
Image Cropping with Spatial-aware Feature and Rank Consistency

Chao Wang, Li Niu*, Bo Zhang, Liqing Zhang∗

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
{wangchaojfj,ustcnewly,bo-zhang}@sjtu.edu.cn,zhang-lq@cs.sjtu.edu.cn

Abstract

Image cropping aims to find visually appealing crops in
an image. Despite the great progress made by previous
methods, they are weak in capturing the spatial relationship
between crops and aesthetic elements (e.g., salient objects,
semantic edges). Besides, due to the high annotation cost
of labeled data, the potential of unlabeled data awaits to be
excavated. To address the first issue, we propose spatial-
aware feature to encode the spatial relationship between
candidate crops and aesthetic elements, by feeding the con-
catenation of crop mask and selectively aggregated feature
maps to a light-weighted encoder. To address the second
issue, we train a pair-wise ranking classifier on labeled
images and transfer such knowledge to unlabeled images
to enforce rank consistency. Experimental results on the
benchmark datasets show that our proposed method per-
forms favorably against state-of-the-art methods.

1. Introduction

The task of image cropping aims to find good crops in
an image that can improve the image quality and meet aes-
thetic requirement. Image cropping is a prevalent and criti-
cal operation in numerous photography-related applications
like image thumbnailing, view recommendation, and cam-
era view adjustment suggestion.

Many Researchers [2, 4–7, 12, 21, 23, 36, 43, 46, 52, 54,
60, 62, 63] have studied automatic image cropping in the
past decades with the goal to reduce the workload of man-
ual cropping. Earlier works [2, 3, 12, 31, 43, 44] mainly
used saliency detection [49, 59] to detect salient objects
and crop around salient objects. Another group of meth-
ods [6, 12, 26, 33, 54, 62] designed hand-crafted features
to represent specific composition rules in photography.
With the construction of moderate-sized image cropping
datasets [4, 52, 54, 56], recently proposed image cropping
methods [4, 5, 7, 21, 23, 36, 52, 56, 57, 63] are usually data-
driven manner and directly learn how to crop visually ap-
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Figure 1. Two examples of the spatial relationship between crops
(yellow bounding box) and aesthetic elements (e.g., semantic
edges and salient objects). The first column shows the source im-
ages, and the second (resp., third) column shows their low-level
(resp., high-level) feature maps extracted by a pre-trained Mo-
bileNetv2 [39] network with channel-wise max pooling. It can
be seen that low-level feature maps emphasize semantic edges and
high-level feature maps highlight salient objects.

pealing views from the labeled data. Although these ap-
proaches have achieved impressive improvement on image
cropping task, there still exist some drawbacks which will
be discussed below.

One problem is that when considering the spatial rela-
tionship between crops and aesthetic elements (e.g., salient
objects, semantic edges), which is very critical for image
cropping, previous methods usually designed some intu-
itive rules. For example, the crop should enclose the salient
object [2, 43, 44], or should not cut through the semantic
edges [2, 54]. However, these hand-crafted rules did not
consider the spatial layout of all aesthetic elements as a
whole, and may not generalize well to various scenes be-
cause the rules designed for specific subjects can not cover
complex image cropping principles [10].

In this work, we explore learnable spatial-aware fea-
tures, which encode the spatial relationship between crops
and aesthetic elements. We observe that the feature map
obtained using channel-wise max pooling can emphasize
some aesthetic elements. In Figure 1, we show several
pooled feature maps from MobileNetv2 [39], from which
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it can be seen that the low-level feature maps emphasize
semantic edges (e.g., the outlines of semantic objects and
regions) and the high-level feature maps emphasize salient
objects (e.g., bird, balloon). With concatenated feature
maps from different layers, we learn channel attention [16]
to select important layers. The weighted feature maps are
concatenated with candidate crop masks and sent to a light-
weighted encoder to produce spatial-aware features. The
extracted spatial-aware features encode the spatial relation-
ship between candidate crops and aesthetic elements with-
out being limited by any hand-crafted rules.

