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Abstract

Pre-trained vision-language models have inspired much
research on few-shot learning. However, with only a
few training images, there exist two crucial problems:
(1) the visual feature distributions are easily distracted
by class-irrelevant information in images, and (2) the
alignment between the visual and language feature distri-
butions is difficult. To deal with the distraction problem,
we propose a Selective Attack module, which consists of
trainable adapters that generate spatial attention maps
of images to guide the attacks on class-irrelevant image
areas. By messing up these areas, the critical features are
captured and the visual distributions of image features are
calibrated. To better align the visual and language feature
distributions that describe the same object class, we pro-
pose a cross-modal distribution alignment module, in which
we introduce a vision-language prototype for each class
to align the distributions, and adopt the Earth Mover’s
Distance (EMD) to optimize the prototypes. For efficient
computation, the upper bound of EMD is derived. In
addition, we propose an augmentation strategy to increase
the diversity of the images and the text prompts, which
can reduce overfitting to the few-shot training images.
Extensive experiments on 11 datasets demonstrate that
our method consistently outperforms prior arts in few-shot
learning. The implementation code will be available at
https://gitee.com/mindspore/models/tree/master/research/cv
/SADA.

1. Introduction

Thanks to the availability of large-scale datasets and
well-designed training strategies, the performances of many
computer vision tasks have been greatly improved. Re-
cent progress in vision-language models (VLMs), such as

*Co-first author.
Corresponding author.

CLIP [29] and ALIGN [17], provides a promising way
towards utilizing human language to address downstream
recognition tasks efficiently. As vision and language usually
contain complementary information, joint learning of image
and text representations has proven quite effective.  Al-
though CLIP has demonstrated impressive zero-shot learn-
ing capability, it is still challenging to better adapt it to
downstream tasks. Naively fine-tuning CLIP on down-
stream datasets has limited effect, since it may destroy the
prior learned from the massive data during pre-training.
Therefore, effective transfer methods are needed to boost
the downstream performances of CLIP. In order to main-
tain the capability of pre-trained VLMs and further boost
downstream performances, different approaches have been
proposed to fine-tune a small proportion of additional pa-
rameters while keeping the pre-trained parameters frozen.
Among these approaches, prompt learning [42,43] and vi-
sual adapters [13,41] are two common approaches. How-
ever, the lack of training samples in few-shot settings
increases the risk of overfitting the trained prompts or
adapters. The class-irrelevant features (e.g., the cluttered
image backgrounds) drive the image features far away from
their true distributions of the same category. Besides, VLMs
such as CLIP have such a problem that the distributions of
the image and text features are not really aligned [30], and
the problem becomes more challenging in few-shot settings.
Therefore, the visual distributions should be calibrated by
reducing class-irrelevant image contents, and the distribu-
tions of image and text features should be further aligned,
so as to promote the model’s learning of class-relevant crit-
ical features. The purpose of this paper is to develop an ef-
fective VLM transfer strategy for few-shot learning to solve
the above problems with Selective Attack (SA) and Cross-
Modal Distribution Alignment (CMDA).

Images often contain class-irrelevant information, which
is also embedded into the image representations. With only
a few samples, the model can easily learn these cluttered
representations, resulting in overfitting. This seriously hin-
ders the learning of critical features that help the model rec-
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Figure 1. (a) The t-SNE [35] visualization of the image feature distribution before Selective Attack, where the features are obtained by
the CLIP image encoder on the CIFAR10 dataset. The dots in different colors represent different classes of the image features. (b) After
Selective Attack, the intra-class distribution is significantly more compact. (c) The distribution histograms of image features and text
features of the same class (‘bird’) on CIFAR10 before CMDA, where the horizontal axis denotes the value of each element of the feature
vectors, and the vertical axis denotes the number of elements. (d) After CMDA, the difference between the two distributions is significantly

reduced.

ognize unseen samples. To solve this problem, we propose
the SA module, which consists of two trainable adapters
that generate a kernelized attention map to locate the class-
irrelevant areas of the images. The attention is adopted to
guide Gaussian perturbations to attack images before they
are fed into the image encoder. By messing up these class-
irrelevant image contents through SA, we facilitate the
model’s learning of truly critical features that can be trans-
ferred to recognize new samples within the same category.
As an example in Figs. 1 (a) and (b), after Selective Attack
(SA), the distributions of the image features are calibrated,
and the intra-class features become obviously more clus-
tered.

