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Abstract

The transformation of features from 2D perspective
space to 3D space is essential to multi-view 3D object de-
tection. Recent approaches mainly focus on the design of
view transformation, either pixel-wisely lifting perspective
view features into 3D space with estimated depth or grid-
wisely constructing BEV features via 3D projection, treat-
ing all pixels or grids equally. However, choosing what to
transform is also important but has rarely been discussed
before. The pixels of a moving car are more informative
than the pixels of the sky. To fully utilize the informa-
tion contained in images, the view transformation should
be able to adapt to different image regions according to
their contents. In this paper, we propose a novel framework
named FrustumFormer, which pays more attention to the
features in instance regions via adaptive instance-aware re-
sampling. Specifically, the model obtains instance frustums
on the bird’s eye view by leveraging image view object pro-
posals. An adaptive occupancy mask within the instance
frustum is learned to refine the instance location. More-
over, the temporal frustum intersection could further reduce
the localization uncertainty of objects. Comprehensive ex-
periments on the nuScenes dataset demonstrate the effec-
tiveness of FrustumFormer, and we achieve a new state-of-
the-art performance on the benchmark. Codes and mod-
els will be made available at https://github.com/
Robertwyq/Frustum.

1. Introduction
Perception in 3D space has gained increasing attention in

both academia and industry. Despite the success of LiDAR-
based methods [14, 33, 41, 44], camera-based 3D object de-
tection [19, 35, 36, 43] has earned a wide audience, due to
the low cost for deployment and advantages for long-range

detection. Recently, multi-view 3D detection in Bird’s-Eye-
View (BEV) has made fast progresses. Due to the unified
representation in 3D space, multi-view features and tem-
poral information can be fused conveniently, which leads
to significant performance improvement over monocular
methods [5, 28, 35, 39].

Transforming perspective view features into the bird’s-
eye view is the key to the success of modern BEV 3D de-
tectors [12,18,19,22]. As shown in Fig. 1, we categorize the
existing methods into lifting-based ones like LSS [30] and
BEVDet [12] and query-based ones like BEVFormer [19]
and Ego3RT [25]. However, these methods mainly focus
on the design of view transformation strategies while over-
looking the significance of choosing the right features to
transform during view transformation. Regions containing
objects like vehicles and pedestrians are apparently more in-
formative than the empty background like sky and ground.
But all previous methods treat them with equal importance.
We suggest that the view transformation should be adaptive
with respect to the image content. Therefore, we propose
Adaptive Instance-aware Resampling (AIR), an instance-
aware view transformation, as shown in Fig. 1c. The core
idea of AIR is to reduce instance localization uncertainty by
focusing on a selective part of BEV queries. Localizing in-
stance regions is difficult directly on the BEV plane but rel-
atively easy in the image view. Therefore, the instance frus-
tum, lifting from instance proposals in image views, gives
geometrical hints of the possible locations of objects in the
3D space. Though the instance frustum has provided initial
prior locations, it is still a large uncertain area. We propose
an occupancy mask predictor and a temporal frustum fusion
module to further reduce the localization uncertainty. Our
model learns an occupancy mask for frustum queries on the
BEV plane, predicting the possibility that a region might
contain objects. We also fuse instance frustums across dif-
ferent time steps, where the intersection area poses geomet-
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(a) Grid Sampling in Image. (b) Grid Sampling in BEV. (c) Instance-aware Sampling in Frustum.

Figure 1. Comparison of different sampling strategies for the feature transformation from image view to bird’s eye view. (a)
represents the sampling in image view and lift features [12] to BEV plane with pixel-wise depth estimation. (b) shows the grid sampling
in BEV and queries back [19] to obtain image features via cross-attention. (c) illustrates our proposed instance-aware sampling strategy in
the frustum, which adapts to the view content by focusing more attention on instance regions. This approach is designed to enhance the
learning of instance-aware BEV features.

ric constraints for actual locations of objects.
We propose a novel framework called FrustumFormer

based on the insights mentioned previously, which effec-
tively enhances the learning of instance-aware BEV features
via Adaptive Instance-aware Resampling. FrustumFormer
utilizes the instance frustum to establish the connection be-
tween perspective and bird’s eye view regions, which con-
tains two key designs: (1) A frustum encoder that enhances
instance-aware features via adaptive instance-aware resam-
pling. (2) A temporal frustum fusion module that aggre-
gates historical instance frustum features for accurate local-
ization and velocity prediction. In conclusion, the contribu-
tions of this work are as follows:

• We propose FrustumFormer, a novel framework that
exploits the geometric constraints behind perspective
view and birds’ eye view by instance frustum.