Another problem is that the cost of crop annotation is
very high and the performance is limited by the scale of
the annotated training set. Therefore, some previous works
explored how to utilize unlabeled data to improve the crop-
ping performance. For example, VFN [5] collects unlabeled
professional photographs from public websites and perform
pairwise ranking based on the assumption that the entire
image has higher aesthetic quality than any of its crops.
However, such assumption does not always hold obviously.
VPN [52] used a pre-trained network VEN [52] to predict
aesthetic scores for the crops from unlabeled images, which
function as pseudo labels to supervise training a new net-
work. However, the predicted pseudo labels may be very
noisy and provide misleading guidance.

In this work, we explore transferring ranking knowl-
edge from labeled images to unlabeled images. Specifically,
given two annotated crops from a labeled image, we learn a
binary pairwise ranking classifier to judge which crop has
higher aesthetic quality, by sending the concatenation of
two crop features to a fully connected layer. We expect that
the knowledge of comparing the aesthetic quality of two
crops with similar content could be transferred to unlabeled
data. Given two unannotated crops from an unlabeled im-
age, we can obtain two types of ranks. On the one hand, we
can rank them according to the predicted crop-level scores.
On the other hand, we can employ the pairwise ranking clas-
sifier to get the rank. Then, we enforce two types of ranks
to be consistent.

We conduct experiments on GAICD [57] and FCDB [4]
dataset. For unlabeled images, we use unlabeled test im-
ages, which falls into the scope of transductive learning.
Our major contributions can be summarized as:

• We design a novel spatial-aware feature to model the
spatial relationship between candidate crops and aes-
thetic elements.

• We propose to transfer ranking knowledge from la-
beled images to unlabeled images, and enforce ranking
consistency on unlabeled images.

• Our proposed method obtains the state-of-the-art per-
formance on benchmark datasets.

2. Related Work

In this section, we review the existing image cropping
methods and introduce the learning paradigms using unla-
beled data.

2.1. Image Cropping

From the perspective of data usage, the existing image
cropping methods can be roughly classified into two main-
streams: rule-based and data-driven.

Rule-based methods usually utilize attention or aes-
thetic features to evaluate candidate crops. Some meth-
ods [2,3,12,24,25,27,31,40,42–44,46] argued that a good
crop should attract enough attention and cover the dominant
subject in an image. Most of them evaluated the candidates
based on the results of saliency detection [49,59]. Other ap-
proaches [6,8,12,26,29,33,50,51,54,60–62] paid more at-
tention to the overall composition quality of crop and some
of them [6,26,33,62] designed hand-crafted features or spe-
cific rules to determine which candidate has high aesthetic
quality. However, the cropped views obtained based on
saliency usually lack overall composition and those meth-
ods using hand-crafted features are not robust enough to
predict complex image aesthetics.

With several image cropping datasets [4,12,52,54,56,57]
constructed in the past decade, most recently proposed im-
age cropping methods [4,5,7,11,13,15,18,23,28,30,46,52,
52, 56–58, 63] are data-driven. The main paradigm of these
approaches is to generate candidates in the first stage, then
score or rank them with techniques like self-supervision [5],
RoIAlign [14] and RoDAlign [56, 57], knowledge distilla-
tion [52], aesthetic score map prediction [46], mutual rela-
tions modeling [23], or visual elements dependencies en-
coding [36]. Some other methods acquired candidate crops
via reinforcement learning [21, 22] and set predicting [17].
Unlike these methods, our proposed method models the
spatial relationship between the crops and aesthetic ele-
ments in an image, contributing to evaluating the aesthetic
quality more reasonably.

2.2. Semi-supervised/Transductive Learning

Due to the high annotation cost of labeled data, how to
utilize unlabeled data is an important research topic, which
involves several learning paradigms. Among them, semi-
supervised learning exploits unlabeled data to construct a
learner whose performance is beyond those with only la-
beled data [47]. Many semi-supervised methods have been
proposed over the past decades, which can be roughly sum-
marized into four categories: consistency regularization,
proxy-label methods, generative models, and graph-based
methods [34]. Among these categories, self-training [38,
41, 55] and consistency regularization [20, 45, 53] are com-
monly used. Self-training methods use the classifier trained
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Figure 2. The flowchart of our method for image cropping with spatial-aware feature and rank consistency. The light-weighted Mo-
bileNetv2 [39] is applied as backbone to extract multi-scale features, from which region features and spatial-aware features are obtained.
We train our cropping model with both labeled images and unlabeled images, during which we use annotated crop scores to supervise
labeled images and rank consistency to supervise unlabeled images.