Another challenge is that the distributions of the image
and the text representations of the same class are not truly
aligned in CLIP [30] as shown in Fig. 1(c). The unaligned
distributions lead to inaccurate similarity calculations be-
tween image features and text features during inference, re-
sulting in incorrect predictions. The lack of samples in few-
shot settings further makes the problem even more serious.
To address it, we propose a CMDA module, in which we
construct a Vision-Language Prototype (VLP) for each class
to promote the cross-modal distribution alignment. Specif-
ically, the element values of VLP are initialized by aver-
aging all the image representations from the corresponding
class. During training, each VLP is optimized by reducing
its distance to the language prototype (defined in Sec. 3.4)
of the same class, thus promoting the cross-modal distri-
bution alignment. The Earth Mover’s Distance (EMD) is a
suitable metric for the alignment, which can not only reflect
the similarity between two distributions but also represent
the minimal transmission cost [40]. We derive a concise
upper bound of the EMD distance, which can balance the

performance and computational consumption. As shown
in Figs. 1 (c) and (d), the effect of Cross-Modal Distribu-
tion Alignment (CMDA) is obvious that the difference be-
tween the image and text feature distributions is effectively
reduced. In this way, the image features after CMDA can
be better predicted by the text features.

Automatic prompt learning for pre-trained VLMs has
been proposed to reduce the expensive cost of hand-crafted
prompt engineering [43]. However, the learned prompts
may suffer from more overfitting than manual prompts [42].
Therefore, instead of learning one soft prompt, we learn a
distribution over a collection of prompts, as in ProDA [23].
Moreover, we introduce an augmentation strategy to in-
crease the diversity of the images and the prompts. Specifi-
cally, we search for the four best augmentations from a col-
lection of predefined ones. Using these operations, each
image is augmented into four different forms. The collec-
tion of prompts is also divided into four groups, with each
group trained by images in the corresponding augmentation
form. Through the strategy, we improve the diversity of the
images and the prompts, and fully excavate the semantic in-
formation in the prompts. The framework of our method
is shown in Fig. 2. Our contributions are summarized as
follows:

* We conduct Selective Attack on the class-irrelevant
regions of images with the guidance of the attention
generated by two trainable adapters to facilitate the
model’s learning of class-related features, which cal-
ibrates the visual distributions.

* We propose Cross-Modal Distribution Alignment op-
timized by an EMD loss. The upper bound of EMD
for Gaussian distribution is further derived for compu-
tation efficiency.
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Figure 2. Overview of our framework. We introduce a Selective Attack module to reduce the intra-class distances of image features
during training. We also design a Cross-Modal Distribution Alignment (CMDA) module to align the distributions of image and text
representations. During training, the trainable parameters are denoted in orange and the encoders of CLIP are frozen. J: the number of
augmentations; (§): cosine similarity computation; ®: element-wise product.

* We present an augmentation strategy to reduce overfit-
ting and increase the diversity of images and prompts.

* Our method outperforms prior arts in few-shot learning
on 11 benchmarks.

2. Related Work
2.1. Vision-Language Models

Recently, many vision-language models have demon-
strated great potential in learning generic visual represen-
tations such as CLIP [29], ALIGN [17] and Flamingo [!].
Learning under a large number of images and their text de-
scriptions, VLMs are robust to distribution shifts and thus
can transfer across different domains. CLIP adopts a two-
stream architecture, consisting of an image encoder and a
text encoder that encode image and text inputs separately
and produce individual vision and language representations
embedded in a joint space using a contrastive loss. The suc-
cess of VLMs has inspired research on a series of down-
stream tasks such as image classification [29], object detec-
tion [10, 16], semantic segmentation [39], action recogni-
tion [37], video caption [34] and so on.

2.2. Few-Shot Learning

As a challenging problem, few-shot learning aims to
adapt a model to a new task with just a few examples.
Researchers explore meta-learning to find well-initialized
models suitable for adaptation [3,21,44], or compensate for
the data insufficiency in few-shot settings by data augmen-
tation [2,28]. Other approaches improve few-shot accuracy
through feature calibration. For example, MatchingNet [36]
and ProtoNet [32] learn to classify samples by comparing
their distances to the prototypes, i.e., the representatives of
classes, while other approaches attempt to augment feature
representations by leveraging intra-class variance [22, 26].