• We propose that choosing what to transform is also im-
portant during view transformation. The view transfor-
mation should adapt to the view content. Instance re-
gions should gain more attention rather than be treated
equally. Therefore, we design Adaptive Instance-
aware Resampling (AIR) to focus more on the instance
regions, leveraging sparse instance queries to enhance
the learning of instance-aware BEV features.

• We evaluate the proposed FrustumFormer on the
nuScenes dataset. We achieve improved performance
compared to prior arts. FrustumFormer achieves 58.9
NDS and 51.6 mAP on nuScenes test set without bells
and whistles.

2. Related Work
2.1. Frustum-based 3D Object Detection

Frustum indicates the possible locations of 3D objects in
a 3D space by projecting 2D interested regions. The frustum
is commonly used to aid fusion [8, 27, 31, 37, 42] in 3D ob-
ject detection when RGB images and LiDAR data are avail-
able. Frustum PointNets [31] takes advantage of mature 2D
object detectors and performs 3D object instance segmenta-
tion within the trimmed 3D frustums. Frustum Fusion [26]
leverages the intersection volume of the two frustums in-
duced by the 2D detection on stereo images. To deal with
LiDAR sparsity, Faraway-Frustum [42] proposes a novel fu-
sion strategy for detecting faraway objects. In this paper, we
introduce the idea of frustum into camera-only 3D detection
for enhancing instance-aware BEV features.

2.2. Multi-view 3D Object Detection

Multi-view 3D object detection aims to predict the 3D
bounding boxes and categories of the objects with multi-
view images as input. Current methods can be divided into
two schemes: lifting 2D to 3D and Querying 2D from 3D.
Lifting 2D to 3D. Following the spirit of LSS [30],
BEVDet [12] lifts multi-view 2D image features into a
depth-aware frustum and splats into a unified bird’s-eye-
view (BEV) representation and applies to the detection task.
BEVDepth [18] utilizes LiDAR points as supervision to
learn reliable depth estimation. BEVDet4D [11] incorpo-
rates the temporal information and extends the BEVDet to
the spatial-temporal 4D working space. Recently, STS [38],
BEVStereo [16] and SOLOFusion [29] further attempt to
improve the depth learning by combining temporal geomet-
ric constraints. Overall, these works demonstrate the im-
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(b) Temporal Frustum Fusion.

Figure 2. Illustration of our proposed FrustumFormer. (a) shows the overall pipeline. The image backbone first extracts the multi-view
image features. These features are transformed into a unified BEV feature by the frustum encoder, which integrates temporal information
from frustum fusion. Then the detection head decodes the BEV feature to the final outputs. Adaptive Instance-aware Resampling (AIR)
is utilized to adaptively adjust the sampling area and select instance queries according to the view content. It consists of instance frustum
query generation and frustum occupancy mask prediction. (b) illustrates the hints for object locations during temporal frustum fusion.

portance of incorporating depth and temporal information
in improving detection performance.
Querying 2D from 3D. Following DETR [2],
DETR3D [36] predicts learnable queries in 3D space
and projects back to query the corresponding 2D im-
age features. PETR [22, 23] proposes to query directly
with 3D position-aware features, which are generated
by encoding the 3D position embedding into 2D image
features. Ego3RT [25] introduces the polarized grid of
dense imaginary eyes and sends rays backward to 2D visual
representation. BEVFormer [19] learns spatiotemporal
BEV features via deformable attention, which explicitly
constructs the BEV grid samples in 3D space and queries
back to aggregate multi-view image features. Polar-
Former [13] further generates polar queries in the Polar
coordinate and encodes BEV features in Polar space.

3. Method
In multi-view 3D object detection task, N monocular

views of images I = {Ii ∈ R3×H×W }Ni=1, together with
camera intrinsics K = {Ki ∈ R3×3}Ni=1 and camera extrin-
sics T = {Ti ∈ R4×4}Ni=1 are given. The objective of the
model is to output the 3D attributes (locations, size, and ve-
locity) and the corresponding category of objects contained
in multi-view images.