on labeled data to predict pseudo labels of unlabeled data,
and then add the confident unlabeled data into training set.
Consistency regularization usually enforces the prediction
scores of multiple views of the same sample to be consis-
tent. Our proposed method belongs to consistency regu-
larization, but rank consistency between different crops in
an image is specifically designed for image cropping task.
Semi-supervised learning can be further divided into induc-
tive learning and transductive learning [34, 47]. Transduc-
tive learning [1, 48] is usually applied when part of un-
labeled test data are available at training time [35]. The
abovementioned methods (e.g., self-training, consistent reg-
ularization) can be directly applied to transductive learning.

Several existing image cropping methods [5, 52] at-
tempted to employ unlabeled images. However, as intro-
duced in Section 1, they either make a rigorous assump-
tion or simply use pseudo labels. Differently, we propose
a novel consistency regularization approach. In particular,
we transfer aesthetic ranking knowledge from labeled data
to unlabeled data and enforce rank consistency on unlabeled
images.

3. Methodology
3.1. Overview

Figure 2 presents the overall flow of our proposed im-
age cropping method with spatial-aware feature and rank

consistency. Following [57], we use MobileNetv2 [39]
model pre-trained on ImageNet [9] as the backbone to ex-
tract multi-scale features. We aggregate multi-scale fea-
tures to obtain the region feature via RoIAlign [14] and Ro-
DAlign [56,57], which considers not only the content in the
candidate crop box but also that outside the box. Besides
the region feature, we additionally extract the spatial-aware
feature, which models the spatial relationship between can-
didate crops and aesthetic elements. We concatenate the
region feature and the spatial-aware feature as crop feature
followed by two branches, in which one branch predicts the
aesthetic score of each candidate crop and another branch
selects crop pairs for a binary pair-wise classifier to predict
their relative ranks. We train our cropping model with both
labeled images and unlabeled test images. For labeled im-
ages, we directly use their annotated scores for supervision.
For unlabeled test images, we enforce two types of ranks
to be consistent, in which one is directly from the predicted
crop aesthetic scores and the other one comes from the pair-
wise ranking classifier. Next, we will introduce the spatial-
aware feature in Section 3.2 and rank consistency in Section
3.3.

3.2. Spatial-aware Feature

As represented in Figure 1, the low-level feature maps
exhibit clear semantic edges while the high-level feature
maps highlight salient objects. We exploit such observa-
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tion to model the spatial relationship between candidate
crops and aesthetic elements in an image, so that the model
can learn the optimal placement of aesthetic elements (e.g.,
salient objects, semantic edges) in the crop and thus locate
the crop better.

To this end, we first follow [56,57] to extract multi-scale
feature maps denoted by F and obtain RoI (resp., RoD) fea-
ture denoted by FRoI (resp., FRoD) respectively with the
size h × h after RoI (resp., RoD) Align operations. Then
we send the concatenation of them to two fully connected
layers and get dr-dim region feature Fr.

Feature Maps Activation. When extracting multi-scale
feature map, we also keep different layers of feature maps.
As their channel dimensions and spatial resolutions are dif-
ferent, we first perform max pooling along the channel di-
mension and then use bilinear interpolation to reshape them
to the same size H × W . In total, we obtain k layers of
feature maps with size H × W × 1. We concatenate them
along the channel dimension and denote the feature map as
F̄ ∈ Rk×H×W .

Channel Attention Block. As different layers of fea-
ture maps contain different levels of information, it is
hard to decide which layers should be emphasized or sup-
pressed. Thus, we apply the channel attention block [16]
that learns the channel dependencies and performs feature
recalibration automatically. As in [16], the feature map
F̄ ∈ Rk×H×W goes through a global average pooling layer
and generates channel-wise statistics, which are then deliv-
ered to two fully connected layers with activation functions
to generate channel-wise weights. Finally, channel-wise
weights are multiplied with feature maps F̄ ∈ Rk×H×W ,
leading to F̄

′ ∈ Rk×H×W . We will discuss and visualize
the learned attention in Section 4.4.

