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Abstract

Deep neural networks obtained by standard training have
been constantly plagued by adversarial examples. Although
adversarial training demonstrates its capability to defend
against adversarial examples, unfortunately, it leads to an
inevitable drop in the natural generalization. To address the
issue, we decouple the natural generalization and the robust
generalization from joint training and formulate different
training strategies for each one. Specifically, instead of min-
imizing a global loss on the expectation over these two gen-
eralization errors, we propose a bi-expert framework called
Generalist where we simultaneously train base learners with
task-aware strategies so that they can specialize in their own
fields. The parameters of base learners are collected and
combined to form a global learner at intervals during the
training process. The global learner is then distributed to the
base learners as initialized parameters for continued train-
ing. Theoretically, we prove that the risks of Generalist will
get lower once the base learners are well trained. Extensive
experiments verify the applicability of Generalist to achieve
high accuracy on natural examples while maintaining con-
siderable robustness to adversarial ones. Code is available
at https://github.com/PKU-ML/Generalist.

1. Introduction
Modern deep learning techniques have achieved remark-

able success in many fields, including computer vision
[14, 16], natural language processing [10, 31], and speech
recognition [28, 36]. Yet, deep neural networks (DNNs)
suffer a catastrophic performance degradation by human
imperceptible adversarial perturbations where wrong predic-
tions are made with extremely high confidence [13, 29, 34].
The vulnerability of DNNs has led to the proposal of var-
ious defense approaches [3, 24, 25, 33, 40] for protecting
DNNs from adversarial attacks. One of those representa-
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Figure 1. Comparison with other advanced adversarial training
methods. Both clean accuracy and robust accuracy (against Au-
toAttack [9]) are given for a handy reference. It is noted that current
adversarial training methods achieve high clean accuracy by greatly
sacrificing robustness. That means it is hard to obtain sufficient
robustness but maintain high clean accuracy in the joint training
framework. Our Generalist attains excellent clean accuracy while
staying competitively robust. The improvement of Generalist is
notable since we only use the naive cross-entropy loss with negligi-
ble computational overhead and even without increasing the model
size.

tive techniques is adversarial training (AT) [20, 21, 37, 38],
which dynamically injects perturbed examples that deceive
the current model but preserve the right label into the train-
ing set. Adversarial training has been demonstrated to be
the most effective method to improve adversarially robust
generalization [2, 39].

Despite these successes, such attempts of adversarial
training have found a tradeoff between natural and robust
accuracy, i.e., there exists an undesirable increase in the er-
ror on unperturbed images when the error on the worst-case
perturbed images decreases, as illustrated in Figure 1. Prior
works [30, 43] even argue that natural and robust accuracy
are fundamentally at odds, which indicates that a robust clas-
sifier can be achieved only when compromising the natural
generalization. However, the following works found that
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the tradeoff may be settled in a roundabout way, such as
incorporating additional labeled/unlabeled data [1, 8, 22, 26]
or relaxing the magnitude of perturbations to generate suit-
able adversarial examples for better optimization [18, 44].
These works all focus on the data used for training while we
propose to tackle the tradeoff problem from the perspective
of the training paradigm in this paper.

Inspired by the spirit of the divide-and-conquer method,
we decouple the objective function of adversarial training
into two sub-tasks: one is used for natural example classifi-
cation while the other one is used for adversarial example
classification. Specifically, for each sub-task, we train a base
learner on natural/adversarial datasets with the task-specific
configuration while sharing the same model architecture.
The parameters of base learners are collected and combined
to form a global learner at intervals during the training pro-
cess, which is then distributed to base learners as initialized
parameters for continued training. We name the framework
as Generalist whose proof-of-concept pipeline is shown in
Figure 2. Different from the traditional joint training frame-
work for natural and robust generalization, our proposed
Generalist fully leverages task-specific information to indi-
vidually train the base learners, which makes each sub-task
to be solved better. Theoretically, we show that if the base
learners are well trained, the final global learner is guaran-
teed to have a lower risk. Our proposed Generalist is the first
to effectively address the tradeoff between natural and ro-
bust generalization by utilizing task-aware training strategies
to achieve high clean accuracy in the natural setting, while
also maintaining considerable robustness to the adversarial
setting (as shown in Figure 1).