As shown in Fig. 2a, FrustumFormer mainly focuses on
the feature transformation process and is composed of four
components: an image backbone, a frustum encoder, a frus-
tum fusion module, and a detection head. The image back-
bone first extracts multi-scale image features from multi-
view images. Aiding by the frustum fusion module, the im-
age features transform into a unified BEV feature via the
frustum encoder. Finally, a query-based detection head de-
codes the BEV feature to the outputs of the detection task.

3.1. Frustum Encoder

Frustum encoder transforms the multi-scale multi-view
image features F to a unified BEV feature B. Instead of
treating all regions equally during the feature view trans-
formation, our frustum encoder adaptively transforms the
image features according to the view content. As shown
in Fig. 2a, we use two types of BEV queries to construct
the final BEV features, the scene queries Qs and the in-
stance queries Qi. Scene queries(blue grids) are dense and
generated from regular grids, while instance queries(yellow
grids) are sparse and generated from irregular instance frus-
tum. The learning process of the scene query is similar to
BEVFormer [19]. However, the instance queries are learned
inside instance regions, and the learned instance feature are
further combined with the scene feature to form the final
instance-aware BEV features. Specifically, the selection of
instance regions is made via adaptive instance-aware re-
sampling, which consists of (1) instance frustum query gen-
eration and (2) frustum occupancy mask prediction. Finally,
the instance feature is learned by (3) instance frustum cross-
attention computed in selected instance regions. We will
introduce these three parts in the following.
Instance Frustum Query Generation. This section in-
troduces the query generation for a single instance frus-
tum Qf , which is a subset of instance queries Qi. The
core insight is to leverage the instance mask from perspec-
tive views and select the corresponding region on the BEV
plane. Following the query-based [13,19] view transforma-
tion, we define a group of grid-shape learnable parameters
Qi ∈ RH×W×C as the instance queries. H , W are the spa-
tial shape of BEV queries, and C is the channel dimension.
We first generate sampling points {pk

i = (xi, yi, zk), i ∈
H ×W,k ∈ K} corresponding to a single BEV query Qpi

at grid region center pi = (xi, yi), and then project these
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points to different image views. K is the number of sam-
pling points in the vertical direction of pillars. The projec-
tion between sampling points pk

i and its corresponding 2D
reference point (uk

ij , v
k
ij) on the j-th image view is formu-

lated as:

πj(p
k
i ) = (uk

ij , v
k
ij) (1)

dkij · [uk
ij , v

k
ij , 1]

T = Tj · [xk
i , y

k
i , z

k
i , 1]

T (2)

where πj(p
k
i ) denotes the projection of the k-th sampling

point at location pi on the j-th camera view. Tj ∈ R3×4

is the projection matrix of the j-th camera. xk
i , y

k
i , z

k
i rep-

resents the 3D location of the sampling point in the vehicle
frame. uk

ij , v
k
ij denotes corresponding 2D reference point

on j-th view projected from 3D sampling point pk
i . dkij is

the depth in the camera frame.
Predicting the instance frustum region directly in bird’s

eye view is challenging, but detecting the objects in per-
spective view [9, 32] is relatively mature. Inspired by this,
we take advantage of object masks on the image plane and
leverage its geometric clues for the BEV plane. The in-
stance frustum queries Qf of a specific 2D instance could
be defined as all instance BEV queries Qi with image plane
projection points inside the object mask S in Eq. (3):

Qf = {Qpi ∈ Qi| ∃ π(pk
i ) ∈ S} (3)

Qpi ∈ R1×C is the query located at pi = (xi, yi). pk
i rep-

resents the k-th sampling points in the pillars at pi. π(pk
i )

denotes the projection points of pk
i to the image plane.

