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Abstract

A big convergence of language, vision, and multimodal
pretraining is emerging. In this work, we introduce a
general-purpose multimodal foundation model BEIT-3,
which achieves excellent transfer performance on both vi-
sion and vision-language tasks. Specifically, we advance
the big convergence from three aspects: backbone architec-
ture, pretraining task, and model scaling up. We use Mul-
tiway Transformers for general-purpose modeling, where
the modular architecture enables both deep fusion and
modality-specific encoding. Based on the shared back-
bone, we perform masked “language” modeling on images
(Imglish), texts (English), and image-text pairs (“parallel
sentences”) in a unified manner. Experimental results show
that BEIT-3 obtains remarkable performance on object de-
tection (COCO), semantic segmentation (ADE20K), image
classification (ImageNet), visual reasoning (NLVR2), visual
question answering (VQAv2), image captioning (COCO),
and cross-modal retrieval (Flickr30K, COCO).

1. Introduction: The Big Convergence
Recent years have featured a trend toward the big con-

vergence of language [14, 15, 46], vision [3, 43], and mul-
timodal [45, 62, 69] pretraining. By performing large-scale
pretraining on massive data, we can easily transfer the mod-
els to various downstream tasks. It is appealing that we can
pretrain a general-purpose foundation model that handles
multiple modalities. In this work, we advance the conver-
gence trend for vision-language pretraining from the fol-
lowing three aspects.

First, the success of Transformers [59] is translated from
language to vision [16] and multimodal [26, 62] problems.
The unification of network architectures enables us to seam-
lessly handle multiple modalities. For vision-language
modeling, there are various ways to apply Transformers
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Figure 1. Overview of BEIT-3 pretraining. We perform masked
data modeling on monomodal (i.e., images, and texts) and multi-
modal (i.e., image-text pairs) data with a shared Multiway Trans-
former as the backbone network.

due to the different natures of downstream tasks. For ex-
ample, the dual-encoder architecture is used for efficient
retrieval [45], encoder-decoder networks for generation
tasks [63], and the fusion-encoder architecture for image-
text encoding [26]. However, most foundation models have
to manually convert the end-task formats according to the
specific architectures. Moreover, the parameters are usu-
ally not effectively shared across modalities. In this work,
we adopt Multiway Transformers [62] for general-purpose
modeling, i.e., one unified architecture shared for various
downstream tasks. The modular network also compre-
hensively considers modality-specific encoding and cross-
modality fusion.

Second, the pretraining task based on masked data mod-
eling has been successfully applied to various modalities,
such as texts [14] and images [3, 43]. Current vision-
language foundation models usually multitask other pre-
training objectives (such as image-text matching), render-
ing scaling-up unfriendly and inefficient. In contrast, we
only use one pretraining task, i.e., mask-then-predict, to
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train a general-purpose multimodal foundation model. By
regarding the image as a foreign language (i.e., Imglish), we
handle texts and images in the same manner without funda-
mental modeling differences. Consequentially, image-text
pairs are utilized as “parallel sentences” in order to learn the
alignments between modalities. We also show that the sim-
ple yet effective method learns strong transferable represen-
tations, achieving remarkable performance on both vision
and vision-language tasks. The prominent success demon-
strates the superiority of generative pretraining [3, 14].

Third, scaling up the model size and data size universally
improves the generalization quality of foundation models,
so that we can transfer them to various downstream tasks.
We follow the philosophy and scale up the model size to
billions of parameters. Moreover, we scale up the pretrain-
ing data size while only using publicly accessible resources
for academic reproducibility. Although without using any
private data, our method outperforms state-of-the-art foun-
dation models that rely on in-house data by a decent margin.
In addition, the scaling up benefits from treating images as
a foreign language, as we can directly reuse the pipeline
developed for large-scale language model pretraining.

In this work, we take advantage of the above ideas to
pretrain a general-purpose multimodal foundation model
BEIT-3. We pretrain a Multiway Transformer by perform-
ing masked data modeling on images, texts, and image-text
pairs. During the pretraining procedure, we randomly mask
some proportion of text tokens or image patches. The self-
supervised learning objective is to recover the original to-
kens (i.e., text tokens, or visual tokens) given corrupted in-
puts. The model is general-purpose in the sense that it can
be repurposed for various tasks regardless of input modali-
ties or output formats.