Spatial Relationship Modeling. Some previous meth-
ods designed hand-crafted features to explicitly model the
spatial relationship between crop and aesthetic elements
(e.g., exclusion features with the crop-out value and cut-
through value, and compositional features considering aes-
thetic rules [54]). These hand-crafted features can only
behave well on certain instances, so we propose to learn
spatial-aware features to implicitly model the spatial re-
lationship. Specifically, we concatenate the feature map
F̄

′ ∈ Rk×H×W with one candidate crop mask (the entries
within the crop bounding box are 1 and all the other entries
are 0), resulting in F̄

′

m ∈ R(k+1)×H×W . Then we send F̄
′

m

to a light-weighted encoder Es to extract the ds-dim spatial-
aware feature Fs. The Encoder Es consists of two 5 × 5
convolution layers with max pooling and a fully connected
layer.

Finally, we concatenate the region feature Fr and the
spatial-aware feature Fs as the crop feature, and pass it to
two branches for crop-level aesthetic scores prediction and
pair-wise rank classification.

Optimization. We train our network in a multi-task
manner. When using the labeled images, we train the aes-
thetic score prediction branch and the pair-wise ranking
classifier at the same time, supervised by the ground-truth
scores with two types of loss functions. The pair-wise rank-
ing classifier will be discussed in Section 3.3. In the crop-
level aesthetic score prediction branch, we employ smooth
L1 regression loss [37]. Given an image with N candi-
date crops, we denote the predicted aesthetic score and the
ground-truth score of the i-th crop as ŷi and yi respectively.
The regression loss is

Lreg =
1

N

N∑
i

Ls1(yi − ŷi), (1)

where Ls1 is the smooth L1 loss.

3.3. Rank Consistency

As image cropping aims to find good crops in the image,
a lot of candidate crops need to be scored and ranked cor-
rectly. However, annotating dozens of candidate crops in an
image is very expensive. Therefore, using unlabeled data is
worth exploring in the image cropping task. As discussed
in Section 1, previous works either make an assumption that
does not always hold or use unreliable pseudo labels for
knowledge distillation. In this work, we use unlabeled test
images in the training stage, which falls into the scope of
transductive learning [1, 48]. We explore rank consistency
on unlabeled images, aiming to take advantage of the un-
labeled data and use the transferred knowledge to promote
cropping performance.

Pair-wise Ranking Classifier. To transfer the rank-
ing knowledge, we first train a pair-wise ranking classifier
that can distinguish the aesthetic quality of two candidate
crops in the same image. As shown in Figure 2, when
predicting the aesthetic score of each candidate crop, we
also select crop pairs to train our pair-wise ranking classi-
fier. Specifically, given N candidate crops with crop fea-
ture Frs = [Fr, Fs] in an image, we concatenate the crop
features of two crops and adopt a fully connected layer to
predict a score within [0, 1]. For a pair of two candidate
crops {Ci, Cj}, the classifier output represents the proba-
bility that the aesthetic quality of Ci is better than Cj . In
detail, if the value approaches 1, Ci is better than Cj , oth-
erwise Ci is worse than Cj . For N candidate crops, we can
get (N2 −N)/2 crop pairs at most. However, if the margin
between their scores is too small, it may confuse the model.
Thus, we set score margin η > 0 to filter out the confusing
pairs and get T crop pairs, from which we randomly select
a fixed number of P pairs for classification. We set η = 0.5
and P = 256, because too many pairs increase the compu-
tational cost dramatically but bring little performance gain.
The impact of hyper-parameter η and P will be discussed
in Supplementary.
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Optimization. We train the pair-wise ranking classifier
jointly with the aesthetic score prediction branch, as dis-
cussed in Section 3.2. The loss function Lreg for the aes-
thetic score prediction branch has been introduced in Eqn.
1. The loss function for the pair-wise ranking classifier
is the typical binary entropy loss. Specifically, we denote
the classification score of the n-th crop pair {Ci, Cj} as pn
and get their ground-truth rank label qn according to their
ground-truth scores yi and yj :

qn =

{
1, if yi > yj ,

0, if yi < yj .
(2)

The binary cross-entropy classification loss is

Lcls =
1

P

P∑
n=1

−qn · logpn − (1− qn) · log(1− pn). (3)

When training with labeled images, the total loss is

Llabeled = Lreg + λclsLcls, (4)

where λcls is a hyper-parameter and we set λcls = 1 via
cross-validation.