Frustum Occupancy Mask Prediction. Although the in-
stance frustum provides potential locations for objects, its
corresponding area on the BEV plane is often large due to
depth uncertainty. To reduce this localization uncertainty,
we propose to predict an occupancy mask for all frustums.
Specifically, given the union of all instance frustum queries
∪Qf , we design a OccMask module to predict a binary oc-
cupancy mask Obev ∈ RH×W×1 on the BEV plane for all
instance frustum queries in a single shot. The occupancy
mask reflects the probability of a grid-wise region contain-
ing the objects, and is computed by Eq. (4):

Obev = OccMask(∪Qf ) (4)

OccMask is a learned module composed of 2D convolu-
tions. The supervision comes from the projection of the
ground truth 3D bounding boxes on the BEV plane. We use
the focal loss [21] for learning occupancy mask in Eq. (5):

Lm = Focal Loss(Obev,Ω) (5)

where Ω represents the projection mask of the 3D bound-
ing boxes onto the BEV plane. We select the minimum
projecting bounding box on the BEV plane as the super-
visory signal, which is made up of the outermost corners

of the objects, considering their rotation. To further refine
our predictions, the supervision signal for Obev is added to
each layer of the frustum encoder for iterative refinement,
alongside BEV instance feature learning. In each layer, we
predict the current occupancy mask using the last output
instance frustum query from the previous layer. This ap-
proach enables the sampling areas to adapt to the previous
layer output.
Instance Frustum Cross-Attention. Instance Frustum
Cross-Attention (IFCA) is designed for the feature interac-
tion between instance queries Qi and image view features
F. The instance queries Qi is selected by Eq. (6):

Qi = {Qpi ∈ ∪Qf |Obev(i) = 1} (6)

Instance queries are selected from the instance frustum
queries Qf . Obev(i) denotes the occupancy value at po-
sition pi on the BEV plane. For each query Qpi in Qf , if
Obev(i) predicts the occupancy value is 1, then the query
Qpi is marked as instance query. The process of instance
frustum cross-attention (IFCA) can be formulated as:

IFCA(Qpi

i ,Fj) =
1

|v|
∑
j∈v

M∑
m=1

DA(Qpi

i , πj(p
m
i ),Fj) (7)

where Qpi

i is an instance query at location pi, πj(p
m
i ) is

the projection to get the m-th 2D reference point on the j-
th camera view. M is the total number of sampling points
for an instance query. Fj is the image features of the j-th
camera view. DA represents deformable attention. v is the
set of image views for which the 2D reference point can fall
on. |v| represents the number of views.

3.2. Frustum Fusion Module

Temporal information is essential for camera-based 3D
object detection, especially in inferring the motion state
of objects and recognizing objects under heavy occlusions.
Beyond learning occupancy mask on the BEV plane, an-
other solution for eliminating the location uncertainty in the
instance frustum is to fuse the temporal information.
Temporal Frustum Intersection. As shown in Fig. 2b, the
intersection area of the instance frustum at different times-
tamps leaves hints for the accurate location of 3D objects.
Inspired by this, we constrain the query interaction within
instance frustum regions, implicitly learning features from
interaction areas. Given instance frustum queries Qf at cur-
rent timestamp t and history instance frustum queries Hf

preserved at timestamp t′. For a query ∪Qpi

f at position
pi, we use the information from ego-motion (∆x,∆y,∆θ)
to compute the corresponding position p′

i at timestamp t′.
The cross-attention for query Qpi

f only compute the his-
tory queries around position p′

i of Hf . Following [19],
we adopt a sequential RNN-like [6] way of fusing the his-
torical instance frustum queries. This approach enables the
aggregation of long-range hints for the intersection area.
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Temporal Frustum Cross-Attention. Temporal Frustum
Cross-Attention (TFCA) aggregates the information of his-
tory instance frustum queries Hf into the current instance
frustum queries Qf . Since the objects might be movable in
the scene, causing the misalignment if only computing the
query at p′

i. Deformable attention [46] is utilized to reduce
the influence of object movement. The process of temporal
frustum cross-attention (TFCA) can be formulated as fol-
lows:

TFCA(Qpi

f ,Hf ) =

M∑
m=1

DA(Qpi

f ,p′m
i ,Hf ) (8)

where Qpi

f denotes the instance frustum query located at
pi = (xi, yi). Hf represents the history instance frustum
query. p′

i is the aligned position by ego-motion. For each
query at location p′

i, we sample M points p′m
i to query the

history instance frustum feature. DA represents deformable
attention.