In summary, the main contributions are as follows:

• For the tradeoff between natural and robust generaliza-
tion, previous methods have struggled to find a sweet
point to meet both goals in the joint training framework.
Here, we propose a novel Generalist paradigm, which
constructs multiple task-aware base learners to respec-
tively achieve the generalization goal on natural and
adversarial counterparts separately.

• For each task, rather than being constricted in a stiff
manner, every detail of the training strategies (e.g., opti-
mization scheme) can be totally customized, thus each
base learner can better explore the optimal trajectory in
its field while the global learner can fully leverage the
merits of all base learners.

• We conduct extensive experiments in common settings
against a wide range of adversarial attacks to demon-
strate the effectiveness of our approach. Results show
that our Generalist paradigm greatly improves both
clean and robust accuracy on benchmark datasets com-
pared to relevant techniques.
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Figure 2. A pipeline for the proposed Generalist. It consists of two
base learners separately trained within their respective fields and a
global learner aggregates the parameters of base learners through
the training process. The global learner assigns its accumulated
knowledge to each base learner with a fixed frequency, based on
which the base learner continues learning.

2. Preliminaries and Related Work

In this section, we briefly introduce some relevant back-
ground knowledge and terminology about adversarial train-
ing and meta-learning.

Notations. Consider an image classification task with
input space X and output space Y . Let x ∈ X ⊆ Rd denote
a natural image and y ∈ Y = {1, 2, . . . ,K} denote the cor-
responding ground-truth label. The natural and adversarial
datasetsX×Y = {(xi, yi)}ni=1 andX ′×Y = {(x′

i, yi)}
n
i=1

are sampled from a distribution D1 and D2, respectively.
We denote a DNN model as fθ : X → RK whose param-
eters are θ ∈ Θ, which should classify any input image
into one of K classes. The objective functions ℓ1 and ℓ2
for the natural and adversarial setting can be defined as:

ℓ1
def
= D1 × Θ → [0,∞) and ℓ2

def
= D2 × Θ → [0,∞),

which are usually positive, bounded, and upper-semi contin-
uous [4, 6, 32].

2.1. Standard Adversarial Training

The goal of the adversary is to generate a malignant ex-
ample x′ by adding an imperceptible perturbation ε ∈ Rd

to x. And the generated adversarial example x′ should
be in the vicinity of x so that it looks visually simi-
lar to the original one. This neighbor region Bε(x) an-
chored at x with apothem ε can be defined as Bε(x) =
{(x′, y) ∈ D2 | ∥x− x′∥∞ ≤ ε}. For adversarial training,
it first generates adversarial examples and then updates the
parameters over these samples. The iteration process of
adversarial training can be summed up as:{

x′(t+1)
= ΠB(x,ϵ)

(
x′(t) + α sign

(
∇x′ℓ2

(
x′(t), y;θt

)))
θ(t+1) = θ(t) − τ∇θE[ℓ1(x, y;θt) + βR(x′, x, y;θt)],

(1)
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where ΠB(x,ϵ) is the projection operator, α is the step size,
τ is the learning rate, and R(·) is the loss difference of
ℓ2(x

′, y;θt) − ℓ1(x, y;θ
t). The tradeoff factor β balances

the importance of natural and robust errors. Various adversar-
ial training methods can be derived from Eq. 1. For instance,
when β = 1, it is equivalent to the vanilla PGD training [20],
and when β = 1/2, it is transformed into the half-half loss
in [13]. The formulation degenerates to standard natural
training as β = 0. Besides, we can get the formulation in
TRADES [43] when replacingR(·) with the KL-divergence.

2.2. Multi-Task Learning and Meta-Initialization

Multi-Task Learning. Multi-Task Learning (MTL) is to
improve performance across tasks through joint training of
different models [5, 19, 41]. Consider a set of assignments
containing data distribution and loss function defined asA =

{D, ℓ} with corresponding models {Ma}|A|
a=1 parameterized

by trainable tensors θMa
. In MTL, these sets have non-

trivial pairwise intersections, and are trained in a joint model
to find optimal parameters θ⋆

Ma
for each task:

|A|⋃
a=1

θ⋆
Ma

= argmin
∪|A|

a=1θMa

EAED ℓa (Da;θMa
) , (2)

where ℓa(Da;θMa
) measures the performance of a model

trained using θMa
on dataset Da. Our approach Generalist

is directly related to MTL at first glance because both of
them tend to learn a specific predictive model for different
sources. However, Generalist differs significantly from MTL,
i.e., multiple tasks are still learned jointly under a unified
form in MTL while each assignment can be optimized by
heterogeneous strategies in Generalist.

