive
learning and uses Kalman prediction errors to select posi-
tive and negative samples. Makansi et al. [28] push all the
tailed samples together in their method. In this work, we
not only separate the tails from the heads as the study [28]
did, but also recognize the patterns of the tailed samples due
to the fact that the tailed samples can be tailed in different
ways, e.g. turning or accelerating, as shown in Fig. 1 and
Fig. 3, which further improves the model capabilities.

2.2. Long-tailed Learning

Long-tailed learning aims to improve the performance
on tailed samples when faced with unbalanced data. Most
of them focus on classification tasks. Typical methods do
data resampling [6, 13, 41] or loss reweighting [9, 15, 25]
to improve the capability of the network on tailed samples.
Recent advances [3, 31] seek for a theoretical balance of
head-tail performance by means of adjusting the classifica-
tion boundaries, whereas these methods cannot be directly
used in regression tasks. Very recently Yang et al. [45] have
investigated imbalanced regression tasks and propose a fea-
ture distribution smoothing and label distribution smooth-
ing method. But the methodology in [45] needs labels with
structured relationships, which is incongruent with the tra-
jectory data. In our methods, we find out structured relation-
ships between trajectories by forming pattern clusters, and
optimize feature space according to item. Besides, we use
Hypernetwork [11] as the trajectory decoder to deal with
tail samples utilizing its distribution-aware modeling abil-
ity, which has not been discussed in long-tail regression to
our best knowledge.

1401



Figure 2. Illustration of our overall future enhanced distribution-aware contrastive learning framework. Top: Offline Kmeans clustering for
pseudo cluster labels. Bottom: The baseline prediction network with FEND plugged in for prediction. The FEND module contains a PCL
optimization procedure and a hyper decoder.

3. Method

Problem formulation. Trajectory prediction is a kind of
sequential prediction problems. Given a series of past ob-
served coordinates {(xnt , ynt )}Nn=1 for N agents over time
t = −Tobs + 1,−Tobs + 2, ..., 0, our objective is to pre-
dict the future locations (x̂t, ŷt) of the agent of interest in a
constant period t = 1, 2, ..., Tpred.

As discussed above, the trajectory data suffers from the
long-tail phenomenon. To address this issue, we come
up with a new long-tail trajectory prediction framework
FEND, which contains a future enhanced contrastive learn-
ing method for helping shape better feature embedding for
trajectory encoders, and a more flexible distribution-aware
hyper predictor for impairing the influence from the head
samples to the tail samples.

Overview. The overall framework of FEND is discribed
in Fig. 2. Both the history and the future trajectories are
firstly processed by a trajectory feature extractor, and the
extracted features are clustered by Kmeans to form differ-
ent pattern clusters. After clustering, the tail trajectory pat-
terns and the head trajectory patterns are separated sponta-
neously using both history and future information. Accord-
ing to the pseudo cluster labels generated by Kmeans, PCL
is performed on the history encoding features of the base-
line prediction network. By performing PCL, the feature
space of trajectory encoders is separately clustered. Then a
hyper decoder is constructed which generates separate de-
coder weights for different trajectory inputs, therefore tra-
jectories in the head clusters and the tail clusters are pre-

dicted differently.

3.1. Future Enhanced Contrastive Learning

3.1.1 Future Enhanced Trajectory Clustering

For trajectory pattern clustering, the start points and initial
directions of trajectories should be normalized to make the
feature extractor more focused on the different patterns of
trajectories. But the data-preprocessing ways of present tra-
jectory prediction methods are various. Therefore, to make
our framework can be more generally applied, we use an
offline cluster module to do normalization and perform tra-
jectory clustering. Also, many trajectory prediction base-
lines do not have a future trajectory encoder, and their en-
coded past trajectory features are high-dimensional, so on-
line clustering will be time-consuming.

We simply use a 1D convolution network (CNN) at-
tached by an LSTM as the trajectory feature extractor for
trajectory encoding and reconstruction, which is supervised
by the reconstruction loss as autoencoders. The feature at
the bottleneck of the network is used to perform hierarchical
Kmeans. Kmeans [14] is a computation-efficient classical
clustering method and can be replaced with any other clus-
tering algorithm. We perform Kmeans with multiple level
of clusters for achieving hierarchy, as the original PCL does.
In the training phase of feature extractors, we also use the
original PCL [23] with EM steps as an auxiliary loss to get
a hierarchically clustered feature space in a self-supervised
manner, which will be discussed in Sec. 3.1.2.