Recently, VLMs are also used for few-shot learning. CLIP-
Adapter [13] adds an adapter after the CLIP image en-
coder, and finetunes it while freezing the encoders of CLIP.
CoOp [43] turns a prompt into a set of continuous vectors
which can be optimized end-to-end with the help of a few
labeled data from the target dataset. CoCoOp [42] is fur-
ther proposed based on CoOp to learn dynamic prompts for
each instance, boosting the generalization of prompts to un-
seen classes or datasets. However, continuous prompts suf-
fer from more serious overfitting than manual prompts [42].
Therefore, ProDA [23] proposes to learn a distribution over
a collection of prompts instead of only one prompt.

Differently, we introduce Selective Attack on class-
irrelevant contents to facilitate the learning of transferable
class-relevant features, and propose an augmentation strat-
egy to increase the diversity of images and prompts, better
alleviating overfitting. By constructing and optimizing the
VLPs, our method aligns the cross-modal distributions of
image and text features, thus achieving better few-shot ac-
curacy.

3. Methodology

In this section, we first revisit prompt learning in
Sec. 3.1, and present our augmentation strategy to increase
the diversity of the images and the prompts in Sec. 3.2.
Then, we propose our Selective Attack (SA) module and
Cross-Modal Distribution Alignment (CMDA) module in
Secs. 3.3 and 3.4 respectively. The overview of our frame-
work is given in Fig. 2.

3.1. Prompt Learning

CLIP consists of an image encoder f(-) and a text en-
coder g(-). Specifically, the image x and the text t are fed
into f(-) and g(-) respectively to obtain the image feature
z € RP and the text feature w € RP, where t is the in-
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put embedding which is obtained by feeding the raw text
through an embedding layer. In CLIP, t is obtained via
one of the hand-crafted prompts which have a template like
“a photo of a [CLS]”, where [CLS] is a class name of the
downstream task. Thus, the probability of predicting the
testing image x; as the class y; can be computed by:

e<Zi7quj>/T

——— 1
ST efziwi)/7 M

p(yilxi) =
where T is a temperature parameter learned by CLIP, (-, -)
denotes cosine similarity, wy, is derived from the text de-
scription ty, of the k-th class, and K is the total number of
downstream dataset classes.

To bring about improvement in few-shot learning, meth-
ods have been proposed to fine-tune a small proportion of
newly introduced parameters while keeping the CLIP en-
coders frozen. Among them, prompt learning achieves im-
pressive performance. A representative of prompt learning
is CoOp [43], which learns a continuous prompt P instead
of adopting hand-crafted prompt templates. Specifically, by
concatenating P with the embedding of a class name, the
text description ty(P) of the k-th class is obtained as:

t.(P) = [pl1[pl2 - - - [P|a[CLS]y, (2)

where each [p],,, m € {1,..., M}, is a learnable vector of
P with the same dimension as the embedding of [CLS],
and P is shared among all classes, [CLS]y is the text em-
bedding of the k-th class name, which can also appear at
the start and middle of the prompt in our method. In this
way, wy, in Eq. 1 is replaced by g(t;(P)). By minimizing
the difference between the outputs of the image and text en-
coders, the prompt can be optimized to facilitate the learn-
ing of class-relevant object contents. The objective function
of prompt learning is thus obtained as:

e(zi:9(ty, (P))) /7

lele e(zi,9(tk(P)))/T

L(P) =E[-log ]. 3)

Prompt learning suffers from serious overfitting, as men-
tioned in [42]. Therefore, we adopt the prompt learning
strategy proposed in [23] to learn a distribution over di-
verse prompts instead of one single prompt, so as to capture
the variance of visual representations. To further overcome
overfitting, we additionally introduce an augmentation strat-
egy to increase the diversity of the images and the prompts,
as described in Sec. 3.2.

3.2. Augmentation Strategy

Augmentation is an intuitive way to increase data di-
versity. In our strategy, we set up a pool of common
candidate augmentation operations, which contains oper-
ations: rotating, flipping, random gray scaling, random
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Figure 3. Framework of the proposed augmentation strategy and
the Selective Attack module. The augmentation strategy associates
each augmented image with a specific group of prompts to increase
the diversity of the learned prompts. For each augmented image, a
separate adapter and a spatial attention map are learned.