Meta-Learning. Meta-learning is to train a model that
can quickly adapt to a new task. Suppose A is divided into
non-overlapping splits V andW , the model is first trained
on the training sets and then guided by a small validation
set on a set of tasks to make the trained model can be well
adapted to new tasks:

θ⋆ = argmin
θ

EVEDV ℓV

(
DV ; argmin

θ
EWEDW ℓW (DW ;θ)

)
,

(3)
meta-learning [12, 23] is often designed to generalize across
unseen tasks, whereas the goal of MTL is to tackle a series
of known tasks. Nonetheless, our approach Generalist uses
the technique of meta-learning to set good initializations for
base learners to transfer knowledge between tasks.

3. The Proposed New Framework: Generalist
Similar to a physical-world Generalist who has broad

knowledge across many topics and expertise in a few, our
proposed Generalist can deal with both natural and adver-
sarial samples during test time. It consists of different base

Algorithm 1 Generalist: Leverage the learning trajectory with respect
to task-aware base learners

Input: A DNN classifier f(·) with initial learnable parameters θg for the
global learner and θn,θr for each base learner with objective function
ℓ1, ℓ2; number of iterations T ; number of adversarial attack steps K;
magnitude of perturbation ε; step size κ; learning rate τn, τr ; exponential
decay rates for ensembling α′ = 0.999; mixing ratio γ; starting point
and frequency of communication t′, c.
Initialize θg ,θn,θr in Θ space.
for t← 1, 2, · · · , T do

Sample a minibatch (x, y) from data distribution D1

/* Parallel-1: Update parameters of base learner-1 over D1*/
(Optional) Performing model ensembling, data augmentation or label
smoothing, etc.
θn ← Zn

[
E(x,y)(∇θℓ1(x, y;θn)), τn

]
/* Parallel-2: Update parameters of base learner-2 over D2*/
x′
0 ← x+ ε, ε ∼ Uniform(−ε, ε).

for k← 1, 2, · · · ,K do
x′
k ← Πx′

k
∈Bε(x)

(
κ sign

(
x′
k−1 +∇x′

k−1
ℓ2(x′

k−1, y;θr)
))

end for
(Optional) Performing model ensembling, data augmentation or label
smoothing, etc.
θr ← Zr

[
E(x′,y)(∇θℓ2(x

′
K , y;θr)), τr

]
/* For the global learner*/
θg ← α′θg + (1− α′)(γθr + (1− γ)θn)
if t ≥ t′ and t mod c == 0 then

θr,θn ← θg

end if
end for
Return Parameters of the global learner θg

learners gradually specialized in their own disjointed fields.
Over time they stretch their expertise to encompass knowl-
edge respectively. From a starting point, Generalist takes his
suitcase packed full of wide-ranging experience with him
wherever it goes (i.e., the global learner spreads accumulated
knowledge and each expert learns from the re-initialization
after a certain epoch).

3.1. Overview

The overall procedure of our proposed algorithm is shown
in Algorithm 1, which mainly comprises two steps: optimiz-
ing parameters of the base learner θa in its assigned data dis-
tributionDa and distributing parameters of the global learner
θg to all base learners. Base learners and the global learner
share the same architecture, i.e.,M1 =M2 = · · · =M|A|.
Since we only focus on recognizing natural examples and
adversarial ones in our setting, the total number of tasksW
is set to two.