1402



3.1.2 Prototypical Contrastive Learning

In our methods, we have already got the cluster labels after
the trajectory clustering step. Therefore we use the cluster
assignments as pseudo labels for computing prototypes and
densities. The original PCL [23] is an self-supervised meth-
ods with EM steps, therefore it needs to perform clustering
before every training epoch. Our methods use the pseudo
labels to reduce the clustering steps therefore require less
computation source compared to the original PCL. Given
pseudo cluster labels, PCL can pull the features of instances
belonging to the same cluster together and push the features
of instances in different clusters apart, as what vanilla con-
trastive learning does to the positive and negative samples.

Implementing PCL loss. We do PCL on the features at
the bottleneck of the encoder-decoder trajectory prediction
network: after the encoder. Similar to Makansi et al. [28],
we add a fully-connected (FC) layer after the encoder and
add the PCL loss to its output features. The features before
the FC layer will be given to the trajectory decoder. We
perform a multi-level clustering with M hierarchies when
calculating PCL loss. The PCL loss is as follows:

LProtoNCE = Lins + Lproto, (1)

where the first term is an instance-wise contrastive term and
the second-term is an instance-prototype contrastive term.

Instance-wise term. The first term in Eq. (1) is an
instance-wise contrastive term considering the pseudo clus-
ter labels, which can be written as follows:

Lins = −
r∑

i=1

1

Npoi

Npoi∑
i+=1

log
exp

(
vi · vi+/τ

)∑r
j=1 exp (vi · vj/τ)

. (2)

The instance-wise term can help the instances gather to-
gether faster and the algorithm converge faster. vi and vi+
are feature embeddings of trajectory instance i and positive
sample i+ after the encoder respectively, i+ ̸= i. Npoi

is
the number of positive samples to i in a batch. τ is the con-
trastive temperature of the instance-wise contrastive term.
In Eq. (2), the positive samples i+ are the instances from
the same cluster with the instance i, and the rest instances
in the batch, i.e. belonging to other clusters, are regarded as
negative samples. j means an arbitrary sample in the cur-
rent batch data. r denotes the batch size.

Instance-prototype term. The second term in Eq. (1) is
an instance-prototype contrastive term, which can be writ-
ten as follows:

Lproto = − 1

M

r∑
i=1

M∑
m=1

log
exp (vi · cms /ϕms )∑Nm

j=1 exp
(
vi · cmj /ϕmj

) .
(3)

The prototypes help preserving local smoothness and the
formation of clusters with different patterns. In Eq. (3), M

is the number of Kmeans clustering hierarchies, cms means
the prototype of the cluster to which i belongs, and cmj
means the prototype of an arbitrary cluster j. The proto-
type is calculated by taking an average of all the features
in a cluster. Nm denotes the number of clusters for hier-
archy m. ϕmj denotes the density of a cluster j, which is
calculated as below:

ϕ =

∑Z
z=1 ∥v′z − c∥2
Z log(Z + α)

, (4)

where Z is the number of instances in the cluster, and α
is a smoothing factor to ensure that small clusters do not
have an overly large ϕ. We set α = 10 same as [23]. v′z
is the momentum updated feature for instance z to ensure
stability.

3.2. Distribution-Aware Hyper Predictor

Distribution-aware hypernetwork. Intuitively, the
head clusters and the tail clusters should be assigned dif-
ferent decoders to impair their influence on each other. But
there is an insufficient amount of data for the tail samples,
and separately training decoders for them will cause badly
overfitting. Therefore, we want to transfer common knowl-
edge across the whole dataset, while keep the modeling
flexibility of separate decoders. HyperNetworks [11] is an
approach of using a small network, which is known as a hy-
pernetwork, to generate the weights of the main network,
and it naturally suits our demands. The hypernetwork con-
tains the knowledge of all samples, which prevents overfit-
ting. Also, there are separate decoder parameters for head
and tail clusters, which make the decoder aware of the dis-
tribution of the clustered feature space. So the hyper de-
coder can predict the tailed clusters differently.