4. Experiment
4.1. Datasets

nuScenes dataset [1]. The nuScenes dataset provides 1000
sequences of different scenes collected in Boston and Singa-
pore. These sequences are officially split into 700/150/150
ones for training, validation, and testing. Each sequence is
roughly about 20s duration, and the key samples are anno-
tated at 2Hz, contributing to a total of 1.4M objects bound-
ing boxes. Each sample consists of RGB images from
6 cameras covering the 360-degree horizontal FOV: front,
front left, front right, back, back left, and back right. The
image resolution is 1600×900 pixels in all views. 10 classes
are annotated for the object-detecting task: car, truck, bus,
trailer, construction vehicle, pedestrian, motorcycle, bicy-
cle, barrier, and traffic cone.
Evaluation metrics. For the official evaluation protocol
in the nuScenes dataset, the metrics include mean Average
Precision (mAP) and a set of True Positive (TP) metrics,
which contains the average translation error (ATE), average
scale error (ASE), average orientation error (AOE), average
velocity error (AVE), and average attribute error (AAE). Fi-
nally, the nuScenes detection score (NDS) is defined to con-
sider the above metrics.

4.2. Experimental Settings

Implementation Details. Following previous methods [19,
35, 36], we utilize two types of backbone: ResNet101-
DCN [7, 10] that initialized from FCOS3D [35], and
VoVnet-99 [15] that initialized from DD3D [28]. We uti-
lize the output multi-scale features from FPN [20] with
sizes of 1/8, 1/16, 1/32, and 1/64 and a feature dimension
of 256. The frustum encoder includes 6 layers and is im-
plemented based on BEVFormer [19]. The default size of

BEV queries is 200x200, and the perception ranges are [-
51.2m, 51.2m] for the X and Y axis and [-3m, 5m] for the
Z axis. We sample K=8 points for each pillar-like region
of the BEV query. We adopt learnable position embedding
for BEV queries. There are two types of queries in frustum
encoder: sparse instance queries and dense scene queries.
we followed BEVformer [19] to extract the scene feature
by scene queries. The instance feature is extracted by in-
stance queries. For the 2D instance proposals, we utilized
the Mask R-CNN [9] pre-trained on the nuImages [1]. We
use the output bounding boxes to generate object mask re-
gions, and the score threshold is set to 0.5. The loss weight
for Lm is set to 5. The frustum fusion module uses a tem-
poral window size of 8 and randomly samples 4 key-frames
during training. We adopted a query-based detection head
to decode the BEV features, the same in [19]. The num-
ber of the object query is set to 900 and has 3 groups of
queries [4] during training.
Training. We train the model on 8 NVIDIA A100 GPUs
with batch size 1 per GPU. We train our model with
AdamW [24] optimizer for 24 epochs, an initial learning
rate of 2 × 10−4 with a cosine annealing schedule. The
input of the images is cropped to 1600 × 640. We adopt
data augmentations like image scaling, flipping, color dis-
tortion, and GridMask [3]. For the ablation study, we train
the model with a total batch size of 8 for 24 epochs with-
out data augmentation. We use the ResNet-50 [10] as the
backbone. The image resolution is resized at a scale of 0.8,
which is 1280 × 512.
Inference. During inference, the previous BEV features
are saved and used for the next, corresponding to the infi-
nite temporal window of a sequence. This online inference
strategy is time-efficient. Since we adopted three groups of
queries during training, only one group is utilized at infer-
ence time. We do not adopt model-agnostic tricks such as
model ensemble and test-time augmentation when evaluat-
ing our model on both val and test sets.

4.3. 3D Object Detection Results

We compare our method with the state of the art on both
val and test sets of nuScenes.
nuScenes test set. Table 1 presents the results of our model
on the nuScenes test set, where we achieved a remarkable
performance of 51.6 mAP and 58.9 NDS without utilizing
any extra depth supervision from LiDAR. Under the set-
ting without utilizing LiDAR as supervision, our method
outperforms the previous state of the art. We evaluate our
model in two types of backbone mentioned in the imple-
mentation details. With R101-DCN [7] as the backbone, we
could achieve 47.8 mAP and 56.1 NDS, a significant im-
provement (+2.1 mAP and +1.8 NDS) over previous meth-
ods. For the final performance, we train FrustumFormer on
the trainval split for 24 epochs without CBGS [45], using
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Methods Backbone CBGS LiDAR mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