3.2. Task-aware Base Learners

Given a global data distribution D for the tradeoff prob-
lem, as denoted in Section 2, D1,D2 are subject to the distri-
bution of training dataDW . And natural images (x, y) ∼ D1

while adversarial examples (x′, y) ∼ D2 generated by Eq.
1. So the training process of base learners is to solve the
inner minimization of Eq. 3 over different distributions in a
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distributed manner:

{θ⋆
n,θ

⋆
r} = argmin⋃2

W=1 θW

EDW ℓW (DW ;θW) . (4)

Specifically, during the process, base learners fθn
and fθr

are assigned different subproblems that only requires access-
ing their own data distribution, respectively. Note that two
base learners work in a complementary manner, meaning the
update of parameters is independent among base learners
and the global learner always collects parameters of both
base learners. So the subproblem for each base learner is
defined as:

θ⋆
W = argmin

θ
ZT

W [EW(∇θℓW(DW ;θW)), τW ], (5)

where the task-aware optimizer ZT
W(·, ·) search the optimal

parameter states θ⋆
W over the subproblemW in T rounds.

Loss functions can also be task-specific and applied to each
base learner separately. It is natural to consider minimizing
the 0-1 loss in the natural and robust errors, however, solving
the optimization problem is NP-hard thus computationally
intractable. In practice, we select cross-entropy as the sur-
rogate loss for both ℓ1 and ℓ2 since it is simple but good
enough.

3.3. Initialization from the Global Learner

During the initial training periods, base learners are less
instrumental since they are not adequately learned. Directly
initializing parameters of base learners may mislead the
training procedure and further accumulate bias when mixing
them. Therefore, we set aside t′ epochs from the beginning
for fully training base learners and just aggregates states on
the searching trajectory of base learners through optimization
by exponential moving average (EMA), computed as: θg ←
α′θg+(1−α′)(γθr+(1−γ)θt), where α′ is the exponential
decay rates for EMA and γ is the mixing ratio for base
learners. They then learn an initialization from parameters
of the global learner every c epochs when each base learner
is well trained in its field. Thus, the optimization of each
base learner for every interlude can be expressed in Eq. 6:

θ⋆
W = argmin

θ
Zc

W [EW(∇θℓW(DW ;θg)), τW ]. (6)

Note that θg contains both θn and θr, meaning there always
exists a term updated by gradient information of distribution
different from the current subproblem. This mechanism
enables fast learning within a given assignment and improves
generalization, and the acceleration is applicable to the given
assignment for its corresponding base learner only (proof in
Appendix B.1).

With all discussed above, the learning progress of Gener-
alist can be constructed by decending the gradient of θr,θn

and mixing both of them. The calculating steps in Algorithm
1 can be summarized in Eq. 7.

θt
n = Zn

[
E(x,y)∼D1

(∇θnℓ1(x, y;θ
t−1
n )), τ1

]
θt
r = Zr

[
(E(x′,y)∼D2

∇θr
ℓ2(x

′, y;θt−1
r )), τ2

]
θt+1
g = α′θt−1

g + (1− α′)[γθt
r + (1− γ)θt

n]

θt
n = B(t, t′, c)θt+1

g + (1− B(t, t′, c))θt
n

θt
r = B(t, t′, c)θt+1

g + (1− B(t, t′, c))θt
r,

(7)

where B(t, t′, c) is a Boolean function that returns one only
when both t ≥ t′ and t mod c == 0, otherwise it returns
zero. Zn and Zr are optimizers for natural training and
adversarial training assignments.

3.4. Theoretical Analysis

In this part, we theoretically analyze how base learners
help global learner in Generalist. For brevity, we omit the
expectation notation over samples from each distribution
without losing generalization.

Definition 1. (Tradeoff Regret with Mixed Strategies) For
the natural training assignment a1 and adversarial training
assignment a2, consider an algorithm generates the trajec-
tory of states θ1 and θ2 for two base learners, the regret of
both base learners on its corresponding loss function ℓ1, ℓ2
is

RT =
1

2

2∑
a=1

(
T∑

t=1

ℓa
(
θt
a

)
− inf

θt
a∈Θ

T∑
t=1

ℓa
(
θt
a

))
. (8)

The last term obtains the oracle state θ⋆
a, theoretically

optimal parameters for each task a. RT is the sum of the
difference between the parameters of each base learner and
the theoretically optimal parameters for each task. Based on
the definition, we can give the following upper bound on the
expected error of classifier trained by Generalist with respect
to RT as:

Theorem 1. (Proof in Appendix B.2) Consider an algo-
rithm with regret bound RT that generates the trajectory of
states for two base learners, for any parameter state θ ∈ Θ,
given a sequence of convex surrogate evaluation functions
ℓ : Θ 7→ [0, 1]a∈A drawn i.i.d. from some distribution L, the
expected error of the global learner θg on both tasks over
the test set can be bounded with probability at least 1− δ:

E
ℓ∼L

ℓ (θg) ≤ E
ℓ∼L

ℓ (θ) +
RT

T
+ 2

√
2

T
log

1

δ
. (9)

So the above inequality indicates that any strategy ben-
eficial to reducing the error of each task that makes RT

smaller will decrease the error bound of the global learner.
Considering Generalist divides the tradeoff problem into two
independent tasks, Theorem 1 guarantees the upper bound
of the risks given by the global learner trained by Generalist
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will get lower once the error for each task becomes lower.
In practice, we can apply customized learning rate strate-
gies, optimizers, and weight averaging to guarantee the error
reduction of each base learner.

4. Experiments
We conduct a series of experiments on ResNet-18 [14]

and WRN-32-10 [42] on benchmark datasets MNIST,
SVHN, CIFAR-10, and CIFAR-100 under the L∞ norm.

Baselines. We select six approaches to compare with:
AT using PGD (β = 1 in Eq. 1) [20], AT using the half-
half loss (β = 1/2 in Eq. 1) [13], TRADES with different
λ [43], Friendly Adversarial Training (FAT) [44], Interpo-
lated Adversarial Training (IAT) [17], and Robust Self Train-
ing (RST) [26] used labeled data for fair comparison. For
Generalist, we set t′ = 75 and the optimal mixing strategy
will be discussed in Section 4.2.2.

Evaluation. To evaluate the robustness of the proposed
method, we apply several adversarial attacks including PGD
[20], MIM [11], CW [7], AutoAttack (AA) [9] and all
its components (APGDce, APGDdlr, APGDt, FABt, and
Square attacks).

4.1. Tradeoff Performance on Benchmark Datasets

To comprehensively manifest the power of our Generalist
method, we present the results of both ResNet-18 and WRN-
32-10 on CIFAR-10 in Table 1.

In Table 1(a), Generalist consistently improves standard
test error relative to models trained by several robust meth-
ods, while maintaining adversarial robustness at the same
level. More specifically, Generalist achieves the second high-
est standard accuracy of 89.09% (only lower than 93.04%
obtained by natural training (NT)), while meantime robust
accuracy against AA is 46.07%, hanging on to 48.2% from
TRADES. If we force TRADES to meet the same level
of clean accuracy as Generalist (89%), the robustness of
TRADES against APGD will drop to 30% (see TRADES
in Appendix A.4), which is significantly worse than Gener-
alist. That means it is hard to obtain acceptable robustness
but maintain clean accuracy above 89% in the joint training
framework even if it is equipped with an advanced loss func-
tion, while the improvement of Generalist is notable since
we only use the naive cross-entropy loss. Contrary to FAT
managing the tradeoff through adaptively decreasing the step
size of PGD, which still hurts robustness a lot, Generalist is
the only method with clean accuracy above 89% and robust
accuracy against AA above 46%. We should emphasize the
final obtained model of Generalist is the same size as other
trained models are. For the training time, Generalist does
perform both NT and naive AT but the cost of NT is negligi-
ble, so the overhead of Generalist is smaller than TRADES,
and whatever serial and parallel versions of Generalist are
even faster than TRADES (see Appendix A.4).

Things become more obvious when it comes to WRN-
32-10. In Table 1(b), the gap between test natural accuracy
of Generalist and NT is reduced to 2.27%, a relative de-
crease of 3.65% in standard test error as compared to the
second highest natural accuracy (except NT) achieved by
FAT. It is also remarkable that the boost of accuracy does not
hurt the robustness of Generalist, instead, Generalist even
outperforms TRADES across multiple types of adversarial
attacks. In particular, we find that Generalist has a standard
test error of 6.7% while TRADES with λ = 6 has a standard
test error of 14.89% only. And the improved robustness of
Generalist among PGD20/100, MIM, CW, FATt and Square
is conspicuous. Besides, the best performance on AA, which
is an ensemble of different attacks and the most powerful
adaptive adversarial attack so far, demonstrates the reliabil-
ity of Generalist. Likewise, only Generalist attains robust
accuracy of AA higher than 52% along with clean accuracy
higher than 90%. It should be emphasized that these features
confirm the practicability of Generalist. In short, Generalist
has consistently improved robustness without loss of natural
accuracy. More results on benchmark datasets of MNIST,
SVHN, and CIFAR-100 are in Appendix A.2 - A.3.