LSTM trajectory decoder. As an example of a hyper
predictor, we employ an LSTM as the trajectory decoder,
which is commonly used in recent studies [28, 38, 49].The
original formulation of an LSTM is as follows:

it =W i
hht−1 +W i

xxt + bi,

gt =W g
hht−1 +W g

xxt + bg,

ft =W f
h ht−1 +W f

x xt + bf ,

ot =W o
hht−1 +W o

xxt + bo,

mt = σ (ft)⊙mt−1 + σ (it)⊙ ψ (gt) ,

ht = σ (ot)⊙ ψ (mt) ,

(5)

where i, g, f, o are the input gate, update gate, forget gate,
and output gate respectively. Wh ∈ RNh×Nh ,Wx ∈
RNh×Nx , b ∈ RNh , Nh and Nx are the dimensions of input
and hidden states. ht,mt are the hidden state and the cell
state. σ is the sigmoid operator, and ψ is the tanh operator.
The initial x and h are produced by the feature embedding

1403



v of the observed trajectory:

x1 =W v
x v + bvx,

h0 =W v
h v + bvh,

(6)

where W v
h ∈ RNh×Nv ,W v

x ∈ RNx×Nv , bvh ∈ RNh , bvx ∈
RNx .

HyperLSTM. In our implement, the formulation of an
LSTM with a small hypernetwork is as follows:

yt = LN (dyh ⊙W y
hht−1 + dyx ⊙W y

xxt + by (zyb )) ,
(7)

where
dyh (zh) =W y

hzzh,

dyx (zx) =W y
xzzx,

by (zyb ) =W y
bzz

y
b + by0.

(8)

In Eq. (7), y means one of {i, g, f, o} four gates in the
original LSTM formulation Eq. (5) for brevity. ⊙ denotes
the element-wise product operation, LN() denotes the layer
normalization, ds and b are the weights and bias adjusting
vectors from the hypernetwork to change the weights and
bias in the original LSTM. ds and b are generated by the
output zs of the hypernetwork as in Eq. (8), where W s and
by0 are the weights and bias of the linear fully-connected
layers. z can be written as follows for instance i with input
feature vi:

zi = fH (vi) , (9)

where the fH means the hypernetwork mapping function,
which should be a shallow network to reduce computation
and prevent overfitting.

3.3. Loss Reweighting

Our final network loss is as follows:

L = Lpred + λLProtoNCE , (10)

where Lpred is the loss of the baseline prediction network,
λ is a coefficient on the PCL loss term. For easy samples
that the network has already fitted perfectly, the PCL loss
would hardly bring more benefit in network optimization.
Thus, we make λ vary across samples, which performs as
a gate to shut off the PCL loss on easy samples. We use
the prediction loss Lpred of the network after a warm-up
training stage to indicate the hardness of the samples, which
is denoted as L′

pred. λ is determined according to L′
pred:

λ = a L′
pred > θ,

λ = 0 L′
pred < θ,

(11)

where a is a constant hyperparameter, and θ is the threshold
to filter out head samples.

4. Experiments

4.1. Datasets

We evaluate our proposed method on several widely used
public pedestrain datasets including ETH-UCY, Nuscenes
and SDD. ETH-UCY is a pedestrian dataset with rich so-
cial interactions. Nuscenes is a large scale trajectory dataset
with both vehicles and pedestrians. In this work, we mainly
evaluate the performances of our model on the vehicle type,
same as [28]. SDD is another large scale bird view trajec-
tory dataset. We use ETH-UCY and Nuscenes in the way
same as our backbone Traj++ EWTA [28] and SDD in the
way same as our backbone Y-Net [30].

4.2. Evaluation Metrics

Performance metrics. We use the common met-
rics for evaluating multimodal trajectory prediction per-
formance: Average-Displacement-Error (ADE) and Final-
Displacement-Error (FDE), which is commonly used in
studies [1, 5, 48]. ADE means the averaged L2 distance be-
tween future prediction and ground truth trajectory, while
FDE means the L2 distance between the final predicted
destination and the ground truth destination. For evaluat-
ing multi-modality, we calculate mininum ADE and FDE
among all the output guesses, which are denoted as mi-
nADE and minFDE and are averaged across the dataset.

Tailed test sample selecting. In order to demonstrate
our model on the long-tailed data, we need to separate the
hard samples as well as the easy ones for evaluation. Specif-
ically, we use the testing FDEs of the baseline method as
the threshold to divide the datasets into seven kinds of sam-
ples: the top 1%-5% challenging samples with the largest
errors, the rest easier samples, as well as all samples in the
datasets. In [28], the Kalman predictor prediction error is
utilized for dataset division. Compared with the FDEs of
a simple Kalman predictor, performances of an advanced
baseline predictor can better reflect the degrees of difficulty
for the samples to be modeled by the data-driven network,
which can better reveal the ability of the long-tail prediction
methods to deal with the hard tailed samples. The Kalman
divisions are discussed in supplementaries.