cropping+resizing, resizing, color jittering, and Gaussian
blurring. We finally choose J operations with the best re-
sults as our augmentation set during training. These J op-
erations are applied to each training image x; to obtain J
augmented images x; ;, j € {1,...,J}. Inaddition to aug-
menting images, the text prompts in CLIP should also be
diverse enough to prevent overfitting. Therefore, we divide
the prompt collection into .JJ groups, with each group con-
taining L prompts. During training, each group of prompts
is trained by the images augmented by the corresponding
augmentation form, as shown in Fig. 3. In other words, each
selected augmentation operation is responsible for generat-
ing a specific type of augmented images, as well as train-
ing the corresponding group of prompts. In this way, the
prompts become more diverse and can better exploit the
knowledge learned in the CLIP. The probability of predict-
ing the image can then be computed as:

elZigs 22 9(ty, (Pu;))/L)/7
ZkK=1 elzig, > 9tk (P )/ LY/’

p(yilxiz) = “4)

where P, ; denotes the [-th prompt in the j-th prompt group.
In this work, we set L = 8 and J = 4, so the total number
of the prompts in the whole collection is J x L = 32.

3.3. Selective Attack

We design a Selective Attack (SA) module, which at-
tacks the class-irrelevant image contents to alleviate overfit-
ting. The class-irrelevant information, such as image back-
grounds, results in intra-class difference and a distribution
shift. By attacking the class-irrelevant features, the distribu-
tion can be calibrated to better generalize to unseen samples
within the same class.

The SA module is added in front of the pre-trained im-
age encoder as shown in Fig. 3. The module contains two
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trainable adapter layers to generate a spatial attention map
for each image, with the first layer as:

(F77(xi5)), (5)

where the activation function ¢ is the sigmoid, fj7 *Tis a
convolutional layer with a kernel size of 7 x 7 operating on
the j-th augmented image, and F; ; is the feature obtained
after the first adapter layer.

To compute the spatial attention that guides the SA on
class-irrelevant areas, we then aggregate the channel infor-
mation of the obtained feature F'; ; by applying channel-
wise average-pooling and max-pooling, generating two 2D
maps: F'¢ € RF*W and Fj0* € RT*W, where H x W
is the size of the image. Applying channel-wise pooling op-
erations has proven to be effective in highlighting informa-
tive regions [38]. F '’ and F}"#" are further concatenated
and convolved by a convolutional layer with a kernel size of
3 x 3 to produce a 2D spatial attention map. In short, the
process is denoted as:

Fij=

M, ; = (£ ([F{59, F1), (6)

2V

where [-, -] denotes concatenation and M, ; is the gener-
ated spatial attention. The larger values in the spatial at-
tention are considered to better represent the class-relevant
features, while the smaller values denote class-irrelevant
contents, e.g., the background. We thus adopt a kernel
k(-) to transform the spatial attention M, ; to k(M, ;) =
1 —M; ; o M, 4, thereby guiding the perturbation ¢ to se-
lectively attack the class-irrelevant regions. We adopt the
Gaussian perturbation instead of the adversarial perturba-
tion (e.g., FGSM [14]) as the attack, since we experimen-
tally find that the former leads to almost the same results,
with significantly reduced training time. The attacked in-
put is then obtained as:

X/i,j X5 +:Z€( )06

7
_Xl’_]—i—(l—l\/llﬂO]_\/_[,LJ)O(S7 ( )

where o denotes the Hadamard product and § € RA*W,

During inference, the Gaussian perturbation is no longer
added, while the four groups of adapter layers (correspond-
ing to the four types of augmented images) are averaged to
obtain one group of the two adapter layers (see Fig. 2). The
attention map generated is used for calibrating the feature
of the test image.

3.4. Cross-Modal Distribution Alignment

CLIP only linearly projects the image features and the
text features to the same space, whereas there exists a
gap between the distributions of the image and text rep-
resentations of the same class [30]. In order to better
align the cross-modal distributions, we propose a Vision-
Language Prototype (VLP) for each class to calibrate the

image class prediction during inference. Specifically, we
define VLP £ [vy,Vs,..., Vx|, where v}, is the VLP of
the k-th class.