Next, we transfer the ranking knowledge from labeled
images to unlabeled images and impose rank consistency
on unlabeled images. Given an unlabeled image, we get the
pre-defined anchor boxes as in [57] and randomly select N
candidate crops for training. After obtaining the crop fea-
tures Frs, we send them to the pair-wise ranking classifier
and crop-level aesthetic score predictor. On the one hand,
we use all (N2 −N)/2 crop pairs for the pair-wise ranking
classifier to get the rank of all crops. On the other hand, we
can get another rank based on the predicted aesthetic scores.
We enforce two types of ranks to be consistent using our de-
signed consistency loss. Formally, given two crops Ci and
Cj in an image, we denote their predicted aesthetic scores
as ŷi and ŷj . The output of the pair-wise ranking classifier
is denoted as pn. The consistency loss is defined as

Lcons =
2

(N2 −N)

N∑
i=1

N∑
j=i+1

l(Ci, Cj), (5)

where

l (Ci, Cj) = max {0, δ + sign(pn − 0.5)(ŷj − ŷi)} , (6)

in which sign(·) is the standard sign function and δ is a mar-
gin set as 0.1 via cross-validation. When pn > 0.5 (resp.,
pn < 0.5), ŷi (resp., ŷj) is expected to exceed ŷj (resp., ŷi)
by a margin δ.

So far, the total loss function can be summarized as

Ltotal = Llabeled + Lcons, (7)

in which Llabeled is trained with labeled images and Lcons

is trained with unlabeled images.

4. Experiments
4.1. Datasets and Evaluation Metrics

We mainly conduct experiments on the journal version
of the GAICD [57] dataset, which extended the number of
source images to 3,336 (2,636 for training, 200 for valida-
tion and 500 for testing) with 288,069 labeled crops, 1,100
more images compared with its conference version [56].
We use the metrics proposed in [56], including average
Spearman’s rank-order correlation coefficient (SRCC), av-
erage Pearson correlation coefficient (PCC), and return K
of top-N accuracy ACCK/N . PCC evaluates the linear
correlation between the predicted scores and the ground-
truth, whereas SRCC measures the ranking order corre-
lation which is sometimes more important in image crop-
ping task. Following [57], we set N to 5 or 10 and K to
1, 2, 3 and 4, and get 8 return K of top-N accuracy met-
rics Acc1/5, Acc2/5, Acc3/5, Acc4/5, Acc1/10, Acc2/10,
Acc3/10, Acc4/10. We also report their average results as
Acc5, Acc10.

Besides the GAICD dataset, we use FCDB [4] dataset
with 348 test images to evaluate our model as well. We
report the Intersection-over-Union (IoU) and Boundary-
displacement-error (Disp) for comparison with other ap-
proaches, even though the reliability of these two metrics
is arguable [56].

4.2. Implementation Details

Following recent approaches [36, 57], we employ effi-
cient MobileNetv2 [39] as the backbone and reduce the
channel of the multi-scale feature maps to 32 with 1 × 1
convolution. The RoI&RoD Align resolution h is fixed to 9
as in [57]. We send all layers of the feature maps extracted
from the backbone to generate spatial-aware features, that
is, the number of layers k is 19. We set H ×W as 64× 64,
and set dr = ds = 256.

During training, we resize the short side length of the
source image to 256 while keeping the aspect ratio. Data
augmentation like randomly horizontal flipping and photo-
metric distorting (e.g., brightness, contrast, and saturation)
are employed for better generalization. We randomly select
N = 64 candidate crops of an image as a batch for train-
ing and leverage all candidates in the test stage. We train
the whole network end-to-end by using the Adam [19] op-
timizer with a weight decay of 1e−4 for 60 epochs. The
learning rate is set to 1e−4 and we decay it at the 6-th epoch
with a rate of 0.1.