4.2. Comprehensive Understanding of Generalist

We run a number of ablations to analyze the Generalist
framework in this part. As illustrated in Algorithm 1, two
factors control the tradeoff between accuracy and robustness
of the global learner: frequency of communication c and mix-
ing ratio γ. Here, we investigate how these parameters affect
performance. If not specified otherwise, the experiments are
conducted on CIFAR-10 using ResNet-18.

4.2.1 Mixing Strategies of γ

In Generalist, γ controls the tradeoff via balancing the contri-
bution of individuals to the global learner when base learners
are gradually well trained. Note that γ is a scalar but we
do not explicitly assign a fixed value to it. Instead, we set
several breakpoints and dynamically adjust the value along
the training process using a piecewise linear function to
decrease.

Results are shown in Figure 3. The numbers in brack-
ets are the values at the 0/40/80/120-th epoch. If γ gets
smaller, the base learner in charge of natural classification
has a pronounced influence on the global learner. Among
all configurations, the best one is to apply γ = (1, 1, 1, 0)
and c = 5 to the global learner after the 75th epoch. When
compared to strategies that γ decays during late periods,
γ = (1, 1, 0.8, 0.2) shows lower standard and robust accu-
racy, confirming that more sophisticated initialization could
be useful for both accuracy and robustness. With the in-
crease of the last breakpoint of dynamical strategies, the
robust accuracy gradually increases; while the standard ac-
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Table 1. Comparison of our algorithm with different training methods using ResNet-18 and WRN-32-10 on CIFAR-10. The maximum
perturbation is ε = 8/255. The best checkpoint is selected based on the tradeoff between clean accuracy and robust accuracy against PGD20
on the test set. We highlight the top two results on each task. We omit standard deviations of Generalist as they are very small (< 0.5%).
Average accuracy rates (in %) have shown that the proposed Generalist method greatly mitigates the tradeoff of the model.

(a) Evaluation results based on ResNet-18.

Method NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FATt Square AA
NT 93.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AT (β = 1) 84.32 48.29 48.12 47.95 49.57 47.47 48.57 45.14 46.17 54.21 44.37
AT (β = 1/2) 87.84 44.51 44.53 47.30 44.93 40.58 42.55 40.20 44.56 50.76 40.06
TRADES (λ = 6) 83.91 54.25 52.21 55.65 52.22 53.47 50.89 48.23 48.53 55.75 48.20
TRADES (λ = 1) 87.88 45.58 45.60 47.91 45.05 42.95 42.49 40.38 43.89 53.49 40.32
FAT 87.72 46.69 46.81 47.03 49.66 46.20 47.51 44.88 45.76 52.98 43.14
IAT 84.60 40.83 40.87 43.07 39.57 37.56 37.95 35.13 36.06 49.30 35.13
RST 84.71 44.23 44.31 45.33 42.82 41.25 42.01 40.41 46.54 50.49 37.68
Generalist 89.09 50.01 50.00 52.19 50.04 46.53 48.70 46.37 47.32 56.68 46.07

(b) Evaluation results based on WRN-32-10.

Method NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FATt Square AA
NT 93.30 0.01 0.02 0.05 0.00 0.00 0.00 0.00 0.87 0.28 0.00
AT (β = 1) 87.32 49.01 48.83 48.25 52.80 48.83 49.00 46.34 48.17 54.26 46.11
AT (β = 1/2) 89.27 48.95 48.86 51.35 49.56 45.98 47.66 44.89 46.42 56.83 44.81
TRADES (λ = 6) 85.11 54.58 54.82 55.67 54.91 54.89 55.50 52.71 52.61 57.62 52.19
TRADES (λ = 1) 87.20 51.33 51.65 52.47 53.19 51.60 51.88 49.97 50.01 54.83 49.81
FAT 89.65 48.74 48.69 48.24 52.11 48.50 48.81 46.70 46.17 51.51 44.73
IAT 87.93 50.55 50.72 52.37 48.71 47.71 46.55 43.84 45.78 56.52 43.80
RST 87.27 46.55 46.76 47.02 45.99 45.73 46.58 45.78 43.18 52.44 41.52
Generalist 91.03 56.88 56.92 58.87 57.23 53.94 55.80 53.00 53.65 63.10 52.91

curacy decreases by a small margin. We also investigate
the static/dynamic strategy for γ. By observing γ = 0.5
and γ = (1, 1, 1, 0.5), the scheduled mixing strategy makes
Generalist more robust to various attacks.