First, we construct a collection of trainable parameters

v € RV*XIXKXD ith visual information. v* ; € RP is

an element of v which is initialized by z’;’? th ; denotes
the image feature of the ] -th augmentation of the n-th shot

in the k-th class, and z 1s the image feature z* ; trained
after the first epoch. vy 1s computed as:
k
Sk
vy = n,jy " n.j (8)

NxJ '’

where N denotes the total number of samples in each class.
Note that the initialization of VLPs is only performed after
the first epoch. Then, in order to align the visual informa-
tion and the language information as the VLPs, we adopt
the Earth Mover’s Distance (EMD) as the objective func-
tion to optimize the VLPs. EMD can well serve as a metric
for computing the distance between two distributions [18].
Let LP £ [w;, Wy, ..., wg] be the language prototypes of
k classes with wy, defined as:

Zl,j W;Cj leg(tk(Pl,j))

WESTD T T LxJ ’ ©)

The high-level embeddings of the same class are usually
adjacent, which can be modeled using a simple distribution,
such as the multivariate Gaussian distribution [ ]. Assum-
ing that vy, ~ N (uF, ZF) and wy, ~ NV (uk, %), the EMD
can then be written as [7]:

(10)
= Z lnfE”Vk — Wk”

The complexity of the EMD algorithm is O(D?3log D) [31]
and D = 1024 in this work. To speed up the training,
we derive an upper bound for the EMD on the multivari-
ate Gaussian distributions, and adopt this bound as the ob-
jective function to update the VLPs. Based on Jensen’s in-
equality [5], the upper bound of EMD is derived as:
1 1

Lonp £ (Il —pyl® + 1287 =257 1), an

K

The detailed derivation of the upper bound is given in the
supplementary materials. The complexity of computing
Levp now becomes O(D). In addition to the alignment
loss Lemp, we also need a classification loss, which is de-
fined based on Eqgs. 4 and 8 as:

el(d=a)zi j+avy,, 3, g9(ty, (Pi;))/L)/7
Zk:l ell=a)zi j+avy,, 33 g(tk(Pz,j))/L)/T]’
(12)

L, = E[-log
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Figure 4. Main results of few-shot learning on 11 datasets. Our SADA consistently shows better performance than prior arts across different

number of training samples.

where « € (0, 1) is a hyper-parameter that denotes the dis-
tribution calibration ratio’, 1y; 1s the class label for x;, and
vy, is the VLP of the class y;. During training, the VLPs
are updated by Lgmp and L,,,, while the adapter layers and
the prompts are updated by £,,. During inference, the la-
bels of the test images are unavailable. Therefore, we adopt
the VLPs to calibrate the image predictions by calculating a
normalized weighting vector d of v}, as:

d=(dy,ds,...,dx)7", dk:¥, k=1,2,...,K,
lzi — vl
(13)
- - _ - dy
d=(d,dy,....dg)", dp = ——— k=1,2,...,K,
> et dm
(14)

Then, the probability of predicting the image after the cross-
modal distribution alignment is computed as:

(-7 +a@TVLP)T, 52, g(ty, (P1,))/L) /7
PilX:) = Sk aym e @VERIT, 5 aer P/

Dk €
(15)

p(y;|x;) is finally used to predict the classes of the test im-
age samples.

4. Experiments

In this section, we first compare our method (termed
SADA) with prior arts on 11 datasets, and show that SADA
achieves best results on all the datasets. Then, the specific

"The geometric explanation of why (1 — )z j+avy, inEq. 12 helps
the alignment is given in the supplementary materials.

effect of each proposed module is analyzed. We implement
our model using the MindSpore Lite tool [25].

4.1. Implementation Details

Datasets. The 11 classification datasets cover a diverse
set of benchmarks including CIFARIO0 [20], ImageNet-
1k [9], Caltech-101 [11], Oxford-IIIT Pets [27], Food-
101 [4], STL-10 [8], UCF-101 [33], DTD [6], Stanford
Cars [19], CIFAR100 [20] and FGVC Aircraft [24]. Our ex-
periments follow the few-shot training and evaluation pro-
tocol of CLIP, in which 1, 2, 4, 8, and 16 labeled images
per class on each dataset are randomly sampled for training.
The average evaluation results over 10 runs are presented.

Baselines. We compare our SADA with the most re-
lated and recent models CoOp [43]), CLIP-Adapter [13],
Tip-Adapter [41], and ProDA [23]). The results of linear-
probe CLIP are much worse than those of these methods,
and are only given in the supplementary materials.