4.3. Baseline

We use Trajectron++ EWTA (Traj++ EWTA) [28] as a
baseline for our framework on ETH-UCY and Nuscenes,
which has achieved state-of-the-art results according to
[28]. Traj++ EWTA augments the Trajectron++ [38]
by removing the conditional variational autoencoder parts
and using a multi-head decoder trained with the evolving
winner-take-all (EWTA) strategy. Another strong baseline
we experiment on is Y-Net [30], which uses a U-Net back-
bone and achieves state-of-the-art results on SDD.

1404



Top 1% Top 2% Top 3% Top 4% Top 5% Rest All

Traj++ EWTA [28] 0.98/2.54 0.79/2.07 0.71/1.81 0.65/1.63 0.60/1.50 0.14/0.26 0.17/0.32
Traj++ EWTA+resample [41] 0.90/2.17 0.77/1.90 0.73/1.78 0.66/1.60 0.64/1.52 0.20/0.41 0.23/0.47
Traj++ EWTA+reweighting [9] 0.97/2.47 0.78/2.03 0.68/1.73 0.62/1.55 0.56/1.40 0.14/0.26 0.16/0.32
Traj++ EWTA+LDAM [3] 0.92/2.35 0.76/1.96 0.68/1.71 0.62/1.53 0.57/1.37 0.15/0.27 0.17/0.32
Traj++ EWTA+contrastive [28] 0.92/2.33 0.74/1.91 0.67/1.71 0.60/1.48 0.55/1.32 0.15/0.27 0.17/0.32
Traj++ EWTA+FEND (ours) 0.84/2.13 0.68/1.68 0.61/1.46 0.56/1.30 0.52/1.19 0.15/0.27 0.17/0.32

Table 1. Prediction errors in the format of (minADE/minFDE) in meters on seven kinds of testing samples on the ETH-UCY dataset.

Top 1% Top 2% Top 3 % Top 4% Top 5% Rest All

Traj++ EWTA [28] 1.33/3.09 1.02/2.35 0.87/2.00 0.80/1.80 0.74/1.64 0.16/0.26 0.19/0.32
Traj++ EWTA+contrastive [28] 1.28/2.85 0.97/2.15 0.83/1.83 0.76/1.64 0.70/1.48 0.15/0.24 0.18/0.30
Traj++ EWTA w/o resampling+FEND 1.21/2.50 0.92/1.88 0.79/1.61 0.72/1.43 0.66/1.31 0.14/0.20 0.17/0.26

Table 2. Prediction errors in the format of (minADE/minFDE) in meters on seven kinds of testing samples on Nuscenes dataset.

4.4. Implement Details

We follow the train schedule of Traj++ EWTA, to train
the network with a batch size of 256 for 100 epochs for
ETH-UCY and 5 epochs for Nuscenes in each EWTA stage.
The learning rate is initially set as 0.01 and exponentially
decays with the rate of 0.001. We use a warm-up of 300
epochs in our final model for ETH-UCY. We set a = 50
as an initial loss factor same as [28], and a will decade to
0.2 after 100 epochs to not to harm the prediction training
process, according to the drop on the EWTA loss. The head
sample filter threshold θ is set to 0.2. For the feature extrac-
tor, we use a 1D CNN with 16 output channel and a kernel
size of 3, attached with an LSTM with a hidden size of 128.
For Kmeans clustering, we use {20, 50, 100} as the clus-
ter numbers for getting hierarchical clusters. And we use
a fully-connected multilayer perception with a hidden size
of 128 as the hypernetwork. To train Y-Net, we follow [22]
to make the encoded feature with shape (C,H,W ) average
pooled in the spatial dimension to get a C dimensional vec-
tor, and perform PCL on it. We set a = 1 and no warmup.