4.3. Comparison with the State-of-the-arts

Quantitative comparison. We first compare our pro-
posed method with the state-of-the-art methods on the
GAICD [57] dataset in Table 1. Note that CGS [23]
is trained on the conference version [56] of the GAICD
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Model Acc1/5 Acc2/5 Acc3/5 Acc4/5 Acc5 Acc1/10 Acc2/10 Acc3/10 Acc4/10 Acc10 SRCC PCC

A2RL [21] 23.2 - - - - 39.5 - - - - - -
VPN [52] 36.0 - - - - 48.5 - - - - - -
VFN [5] 26.6 26.5 26.7 25.7 26.4 40.6 40.2 40.3 39.3 40.1 0.485 0.503
VEN [52] 37.5 35.0 35.3 34.2 35.5 50.5 49.2 48.4 46.4 48.6 0.616 0.662
GAIC [57] 68.2 64.3 61.3 58.5 63.1 84.4 82.7 80.7 78.7 81.6 0.849 0.874
CGS [23] 63.0 62.3 58.8 54.9 59.7 81.5 79.5 77.0 73.3 77.8 0.795 -
CGS∗ [23] 66.2 63.0 59.6 56.5 61.3 84.4 81.4 78.9 76.9 80.4 0.850 0.874
TransView [36] 69.0 66.9 61.9 57.8 63.9 85.4 84.1 81.3 78.6 82.4 0.857 0.880

Ours (w/o te) 68.4 65.1 62.1 59.2 63.7 86.2 83.1 81.4 79.5 82.6 0.865 0.889
Ours 70.0 66.9 62.5 59.8 64.8 86.8 84.5 82.9 79.8 83.3 0.872 0.893

Table 1. Quantitative comparison to other state-of-art methods on the GAICD dataset [57]. The best performance is in boldface. The line
of CGS is reported on a part of the GAICD dataset [56] from paper [23], and CGS∗ is implemented by ourselves on the whole GAICD
dataset [57]. The results of GAIC are copied from [57] and other methods are from [36].

Method Training Set IoU ↑ Disp ↓
A2RL [21] AVA 0.663 0.089
A3RL [22] AVA 0.696 0.077
VPN [52] CPC 0.711 0.073
VEN [52] CPC 0.735 0.072
ASM [46] CPC 0.749 0.068
GAIC [57] GAICD 0.672 0.084
CGS [23] GAICD 0.685 0.079

TransView [36] GAICD 0.682 0.080
Ours (w/o te) GAICD 0.686 0.078

Ours GAICD 0.695 0.075

Table 2. Quantitative comparison to other state-of-art methods on
the FCDB dataset [4]. Note that previous works report the results
using different training sets(AVA [32], CPC [52], GAICD [57]).

dataset. We report the results of CGS trained on the whole
GAICD dataset of the journal version [57] as CGS∗ for fair
comparison. The results of GAIC are copied from [57] and
other methods are from [36].

We report two versions of our method, in which Ours
(w/o te) does not use unlabeled test images while Ours is the
full method in the transductive learning setting. We observe
that our proposed model performs favorably against state-
of-the-art methods on the GAICD dataset. Moreover, as our
model uses the same backbone and region feature acquired
by RoI&RoD Align as GAIC [57] and TransView [36], the
comparison with [36, 57] shows the superiority of our pro-
posed spatial-aware feature and rank consistency.

We also report the results of our proposed model on
FCDB [4] dataset in Table 2. Note that previous works
used different backbones and training sets. Compared with
GAIC and TransView using the same backbone and training
set as us, our model also achieves better performance.

Model complexity and runtime. We report the
model complexity and runtime of VFN [5], VEN [52],

VPN [52], CGS [23], GAIC [57], and our model in Table
3. Ours(basic) uses the same network as GAIC [57] but
different in some implementation details (e.g., learning rate
decay, weight decay) and Ours is the entire network pro-
posed. Note that, all models are run on the PC with Intel(R)
Core(TM) i7-9700K CPU and one single NVIDIA GTX
1080Ti GPU. We can see the inference speed of our model
is at the same level as GAIC and CGS, and much faster than
VFN, VEN, and VPN. As we employ a light-weighted En-
coder Es to model the relationship between crops and aes-
thetic elements, the number of our model parameters and
runtime are slightly increased compared with GAIC. How-
ever, it’s still acceptable for mobile device applications con-
sidering cropping performance.