FCOS3D‡ [35] R101† 0.358 0.428 0.690 0.249 0.452 1.434 0.124
PGD [34] R101† 0.386 0.448 0.626 0.245 0.451 1.509 0.127
BEVFormer [19] R101† 0.445 0.535 0.631 0.257 0.405 0.435 0.143
PolarFormer [13] R101† 0.457 0.543 0.612 0.257 0.392 0.467 0.129
FrustumFormer R101† 0.478 0.561 0.575 0.257 0.402 0.411 0.132

DD3D [28]‡ V2-99* 0.418 0.477 0.572 0.249 0.368 1.014 0.124
DETR3D‡ [36] V2-99* ✓ 0.412 0.479 0.641 0.255 0.394 0.845 0.133
Ego3RT [25] V2-99* 0.425 0.473 0.549 0.264 0.433 1.014 0.145
M2BEV [40] X-101 0.429 0.474 0.583 0.254 0.376 1.053 0.190
BEVDet4D‡ [11] Swin-B ✓ 0.451 0.569 0.511 0.241 0.386 0.301 0.121
UVTR [17] V2-99* 0.472 0.551 0.577 0.253 0.391 0.508 0.123
BEVFormer [19] V2-99* 0.481 0.569 0.582 0.256 0.375 0.378 0.126
PolarFormer [13] V2-99* 0.493 0.572 0.556 0.256 0.364 0.440 0.127
PETRv2 [23] V2-99* 0.490 0.582 0.561 0.243 0.361 0.343 0.120

BEVDepth‡ [18] V2-99* ✓ ✓ 0.503 0.600 0.445 0.245 0.378 0.320 0.126
BEVStereo [16] V2-99* ✓ ✓ 0.525 0.610 0.431 0.246 0.358 0.357 0.138

FrustumFormer V2-99* 0.516 0.589 0.555 0.249 0.372 0.389 0.126

Table 1. Comparison to state-of-art on the nuScenes test set. * notes that VoVNet-99(V2-99) [15] was pre-trained on the depth
estimation task with extra data [28]. †Initialized from FCOS3D [35] backbone. ‡ means utilizing test-time augmentation during inference.
The commonly used scheme for training is 24 epochs, and CBGS [45] would increase the training epochs by nearly 4.5×. LiDAR means
training depth branch utilizing extra modality supervision from LiDAR.

Methods Backbone CBGS LiDAR mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

FCOS3D [35] R101† 0.295 0.372 0.806 0.268 0.511 1.315 0.170
DETR3D [36] R101† ✓ 0.349 0.434 0.716 0.268 0.379 0.842 0.200
PGD [34] R101† 0.358 0.425 0.667 0.264 0.435 1.276 0.177
PETR [22] R101† ✓ 0.370 0.442 0.711 0.267 0.383 0.865 0.201
UVTR [17] R101† 0.379 0.483 0.731 0.267 0.350 0.510 0.200
BEVFormer [19] R101† 0.416 0.517 0.673 0.274 0.372 0.394 0.198
PolarFormer [13] R101† 0.432 0.528 0.648 0.270 0.348 0.409 0.201

BEVDepth [18] R101 ✓ ✓ 0.412 0.535 0.565 0.266 0.358 0.331 0.190
STS [38] R101 ✓ ✓ 0.431 0.542 0.525 0.262 0.380 0.369 0.204

FrustumFormer R101† 0.457 0.546 0.624 0.265 0.362 0.380 0.191

Table 2. Comparison to state-of-art on the nuScenes val set. †Initialized from FCOS3D [35] backbone. Our model is trained for 24
epochs without CBGS [45]. LiDAR means training depth branch utilizing extra modality supervision from LiDAR.

VoVNet (V2-99) as the backbone architecture with a pre-
trained checkpoint from DD3D [28].

nuScenes validation set. Table 2 shows that our method
achieves leading performance on the nuScenes val set. We
achieved 45.7 mAP and 54.6 NDS without bells and whis-
tles. Unlike the evaluation on test set, all the methods are
compared with a fair backbone here. Since BEVDepth [18]
and STS [38] utilized extra modality supervision in training,
our NDS metric only improved slightly compared to them,
but our mAP improved significantly. The translation error
would be reduced with LiDAR supervision for the depth es-
timation, but this required extra modality data from LiDAR.
Besides, our model is trained for 24 epochs, while they ac-
tually trained 90 epochs if using CBGS [45].