Training Details. For a fair comparison, we adopt
CLIP’s ResNet-50 as our image encoder and CLIP’s Trans-
former as our text encoder, which are also used in ProDA,
CoOp and CLIP-Adapter. The prompt length M is set to 16,
and the total number of prompts in the collection is 32. The
distribution calibration ratio « is 0.1. We train the model for
50 epochs using SGD with an initial learning rate of 0.001
for L, and 0.01 for Lgmp, both following a cosine decay
schedule. The prompt batch size is 4, and the image batch
size is 20.  The Gaussian perturbation is sampled from
N(0,0.7%).  The model of the last training epoch is used
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Figure 5. Test accuracy (%) of training with different numbers of
augmentation operations on CIFAR10.

for evaluation.

4.2. Main Results

Fig. 4 shows the comparison results on the 11 datasets.
The average results by the models over all the datasets are
also provided in the first sub-figure of Fig. 4. Our SADA
significantly outperforms the baselines and achieves best re-
sults under all the shot numbers. This demonstrates the gen-
eralization ability of SADA to learn quickly from a small
number of samples. The specific values of the curves are
given in the supplementary materials.

Compared with the previous best model ProDA [23],
our SADA consistently outperforms it on the average re-
sults. For example, SADA improves the results of ProDA
by 1.90% and 1.92% under 1-shot and 16-shot settings, re-
spectively. On some specific datasets, our SADA achieves
more significant improvements. For example, SADA im-
proves ProDA by 3.36%, 2.80% and 2.10% under 1-shot
on CIFAR10, UCF-101 and ImageNet-1k, respectively. On
more challenging fine-grained datasets such as Food-101,
Oxford-IIIT Pets, Stanford Cars, and FGVC Aircraft, our
method still achieves better results.

4.3. Ablation Study

Different numbers of augmentation operation. As in-
troduced in Sec. 3.2, we propose an augmentation strategy
to mitigate overfitting and increase the diversity of the im-
ages and the text prompts. We first evaluate the effect of the
number of the augmentation operations on the test results.
The candidate pool of augmentation operations consists of
rotating, flipping, random cropping-+resizing, random gray
scaling, resizing, color jittering, and Gaussian blurring. We
compare four cases where the operation number J is set to
1,2,4,7, respectively. When J = 1, the augmentation with
the best test results is flipping. When J = 2, the best oper-
ations are flipping and random gray scaling. When J = 4,
the best operations are flipping, Gaussian blurring, random
gray scaling, and random cropping+resizing. When J = 7,
all the operations are adopted. The performances of these
cases are shown in Fig. 5. Considering the trade-off be-
tween the performance and the computation consumption,
we choose J = 4 in our experiments.

Prompt diversity. We further verify the effect of the
augmentation on the prompt diversity. The 32 prompts in
the collection are divided into 4 augmentation groups (J =
4) as shown in Fig. 3. Let SADA w/o Aug be the SADA

Table 1. Effect of the augmentation on prompt diversity.

. Mean
Group j i 5 3 I Std
SADA w/o Aug | 0.0954 0.0923 0.0892 0.0998 | 0.0045
SADA 0.1035 0.1441 0.0855 0.1173 | 0.0247

Table 2. Ablation of SA and CMDA on CIFAR10.

#Shots | 1 2 4 8 16

74.61% 76.40% 78.34% 79.63% 80.90%
77.61% 182% 79.63% 80.53% 81.38%
76.79% 7137% 79.02% 80.15% 81.31%

Baseline
Baseline w SA
Baseline w CMDA

77.0

76.5
£76.0
5 75.5

75.0
74.5

0 0.1 0.5 0.7 0.9
std

Figure 6. 1-shot accuracy (%) of different attack strength.

model but without the data augmentation. In Table 1, the
mean values of all the prompts in each group obtained by
SADA w/o Aug and SADA are given. Then we calculate
the standard deviation (std) of these 4 mean values of each
model. The std of SADA is significantly larger than that
of SADA w/o Aug, demonstrating larger prompt diversity
after the data augmentation.

Ablation of SA and CMDA. In this section, we conduct
ablation studies on CIFAR10. First of all, we define three
models for evaluation: 1) Baseline, in which we remove the
SA and CMDA modules, and replace (1 — a)z; ; + avy,
in Eq. 12 and (1 — a)z; + a(dTVLP)T in Eq. 15 with
z;; and z;, respectively; 2) Baseline w SA, in which we
add the SA module to Baseline; 3) Baseline w CMDA, in
which we add the CMDA module to Baseline during both
training and inference. In particular, the 1-shot case shows
3% (74.61% vs. 77.61%) and 2.18% (74.61% vs. 76.79%)
improvements by Baseline w SA and Baseline w CMDA,
respectively. Combining all the modules, the full SADA
gets the best results in all cases.