Method Backbone #Parameters Runtime

VFN Alexnet 14.88M 2491ms
VEN VGG16 40.93M 5331ms
VPN VGG16 65.31M 149ms
CGS VGG16 21.25M 31ms
GAIC MobileNetv2 5.91M 24ms

Ours(basic) MobileNetv2 5.91M 25ms
Ours MobileNetv2 7.10M 32ms

Table 3. Model complexity and runtime comparison. We re-
port our proposed model and existing methods including VFN [5],
VEN [52], VPN [52], CGS [23], and GAIC [57]. The runtime is
the time to infer one image on average.

Qualitative comparison. In Figure 3, we provide a
qualitative comparison with existing methods including
VFN [5], VEN [52], VPN [52], CGS [23], and GAIC [57].
Only top-1 crops are shown for comparison among about
85 pre-defined anchors in an image. We can observe that
important edges and salient targets appear at more appro-
priate locations in the crops obtained by our method, so that
our crops own higher aesthetic quality and more appealing
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Figure 3. Qualitative comparison on GAICD test set. We show the annotated best crop (yellow bounding box) in the source image in the
left column and top-1 crops obtained by different methods in the rest of the columns.

visual effect. For example, in the first row, our method
preserves the entire shoreline of the lake without cutting
through it, which makes the overall composition more ap-
pealing. In the last row, our method places the child at a
better location obeying ’Rule of Thirds’ and thus the crop
has higher composition quality. Among those methods,
CGS [23] is competitive probably due to its mutual rela-
tions modeling between crops. However, it lacks the ability
to analyze and handle object edges and lines compared with
our model. For example, in the first row, it cuts through the
shoreline of the lake. More qualitative comparisons can be
seen in Supplementary.

User study. The task of image cropping is subjec-
tive to a certain degree. Following previous works [23,
52, 58], we also conduct user study for more comprehen-
sive comparison. We randomly sample 200 test images
from GAICD [57] and FCDB [4] with a ratio of 1:1. For
each test image, we collect the top-1 crops obtained by
VFN [5], VEN [52], VPN [52], CGS [23], GAIC [57] and
our method, and invite 20 annotators to choose the best
crop from the six results. We count the ratio that each
method is chosen as the best one, and the results are 7.6%,
10.7%, 6.5%, 24.5%, 18.9%, and 31.8% respectively corre-
sponding to the methods abovementioned, showing that our
model significantly outperforms other models.

4.4. Ablation study

In this section, we design three groups of ablation stud-
ies to explore the contribution of each component. All the
ablation studies are conducted on the GAICD dataset [57].

Model components. Firstly, we investigate the impact

Row SAF RC SRCC ↑ PCC ↑ Acc5 ↑ Acc10 ↑
1 0.858 0.882 61.7 80.5
2 ✓ 0.865 0.889 63.7 82.6
3 ✓ 0.868 0.890 64.0 82.3
4 ✓ ✓ 0.872 0.893 64.8 83.3

Table 4. Ablation study of different components in our model.
“SAF” and “RC” are short for Spatial-aware Feature and Rank
Consistency respectively.

Row Agg Att CM SRCC ↑ PCC ↑ Acc5 ↑ Acc10 ↑
1 Cat ✓ 0.863 0.886 63.0 81.9
2 Avg ✓ 0.862 0.885 62.9 81.7
3 Cat ✓ ✓ 0.865 0.889 63.7 82.6
4 Cat ✓ 0.860 0.883 62.5 82.3

Table 5. Ablation study of the spatial-aware feature. “Agg”, “Att”
and “CM” are short for Aggregate, Attention and Crop Mask re-
spectively. “Cat” and “Avg” are short for concatenation and aver-
age respectively, which are two ways to aggregate multiple layers
of feature maps. “Attention” means whether using channel atten-
tion. “Crop mask” means whether appending the crop mask.