4.4. Ablation Study

We conduct several ablation experiments on the
nuScenes val set to validate the design of FrustumFormer.
For all ablation experiments, we used ResNet-50 as the
backbone and resized the image resolution to 0.8 scales.

Ablation of Components in FrustumFormer. Table 3 ab-
lates the components designed in FrustumFormer. (a) is the
baseline setting of our method. (b) is the baseline with the
instance frustum queries, which resamples the points in the
whole instance frustum region. (c) is the baseline with the
occupancy mask prediction. (d) is the baseline with adap-
tive instance-aware resampling, which consists of instance
frustum query and occupancy mask prediction. Utilizing
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adaptive instance-aware resampling to improve the learning
of instance-aware BEV feature can significantly enhance
both mAP and NDS metrics. (e) is based on (d) and further
adds the history frustum information to incorporate tempo-
ral clues. Above all, our FrustumFormer could improve 4.2
mAP and 9.7 NDS compared to the baseline.

IF OM FF mAP↑ NDS↑ mATE↓
(a) 0.318 0.366 0.771
(b) ✓ 0.326 0.373 0.765
(c) ✓ 0.328 0.381 0.759
(d) ✓ ✓ 0.337 0.383 0.749
(e) ✓ ✓ ✓ 0.360 0.463 0.719

Table 3. Ablation of components in FrustumFormer. IF denotes
instance frustum, OM denotes occupancy mask, and FF means
temporal frustum fusion. Adaptive instance-aware resampling is
the combination of IF and OM, shown in (d).

Ablation of Instance-aware Sampling. Table 4 proves the
effectiveness of instance-aware sampling. (a) represents the
baseline setting, which treats all regions equally and sam-
ples 1x points for a grid cell region. (b) increases the sam-
pling points to 2x for all regions. (c) selectively resamples
the points inside instance regions. Compared with (b) and
(c), we found that instance-aware sampling is more effective
since simply increasing the sampling points for all regions
has no gain.

Total Scene Instance mAP↑ NDS↑
(a) 1× 1× - 0.318 0.366
(b) 2× 2× - 0.318 0.362
(c) 2× 1× 1× 0.326 0.373

Table 4. Ablation of instance-aware sampling. In our method,
1× means sampling 8 points for a cell region on the BEV plane.

Ablation of Occupancy Mask Learning. Table 5 com-
pares different supervision for learning occupancy masks
on the BEV plane. (a) is the baseline without explicit su-
pervision. (b) adds the supervision on the BEV plane, in
which the instance area can be obtained by projecting an-
notated bounding boxes. To ease the learning, we slightly
enlarge the bounding boxes by 1.0 meters in this setting. (c)
uses the strict projection area (without enlargement) from
the bounding boxes. (d) increases the loss weight for Lm

from 5.0 to 10.0. (e) decreases the loss weight for Lm from
5.0 to 1.0. We choose the (c) as our default setting.
Ablation for Temporal Frustum Fusion. In Table 6, we
demonstrate the benefits of incorporating frustum informa-
tion in temporal fusion, as well as examine the impact of
two important parameters: window size W and keyframes
K. We start with the baseline (a) that uses a window size
of 4 and 2 keyframes. Subsequently, we introduce the tem-
poral frustum information in (b), leading to a notable im-

Supervision α mAP↑ NDS↑ mATE↓
(a) w/o 0.0 0.318 0.366 0.771
(b) w/ BEV box* 5.0 0.324 0.374 0.756
(c) w/ BEV box 5.0 0.328 0.381 0.759
(d) w/ BEV box 10.0 0.322 0.381 0.749
(e) w/ BEV box 1.0 0.326 0.379 0.751

Table 5. Ablation of occupancy mask learning. BEV box means
utilizing the ground truth bounding boxes’ projection on the BEV
plane as supervision. * denotes enlarged bounding box. α is the
loss weight for learning occupancy mask.

provement in performance. Then, we experiment with a
larger temporal window by setting W to 8 and K to 4 in
(c), which yields the best performance. As we extend the
temporal window further in (d), the mAP continues to im-
prove, but the NDS metric is affected by the mAVE score,
causing degradation. Considering the NDS and mAP com-
prehensively, we finally utilize setting (c) as the default.