Attack strength of SA. In the SA module, the Gaussian
perturbations are sampled from A'(0,0%). We further train
the model by varying o from 0 to 0.9, and report the test-
ing accuracies on CIFAR10 in Fig. 6, where 0 = 0 means
naively adding two trainable layers before the pre-trained
image encoder without imposing any attack on the image.
Compared with no attack (o =0), introducing Gaussian per-
turbations significantly improves the testing accuracy. This
demonstrates that SA improves performance not only be-
cause it introduces new trainable parameters, but also be-
cause the attack plays its role in removing image redun-
dancy. We set 0 = 0.7 (where the performance is optimal)
for all the other experiments.

Position of SA module. We further evaluate which layer
to attach the SA module to. We place the SA module at the
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Input Blockl Block2 Block3 Block4
Figure 7. 1-shot accuracy (%) on CIFAR10 when SA is at different
layers of the image encoder.
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Figure 8. 1-shot accuracy (%) of different calibration ratio c.

Table 3. Ablation on the objective function to optimize the VLPs.

#Shots | 1 2 4 8 16
EMD 76.7% 71.3% 790% 80.1% 81.3%
MMD 73.5% 76.1% 714% 19.7% 80.5%

JS-Divergence | 74.3% 759% 77.6% 79.2% 80.1%

input layer (as in Fig. 3), or after the first, second, third or
fourth block of ResNet-50. Fig. 7 shows that the perfor-
mance suffers from significant degradation when the mod-
ule is placed inside instead of in front of the encoder. We
intuitively owe this result to the facts that 1) placing train-
able layers inside the encoder destroys the prior stored in the
pre-trained weights, and 2) adding perturbations to higher-
level features of deeper layers affects the classification re-
sults more seriously.

Calibration Ratio o. We test different distribution cal-
ibration ratio o on CIFAR10. As shown in Fig. 8, the per-
formance is the best when @ = 0.1. On other datasets, we
also have this similar phenomenon, so we choose o = 0.1
in all the experiments.

EMD. In Table 3, we verify that the Earth Mover’s
Distance (EMD) is an effective objective function to opti-
mize the VLPs. We compare EMD with two other mea-
sures of distribution difference, i.e., MMD [15] and JS-
Divergence [12]. Experimental results on CIFAR10 show
that EMD outperforms the other two functions in all cases
of shots.

Effect of VLP in cross-modal distribution alignment.
We verify the effect of Vision-Language Prototypes (VLPs)
in Fig. 9 with three models. 1) Baseline is defined in Ta-
ble 2. 2) Baseline w VLP aligns the cross-modal distribu-
tion by VLP. 3) Baseline w LP is the same as Baseline w
VLP in except that v,, in Eq. 12 and VLP in Eq. 15 are
replaced with w,, and LP, respectively. Baseline w VLP
delivers a performance boost in all shot cases. In particu-
lar, the 1-shot case shows a 2.18% (74.61% vs. 76.79%)
improvement over Baseline.

= Baseline
Baseline w LP
m Baseline w VLP

1

4 8 16
#shot

Figure 9. Effect of VLPs on CIFAR10.

M o M. The images are from ImageNet-1k.

4.4. Visualization of Selective Attack and CMDA

The Selective Attack module attacks the class-irrelevant
information of the images, reduces the intra-class distances
of image features, and helps to avoid overfitting. We visu-
alize the kernelized spatial attention in Fig. 10, in which the
red areas denote higher attention values, while the blue ar-
eas denote lower attention values. We can see that mainly
the background areas are given higher attention weights to
guide the selective attack.

As shown in Figs. 1 (a) and (b), after Selective Attack,
the intra-class image representations become more clus-
tered as expected. We also verify the alignment effect of
CMDA in Figs. 1 (c¢) and (d), the difference between the
two distributions is significantly reduced.

5. Conclusion

This paper proposes a few-shot learning method with
visual distribution calibration and cross-modal distribution
alignment (CMDA) based on a pre-trained vision-language
model. The Selective Attack module eliminates class-
irrelevant information in the images and calibrate the vi-
sual distribution. The CMDA aligns the distributions of the
image features and the text features. Overall, we improve
the performance of the few-shot learning and achieve state-
of-the-art results on 11 datasets. In future work, we will
explore the potential of our method in other applications.
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