of each component in our model. We set our basic network
using only region features Fr to predict aesthetic scores that
is similar to GAIC [56, 57]. Then, we add the spatial-aware
feature and rank consistency components respectively, and
finally use both of them. The results are shown in Table 4.
The difference between row 1 in Table 4 and the GAIC re-
sult in Table 1 is caused by the implementation details. We
can draw the following conclusions: a) when only using the
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spatial-aware feature or rank consistency component, cor-
relation coefficient metrics and return K of top-N accuracy
are improved, which proves that both the spatial-aware fea-
ture or rank consistency are effective; b) When we train our
model jointly using the spatial-aware feature and rank con-
sistency, the performance is further improved, which im-
plies that these two components are complementary.

In order to gain an intuition on how each component
improves cropping results, we show some examples of
GAICD [57] test set using the basic network and our pro-
posed method with only spatial-aware feature component
and rank consistency component respectively in Supple-
mentary.

Channel attention. To figure out how the channel atten-
tion block behaves in the spatial-aware feature, we conduct
this group of ablation studies. We investigate how to aggre-
gate multiple layers of feature maps, whether to use channel
attention, and whether to append the crop mask. Note that
we do not use rank consistency in this subsection. The re-
sults are shown in Table 5. The comparison between row
1 and row 2 shows that concatenation works slightly better
than average. The comparison between row 3 and row 1 ver-
ifies the effectiveness of channel attention. The comparison
between row 4 and row 3 verifies the necessity of appending
crop masks to the aggregated feature map, which allows the
model to capture the spatial relationship between each crop
and aesthetic elements.

To better understand the working mechanism of chan-
nel attention, we visualize each channel (layer of feature
map) with their attention value in Figure 4. We observe
that the channel attention distribution becomes stable when
the training process converges. The attention values of
some channels are higher than others, which implies that
the model learns to emphasize or suppress certain channels
automatically. As shown in Figure 4, layers of 4,7,9 are
suppressed, while layers of 2,5,11,14 are emphasized. In-
tuitively, we can see that the feature maps with high atten-
tion values exhibit clearer edges and more notable salient
objects, which are helpful to model the spatial relationship
between candidate crops and aesthetic elements.

The above two groups of ablation studies prove that our
proposed spatial-aware feature can capture the spatial re-
lationship between candidate crops and aesthetic elements
indeed when using different layers of feature maps and crop
masks properly. Furthermore, the model can learn how to
select and aggregate information from different layers auto-
matically. Therefore, our model can be aware of which aes-
thetic elements should be included and where they should
be placed, leading to visually appealing crops.

Ranking knowledge transfer. We further conduct ab-
lation studies on rank consistency which prove that rank-
ing knowledge is transferrable from labeled images to un-
labeled images. We also compare our ranking consistency

Figure 4. Channel attention visualization. We select 3 channels
(in red boxes) with the lowest attention values and 4 channels (in
green boxes) with the highest attention values and show their cor-
responding layer of feature map and attention values.

method with other alternative approaches same as [5, 52]
for transductive learning. The results show that two alter-
native ways to use unlabeled test images cannot exceed our
proposed rank consistency. The details about the perfor-
mance of the pair-wise ranking classifier and the compari-
son between our ranking consistency method and other al-
ternative approaches to use unlabeled data are in Supple-
mentary.

5. Limitations

Although our method can generally achieve satisfactory
results, there still exist some failure cases. When cropping
landscape photos, our model usually performs better than
other approaches, because it tends to crop a broad view that
contains salient objects as many as possible and place them
with good composition quality. However, when some over-
length edges cross half of the image, the crops may preserve
those edges and the holistic composition quality is compro-
mised. The visualization results could be found in Supple-
mentary.

6. Conclusion

In this work, we have proposed a novel spatial-aware
feature to capture the spatial relationship between candi-
date crops and aesthetic elements. We have also proposed
to transfer ranking knowledge from labeled images to un-
labeled images and enforce ranking consistency on unla-
beled images. Quantitative and qualitative comparisons
have shown that our method obtains the state-of-the-art per-
formance on benchmark datasets.
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