4.2.2 Communication Frequency c

In Generalist, c controls the communication frequency be-
tween the global learner and base learners. Therefore, for
c, with the fixed mixing ratio strategy, we sweep over the
frequency of communication from 1 to 15.

Results are shown in Figure 3, and we have the follow-
ing observations. Intuitively, a larger c means base learners
communicate with the global learner less frequently to get
the initialization, so they barely have the opportunity to
move alternately towards two optimal solution manifolds.
But specifically, the natural accuracy falls back down after
reaching the peak while the robust accuracy in different ad-
versarial settings roughly shows a trough. Such observation
manifests that too much/little communication has a negative
influence on standard accuracy but results in relatively higher
robustness. It captures a tradeoff between natural and robust
errors with respect to c.

4.2.3 Parameter Selection

In practice, it is natural to select the mixing parameter γ and
the frequency of communication c under a scenario without
knowing the target model or dataset. We can find the best
parameters on specific architecture and dataset, which is
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Figure 3. Generalist with different mixing ratio strategies and
various values of frequency on CIFAR-10. We evaluate both natural
accuracy and robustness against PGD20, C&W and AA attacks
using ResNet-18.
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Figure 4. (a) We apply weight averaging to one of the base learners or both of them. Results demonstrate that using weight averaging
through training can bring performance boost in its corresponding sub-task, and thus has an effect on predictions of the global learner. (b)
Base learners of Generalist optimized by different optimizers. The optimal selection is using Adam for the natural classification task but
maintaining SGD for the adversarial one.

then transferred to others, i.e., choosing the best γ, c, and
their strategies on one model/dataset and then used for other
models/datasets, which still works well. Specifically, for the
experimental results on MNIST/SVHN/CIFAR100 shown in
Appendix A.2 and A.3, we just find the optimal parameters
and updating strategies on CIFAR10 and apply similar γ
and c on the target datasets and architectures without much
fine-tuning. The performance is still very good.

4.3. Customized Policies for Individuals

As stressed above, one of the major advantages of Gen-
eralist in comparison with the standard joint training frame-
work is that each base learner enables to customize the corre-
sponding strategy for their own tasks freely rather than using
the same strategy for all tasks. In this part, we investigate
whether Generalist performs better when cooperating with
diverse techniques.

Weight Averaging. Recent works [15,27,35] have shown
that weight averaging (WA) greatly improves both natural
and robust generalization. The average parameters of all his-
tory model snapshot through the training process to build an
ensemble model on the fly. However, such technique cannot
benefit both accuracy and robustness in the joint training
framework. Therefore, we introduce WA into base learners
separately. Results are shown in Figure 4 (a). We employ
WA in either NT (NT_only) or AT (AT_only) or both of them
(NT+AT). Overall, the results confirm that the performance
of the global learner can be further improved after both base
learners exploit WA. But unfortunately, an obvious tradeoff
happens if only one of the base learner is equipped with WA.
For instance, the standard test accuracy of NT_only contin-
ues to increase at the expense of the drop in the ability to
defend attacks. A likely reason is that WA implicitly controls
the learning speed of base learners. Indeed, the base learner
with WA becomes an expert much faster than the one without
WA in its sub-task, meaning the fast one is not in accordance
with the slow one. This result is important because it not
only illustrates the potential of Generalist comes from its
base learners but also identifies a key challenge of tradeoff