4.5. Comparisons with others

Quantitative comparisons on Traj++ EWTA on ETH-
UCY. To show the effectiveness of our methods, we select
the state-of-the-art method for long-tail trajectory predic-
tion [28], classical data resampling [41] and loss reweight-
ing [9], and a head-tail performance balancing method
[3] for comparison. For long-tailed classification meth-
ods [3, 9, 41], we construct a classification head after the
encoder of Traj++ EWTA to use it to classify the trajectories
according to the discretization of Kalman filter errors, same
as Makansi et al. [28], and the classification loss is trained
along with the prediction loss. Table 1 summarizes our ex-
perimental results on ETH-UCY using a best-of-20 evalu-
ation [10]. We can see that our method stably outperforms
all comparing methods on all the top 1% − 5% long-tail

samples. Specifically, our framework outperforms the sec-
ond best method: Traj++ EWTA+contrastive [28] by 9.5%
on ADE and 8.5% on FDE on the top 1% hardest samples,
and maintains the average ADE and FDE nearly stable. The
Traj++ EWTA+reweighting [9] performs best on the aver-
age ADE/FDE, but its performance gains on tailed samples
are relatively little. The Traj++ EWTA+resampling [41]
gets more gains on the most tailed samples, but its aver-
age ADE/FDE become much worse. Unlike simply doing
resampling or loss reweighting, hypernetwork can decou-
ple head samples and tail samples in the parameter space of
decoder, therefore achieves better performances.

Quantitative comparisons on Traj++ EWTA on
Nuscenes. Comparison results with the previous best
long-tail prediction method [28] on Nuscenes are in Ta-
ble 2. We find out that the resampling operation in the
original Traj++ EWTA does not work well with FEND,
probably because of causing overfit on hypernetwork. De-
spite of this, as shown in Table 2, the baseline without
resampling can achieve both superior long-tail and over-
all performances with FEND. The performances of Traj++
EWTA and Traj++ EWTA+contrastive on both ETH-UCY
and Nuscenes are tested on the provided pre-trained models
of [28].

Quantitative comparisons on Y-Net on SDD. We also
plug our module into Y-Net, the results are shown in Table
3. We reproduced the results of Y-Net using the official re-
leased code of [30] with 42 as the random seed, since the
original method does not have a fix seed. Results show that
our method can achieve performance gains on both tail sam-
ples and the whole dataset.

Qualitative comparison. Figure 3 shows some long-
tailed hard-case studies of our method on ETH-UCY. Those
cases contain some rare social interactions, and all the fu-
ture trajectories in them are non-trivial to be predicted. In
all those samples, our method (blue) outperforms the origi-

1405



Top 1% Top 2% Top 3% Top 4% Top 5% Rest All

Y-Net* [30] 65.82/134.01 51.84/104.37 43.74/88.21 38.68/76.08 34.72/67.46 6.54/8.96 7.93/11.88
Y-Net*+FEND 57.58/108.51 46.33/86.93 39.22/75.02 35.05/66.24 31.27/57.98 6.64/9.24 7.87/11.68

Table 3. Prediction errors in the format of (minADE/minFDE) on seven kinds of testing samples on SDD dataset. * means the results are
reproduced using the official released code of [30].

Components Performance(ADE/FDE)

PCL F H Top 1% Top 2% Top 3% Top 4% Top 5% Rest All

0.98/2.54 0.79/2.07 0.71/1.81 0.65/1.63 0.60/1.50 0.14/0.26 0.17/0.32
✓ 0.96/2.41 0.79/2.03 0.70/1.77 0.62/1.56 0.57/1.41 0.15/0.27 0.17/0.32
✓ ✓ 0.89/2.23 0.72/1.84 0.66/1.61 0.60/1.44 0.55/1.30 0.15/0.27 0.17/0.32
✓ ✓ 0.90/2.28 0.72/1.87 0.65/1.61 0.58/1.43 0.54/1.30 0.15/0.27 0.17/0.32
✓ ✓ ✓ 0.84/2.13 0.68/1.68 0.61/1.46 0.56/1.30 0.52/1.19 0.15/0.27 0.17/0.32

Table 4. Ablation study of different modules in FEND. F means future enhanced clusters, H means the hypernetwork.

(a) (b) (c)

(d) (e) (f)

Figure 3. Qualitative results on the ETH-UCY dataset: (a)(b) col-
lision avoidance (c)(d) social influence of parallel walking (e)(f)
crowd avoidance. The predictions are selected using a best-of-20
evaluation.

nal Traj++ EWTA (red) and the Traj++ EWTA+contrastive
(magenta), thanks to our future enhanced PCL framework
for letting the prediction network better recognize different
trajectory patterns and a more flexible hyper predictor.