W K Frustum mAP↑ NDS↑ mAVE↓
(a) 4 2 0.353 0.454 0.497
(b) 4 2 ✓ 0.355 0.457 0.479
(c) 8 4 ✓ 0.360 0.463 0.463
(d) 16 4 ✓ 0.364 0.457 0.568

Table 6. Ablation for temporal frustum fusion. W means the
history window size. K determines the key frames sampled in tem-
poral window during model training.
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Figure 3. Improvement of Recall Under Low Visibility. We
compute the recall under the visibility at 0-40% for all categories
on the nuScenes val set. The recall for bus, bicycle, trailer, and
construction vehicle categories improved significantly.

Improvement of Recall Under Low Visibility. The
nuScenes dataset provides the visibility labels of objects
in four subsets {0-40%, 40-60%, 60-80%, 80-100%}. As
shown in Fig. 3, we compare the recall between baseline
and baseline with adaptive instance-aware resampling un-
der low visibility (0-40%). We found that the recall for cat-
egories of bicycle, trailer, bus, and construction vehicle im-
proved a lot under the low visibility. Since nearly 29% of
objects belong to the visibility of 0-40%, such improvement
is crucial for a better 3D object detector.
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4.5. Qualitative Analysis

Visualization of Recall Improvement. As shown in Fig. 4,
we present the recall improvement achieved by utilizing the
adaptive instance resampling (AIR) approach on the pre-
diction results of the nuScenes val dataset. The predicted
boxes are highlighted in blue, while the ground truth boxes
are displayed in green. The red circle indicates the region
where AIR helps to discover objects that were previously
missed by enhancing the learning of instance features.

v

Figure 4. Visualization of Recall Improvement. The left side
shows the baseline, while the right side shows the baseline with
AIR. The prediction boxes are marked in blue, while the ground
truth boxes are marked in green. In the red circle region, our
method discovers more objects than the baseline.

Figure 5. Visualization of Instance-aware Sampling. We visual-
ize the instance-aware sampling on the perspective view and bird’s
eye view. Ground truth bounding boxes are marked in green color.

Visualization of Instance-aware Sampling. As shown in
Fig. 5, we illustrate the instance-aware sampling points of
our method on both perspective view and bird’s eye view.
The sampling points are highly related to the instance re-
gions, enhancing the learning of the instance-aware feature.
Visualization of Instance-aware BEV Feature. As shown
in Fig. 6, we visualize the BEV feature output by our frus-

tum encoder. The BEV feature learned by our frustum en-
coder is instance-aware and has strong relations to the real
positions. Here we visualize the corresponding ground truth
boxes on the right side. Furthermore, we compare the BEV
feature between the baseline and the baseline with adap-
tive instance-aware resampling(AIR). When utilizing AIR,
more instance regions would be discovered (corresponding
to the recall improvement), and the features are more in-
stance discriminative in the dense areas.

Figure 6. Visualization of the instance-aware BEV feature.
We compared the feature heatmaps output by the frustum encoder
without AIR, with AIR, and ground truth boxes (in green) shown
from left to right. The colors in the feature heatmaps correspond
to the norm value. The feature learned by frustum encoder is
instance-aware and has strong correlations to the actual positions
in 3D space. By using AIR, our model is able to discover more
instance regions and learn discriminative features in dense areas.

5. Conclusion

In this paper, we propose FrustumFormer, a novel frame-
work for multi-view 3D object detection. The core insight
of FrustumFormer is to transform adaptively according to
the view contents. To achieve this, we designed adaptive
instance-aware resampling, which pays more attention to
instance regions during feature view transformation. By uti-
lizing this technique in the frustum encoder and temporal
frustum fusion module, the model learned to better locate
instance regions while learning instance-aware BEV fea-
tures. Experimental results on the nuScenes dataset demon-
strate the effectiveness of our method for multi-view 3D
object detection. Our method significantly improved mAP
over previous methods by focusing on instance regions. We
hope that our framework can serve as a new baseline for
future 3D perception research, shining a light on the signif-
icance of view content during feature transformation.
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