for future improvement.
Different Optimizers. We also investigate the effect

of optimizers designed for different tasks. We choose AT
(β = 1) using SGD with momentum and Adam for piece-
wise learning rate schedule optimized by joint training as
the baseline. The initial learning rate for Adam is 0.0001.
We alternately apply these two optimizers in each subprob-
lem. The comparison of the results is shown in Figure 4
(b). We can see that the gap of robust accuracy between
models adversarially trained by Adam and the ones trained
by SGD is significant. All three schemes equipped with
Adam, namely NT (Adam)+AT (Adam), NT (SGD)+AT
(Adam), and Baseline (Adam), perform worse than the ones
using SGD when evaluated by adversarial attacks. But on the
other hand, by comparing the results of Baseline (Adam) and
NT (Adam)+AT (SGD), it confirms a proper optimization
scheme with respect to data distribution can effectively ben-
efit the corresponding performance without overlooking the
other. That not only demonstrates the necessity of Generalist
to decouple task-aware assignments from joint training but
also indicates using Adam may not be the principal reason
for robustness drop. It is just ill-suited for the outer and
inner optimization in AT. Besides, though the best results
still come from using SGD, the learning rate for different
tasks can be customized which is not feasible in the joint
framework, as shown in Appendix A.5.

4.4. Visualization

Considering the proposed method achieves impressive
clean accuracy without a harsh drop in robustness, it is nat-
urally to ask what improvements Generalist has secured in
comparison with robust methods in detail. Thus, we further
investigate the predictions that robust classifiers are prone to
make. As shown in Figure 5, we provide two perspectives
to analyze the differences that classifiers trained by different
AT methods.

To broadly study the case, we perform experiments on
NT, TRADES with different λ, FAT and Generalist, then
plot the distribution of the correct predictions of all methods
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Figure 5. Analyses of predilections that different robust classifiers have on CIFAR-10 using ResNet-18. (a) Distribution of the correct
predictions of different training methods for each class. We separate out results on natural examples from adversarial ones (AA). Note
that results of ‘NT Adv’ does not appear in the figure just because they are literally zero. (b) Visualization of samples that other methods
misclassify while Generalist makes right predictions.

for each class in Figure 5(a). As evident at first glance, we
note that animals are more frequently misclassified, espe-
cially cats/dogs in the natural scenario and cats/deers in the
adversarial scenario. In addition, the classifier trained by
standard natural training does not always outperform the
ones adversarially trained. Actually, they are equally skilled
at most categories and the outcome is decided by specific
categories (e.g. birds, cats and dogs). Generalist keeps pace
with NT in the natural task, and meanwhile promotes the
higher improvements in difficult items (e.g. cats and deers)
against AA attack.

In Figure 5(b), we display specific samples in the testing
dataset that are misclassified by robust classifiers (TRADES
and FAT) but recognized by our proposed method, including
both natural examples (the first two rows) and adversarial
examples (the last two rows). Here, images shown in the first
row are easy ones where the foreground objects stand out
from the clear backgrounds, while hard samples are referred
to those having confused objects with messy backgrounds.
It is worth noting that TRADES delivers poor performances
not only on hard examples with complex backgrounds or
obscured objects but also on simple ones. For example, each
image in the first row is typically plain and regular, however,
TRADES fails in categorizing them into the right class. A
plausible explanation for the issue is that TRADES lacks in
a set of support measures specially devised for the natural
classification task unlike Generalist does, highlighting design
differentiation for sub-tasks is necessary.

Another interesting finding is that though both TRADES
and FAT can build a robust classifier, they still rely on spu-
rious background information and thus are easily deceived

when encountering images with similar backgrounds but dif-
ferent objects. This phenomenon can be verified from the
misclassification of the fourth and fifth images in the first row
(taking white/blue backgrounds as evidence), and the fifth
image in the fourth row (confused by the green background).
But Generalist has the ability to sift the invariant feature
of the foreground object while ignoring the background in-
formation spuriously correlated with the categories in both
natural and adversarial settings. On the whole, Generalist
demonstrates its strength to differentiate difficult samples
close to the decision boundary and its potential to learn a
background-invariant classifier.

5. Conclusion
In this paper, we propose a bi-expert framework named

Generalist for improving the tradeoff issue between natural
and robust generalization, which trains two base learners
responsible for complementary fields and collects their pa-
rameters to construct a global learner. By decoupling from
the joint training paradigm, each base learner can wield cus-
tomized strategies based on data distribution. We provide
theoretical analysis to justify the effectiveness of task-aware
strategies and extensive experiments show that Generalist
better mitigates the tradeoff of accuracy and robustness.
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