4.6. Ablation Study and Dicussions

Quantitative ablation studies. Results of quantitative
ablation studies are shown in Tab. 4. We can see from the
results that both the future enhanced clustering and the PCL
loss can contribute to the performance of the tailed sam-
ples. Importing the hypernetwork can also lead to a decline
on the tailed FDEs. And the future enhanced PCL and the
hypernetwork are compatible with each other for achieving
lower tail FDEs by using both.

Qualitative ablation studies. Figure 4 shows some vi-
sualizations of the predict results with our different model

(a) (b) (c)

(d) (e) (f)

Figure 4. Qualitative results on the ETH-UCY dataset for our dif-
ferent model variants and the baseline Traj++ EWTA. The predic-
tions are selected using a best-of-20 evaluation.

variants. All the plotted cases are challenging, and we can
see that our full model FEND stably outperforms the other
variants and the baseline Traj++ EWTA. Also we can dis-
cover from the figure that all of our different model variants
perform better than the baseline Traj++ EWTA.

a Top 1% Top 2% Top 3% All

1 0.97/2.48 0.78/2.01 0.69/1.72 0.17/0.33
20 0.85/2.15 0.68/1.70 0.61/1.47 0.17/0.32
50 0.84/2.13 0.68/1.68 0.61/1.46 0.17/0.32
100 0.85/2.14 0.68/1.69 0.61/1.46 0.17/0.32

Table 5. Study on the parameter sensitivity of the auxiliary loss
weight a. Results are in the format of (minADE/minFDE) in me-
ters.

1406



(a) (b) (c)

Figure 5. TSNE results of (a)Traj++EWTA (b)Traj++ EWTA+contrastive (c)Traj++ EWTA+FEND on the univ scene. The red stars, the
green stars, and the yellow stars represent clusters of three kinds of hard tailed patterns, while the magenta and cyan dots represent clusters
of two kinds of easy head patterns. We can see from the figures that our method forms a more separately clustered feature space.

0.0 1.0 2.0 3.0 4.0 5.0
x(final displacement errors in meters)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 
fo

r 
va

ri
a
n
t 

FD
E
. 
y=

P(
FD

E
>

x)

contrast
FENDHead part

Tail part

F=0.073, c=0.080，

1.0

1.0

0.08

2.0 3.0 4.0 5.0 6.0

Figure 6. CDF curve and CDF bars of testing FDEs on ETH-UCY.
It can be seen that our method have a shorter tail region.

Parameter sensitivity study. Table 5 shows the param-
eter sensitivity study of PCL loss weight a. We can see that
setting a = 50 initially will be the best choice. Other pa-
rameter sensitivity studies are provided in supplementaries.

Shaped feature embedding space. Figure 5 shows the
TSNE results of the feature space of our method and two
comparing methods, with two head patterns and three tailed
patterns. We can see from the figure that our future en-
hanced PCL method can decently separate the tail patterns
and the head patterns, while there is still some overlap be-
tween the heads and the tails in the feature space of Traj++
EWTA and Traj++ EWTA+contrastive. Also, we can see
from Fig. 5 that our method can form different clusters for
different tailed patterns, while in the feature space of Traj++
EWTA+contrastive, all the samples of the three tail patterns
are pushed together, as in Sec. 2 discussed.

FDE distribution bars. To illustrate the distribution of
the prediction errors across the dataset more clearly, We plot
the cumulative distribution function (CDF) curve of FDEs,

and the CDF bars of head and tail regions on ETH-UCY in
Figure 6 versus the second-best: Traj++ EWTA+contrastive
[28]. The CDF is averaged across the five scenes.

Limitations. The performances on the head samples are
slightly dropped, which can been seen in Figure 6 and Ta-
ble 1 2 3. We leave it as future works. In most experiments
we use the minADE/FDE as the prediction evaluation pro-
tocols. There are many better metrics such as the Nega-
tive Log-Likelihood (NLL) [2, 16, 17] or those which take
scene-compliance or socially acceptable prediction into ac-
count [18, 21]. The results of another evaluation protocol:
FDE NLL are in supplementaries.

Discussion about single agent clustering. We use sin-
gle agent full trajectory features for clustering, similar to
other works using single trajectories to cluster or retrieve
[42, 51]. In our experiment we find out that the information
in single agent trajectories can already lead to good perfor-
mances. We believe that it is a promising future direction to
include social features into the clustering process.

5. Conclusion

In this paper, we propose a future enhanced contrastive
feature space shaping method and a distribution-aware hy-
per decoder for long-tailed trajectory prediction. Quantitive
and qualitative experiment results show that our method can
outperform state-of-the-art long-tail prediction methods on
the challenging tailed samples, while maintaining the aver-
aged performance on the whole datasets. Our method can
be generally plugged into many strong prediction networks.

Acknowledgement

This work was supported by NSFC Projects (No.
62036008) and STI 2030—Major Projects (No.
2021ZD0201300).

1407



References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 961–971, 2016. 1, 2, 5

[2] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Ac-
curate and diverse sampling of sequences based on a “best of
many” sample objective. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8485–8493, 2018. 8

[3] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,
and Tengyu Ma. Learning imbalanced datasets with label-
distribution-aware margin loss. Advances in neural informa-
tion processing systems, 32, 2019. 2, 6

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. Ad-
vances in Neural Information Processing Systems, 33:9912–
9924, 2020. 2

[5] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor tra-
jectory hypotheses for behavior prediction. arXiv preprint
arXiv:1910.05449, 2019. 2, 5

[6] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence re-
search, 16:321–357, 2002. 2

[7] Guangyi Chen, Junlong Li, Nuoxing Zhou, Liangliang Ren,
and Jiwen Lu. Personalized trajectory prediction via distri-
bution discrimination. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 15580–
15589, 2021. 2

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2

[9] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9268–9277,
2019. 2, 6

[10] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable tra-
jectories with generative adversarial networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2255–2264, 2018. 1, 6

[11] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016. 2, 4

[12] Marah Halawa, Olaf Hellwich, and Pia Bideau. Action-based
contrastive learning for trajectory prediction. In European
Conference on Computer Vision, pages 143–159. Springer,
2022. 2

[13] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao.
Borderline-smote: a new over-sampling method in im-
balanced data sets learning. In International conference on
intelligent computing, pages 878–887. Springer, 2005. 2

[14] John A Hartigan and Manchek A Wong. Algorithm as 136 a
k-means clustering algorithm. Journal of the royal statistical
society. series c (applied statistics), 28(1):100–108, 1979. 3

[15] Haibo He and Edwardo A Garcia. Learning from imbalanced
data. IEEE Transactions on knowledge and data engineer-
ing, 21(9):1263–1284, 2009. 2

[16] Ronny Hug, Wolfgang Hübner, and Michael Arens. Intro-
ducing probabilistic bézier curves for n-step sequence pre-
diction. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 10162–10169, 2020. 8

[17] Boris Ivanovic and Marco Pavone. The trajectron: Proba-
bilistic multi-agent trajectory modeling with dynamic spa-
tiotemporal graphs. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2375–2384,
2019. 8

[18] Boris Ivanovic and Marco Pavone. Injecting planning-
awareness into prediction and detection evaluation. In 2022
IEEE Intelligent Vehicles Symposium (IV), pages 821–828.
IEEE, 2022. 8

[19] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion,
Philippe Weinzaepfel, and Diane Larlus. Hard negative mix-
ing for contrastive learning. Advances in Neural Information
Processing Systems, 33:21798–21809, 2020. 2

[20] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. Advances
in Neural Information Processing Systems, 33:18661–18673,
2020. 2

[21] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human
trajectory forecasting in crowds: A deep learning perspec-
tive. IEEE Transactions on Intelligent Transportation Sys-
tems, 23(7):7386–7400, 2021. 8

[22] Mihee Lee, Samuel S Sohn, Seonghyeon Moon, Sejong
Yoon, Mubbasir Kapadia, and Vladimir Pavlovic. Muse-
vae: multi-scale vae for environment-aware long term tra-
jectory prediction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2221–2230, 2022. 6

[23] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi.
Prototypical contrastive learning of unsupervised representa-
tions. arXiv preprint arXiv:2005.04966, 2020. 2, 3, 4

[24] Tianhong Li, Peng Cao, Yuan Yuan, Lijie Fan, Yuzhe Yang,
Rogerio S Feris, Piotr Indyk, and Dina Katabi. Targeted su-
pervised contrastive learning for long-tailed recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6918–6928, 2022. 1

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 2

[26] Yuejiang Liu, Qi Yan, and Alexandre Alahi. Social nce: Con-
trastive learning of socially-aware motion representations. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15118–15129, 2021. 2

[27] Yuanfu Luo, Panpan Cai, Aniket Bera, David Hsu, Wee Sun
Lee, and Dinesh Manocha. Porca: Modeling and planning
for autonomous driving among many pedestrians. IEEE
Robotics and Automation Letters, 3(4):3418–3425, 2018. 1

1408



[28] Osama Makansi, Özgün Çiçek, Yassine Marrakchi, and
Thomas Brox. On exposing the challenging long tail in
future prediction of traffic actors. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 13147–13157, 2021. 1, 2, 4, 5, 6, 8

[29] Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox.
Overcoming limitations of mixture density networks: A sam-
pling and fitting framework for multimodal future prediction.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7144–7153, 2019. 2

[30] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jiten-
dra Malik. From goals, waypoints & paths to long term hu-
man trajectory forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15233–
15242, 2021. 2, 5, 6, 7

[31] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh
Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar.
Long-tail learning via logit adjustment. arXiv preprint
arXiv2007.07314, 2020. 2

[32] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory
prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14424–
14432, 2020. 2

[33] Sriram Narayanan, Ramin Moslemi, Francesco Pittaluga,
Buyu Liu, and Manmohan Chandraker. Divide-and-conquer
for lane-aware diverse trajectory prediction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15799–15808, 2021. 2

[34] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 2

[35] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Tra-
jectory prediction with latent belief energy-based model. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11814–11824, 2021. 2

[36] Tung Phan-Minh, Elena Corina Grigore, Freddy A Boulton,
Oscar Beijbom, and Eric M Wolff. Covernet: Multimodal
behavior prediction using trajectory sets. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14074–14083, 2020. 2

[37] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie:
An attentive gan for predicting paths compliant to social and
physical constraints. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
1349–1358, 2019. 1

[38] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++ dynamically-feasible trajectory
forecasting with heterogeneous data. In European Confer-
ence on Computer Vision, pages 683–700. Springer, 2020. 1,
2, 4, 5

[39] Dvir Samuel and Gal Chechik. Distributional robustness loss
for long-tail learning. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9495–9504,
2021. 1

[40] Nasim Shafiee, Taskin Padir, and Ehsan Elhamifar. Introvert:
Human trajectory prediction via conditional 3d attention. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 16815–16825, 2021. 2

[41] Li Shen, Zhouchen Lin, and Qingming Huang. Relay back-
propagation for effective learning of deep convolutional neu-
ral networks. In European conference on computer vision,
pages 467–482. Springer, 2016. 2, 6

[42] Jianhua Sun, Yuxuan Li, Hao-Shu Fang, and Cewu Lu. Three
steps to multimodal trajectory prediction: Modality clus-
tering, classification and synthesis. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 13250–13259, 2021. 2, 8

[43] Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Si-
heng Chen. Groupnet: Multiscale hypergraph neural net-
works for trajectory prediction with relational reasoning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6498–6507, 2022. 2

[44] Chenxin Xu, Weibo Mao, Wenjun Zhang, and Siheng Chen.
Remember intentions: Retrospective-memory-based trajec-
tory prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6488–
6497, 2022. 2

[45] Yuzhe Yang, Kaiwen Zha, Yingcong Chen, Hao Wang, and
Dina Katabi. Delving into deep imbalanced regression. In In-
ternational Conference on Machine Learning, pages 11842–
11851. PMLR, 2021. 2

[46] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi.
Spatio-temporal graph transformer networks for pedestrian
trajectory prediction. In European Conference on Computer
Vision, pages 507–523. Springer, 2020. 2

[47] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani.
Agentformer: Agent-aware transformers for socio-temporal
multi-agent forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9813–
9823, 2021. 2

[48] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and
Nanning Zheng. Sr-lstm: State refinement for lstm to-
wards pedestrian trajectory prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12085–12094, 2019. 1, 2, 5

[49] Pu Zhang, Jianru Xue, Pengfei Zhang, Nanning Zheng, and
Wanli Ouyang. Social-aware pedestrian trajectory predic-
tion via states refinement lstm. IEEE transactions on pattern
analysis and machine intelligence, 2020. 1, 4

[50] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben Sapp,
Balakrishnan Varadarajan, Yue Shen, Yi Shen, Yuning Chai,
Cordelia Schmid, et al. Tnt: Target-driven trajectory pre-
diction. In Conference on Robot Learning, pages 895–904.
PMLR, 2021. 2

[51] He Zhao and Richard P Wildes. Where are you heading?
dynamic trajectory prediction with expert goal examples. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7629–7638, 2021. 8

1409