As shown in Table 1, BEIT-3 achieves remarkable trans-
fer performance across a broad range of vision and vision-
language tasks. We evaluate BEIT-3 on extensive down-
stream tasks and datasets, i.e., object detection (COCO),
instance segmentation (COCO), semantic segmentation
(ADE20K), image classification (ImageNet), visual reason-
ing (NLVR2), visual question answering (VQAv2), image
captioning (COCO), and cross-modal retrieval (Flickr30K,
COCO). Specifically, our model outperforms previous
strong foundation models [1,69,70] despite that we only use
public resources for pretraining and finetuning. The model
also obtains better results than specialized models. More-
over, BEIT-3 not only performs well on vision-language
tasks but also on vision tasks (such as object detection).

2. BEIT-3: A General-Purpose Multimodal
Foundation Model

BEIT-3 is pretrained by masked data modeling on
monomodal and multimodal data, using a shared Multiway
Transformer network. The model can be transferred to var-

ious vision and vision-language downstream tasks.

2.1. Backbone Network: Multiway Transformers

We use Multiway Transformers [62] as the backbone
model to encode different modalities. As shown in Figure 1,
each Multiway Transformer block consists of a shared self-
attention module, and a pool of feed-forward networks (i.e.,
modality experts) used for different modalities. We route
each input token to the experts depending on its modality.
Each layer contains a vision expert and a language expert.
Moreover, the top three layers have vision-language experts
designed for fusion encoders. Refer to Figure 2 (a)(b)(c) for
detailed modeling layouts. Using a pool of modality experts
encourages the model to capture more modality-specific
information. The shared self-attention module learns the
alignment between different modalities and enables deep
fusion for multimodal (such as vision-language) tasks.

As shown in Figure 2, the unified architecture enables
BEIT-3 to support a wide range of downstream tasks. For
example, BEIT-3 can be used as an image backbone for
various vision tasks, including image classification, object
detection, instance segmentation, and semantic segmenta-
tion. It can also be finetuned as a dual encoder for efficient
image-text retrieval, and a fusion model for multimodal un-
derstanding and generation tasks.

2.2. Pretraining Task: Masked Data Modeling

We pretrain BEIT-3 via a unified masked data modeling
objective on monomodal (i.e., images, and texts) and multi-
modal data (i.e., image-text pairs).

Masked Language Modeling BEIT-3 uses masked lan-
guage modeling (MLM) to learn language representations
from large-scale text-only data. Following BERT [14], we
randomly mask 15% tokens of monomodal text data. Each
masked token is replaced by a [MASK] token 80% of the
time, a random token 10% of the time, and kept the origi-
nal tokens 10% of the time. The pretraining objective is to
recover the masked tokens from the corrupted input text.

Masked Image Modeling In addition to masked lan-
guage modeling, we employ masked image modeling
(MIM) to learn vision representations from large-scale im-
age data. Following BEIT [3], given an input image, we
apply a block-wise masking strategy to mask 40% of image
patches. The pretraining objective of MIM is to reconstruct
the discrete visual tokens of masked patches. We use the im-
age tokenizer VQ-KDCLIP proposed in BEIT v2 [43], which
is trained under the supervision of CLIP [45], to obtain the
discrete tokens as the reconstruction targets.

Masked Vision-Language Modeling We introduce
masked vision-language modeling (MVLM), which ex-
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Figure 2. BEIT-3 can be transferred to various vision and vision-language downstream tasks. With a shared Multiway Transformer, we
can reuse the model as (a)(b) vision or language encoders; (c) fusion encoders that jointly encode image-text pairs for deep interaction; (d)
dual encoders that separately encode modalities for efficient retrieval; (e) sequence-to-sequence learning for image-to-text generation.

tends masked language modeling and masked image
modeling to multimodal data. The task aims at recovering
masked image patches and text tokens based on visual and
linguistic clues. Specifically, we randomly mask text tokens
(with 50% mask ratio) as in masked language modeling,
and recover the masked text tokens based on the joint
image-text representations. In addition, we mask image
patches as in MIM and predict their corresponding visual
tokens based on the image-text pair. The masking strategy
is the same as in masked image modeling. The MVLM
task encourages the model to learn alignments between the
pairs of image and text.

We only use one pretraining task, which makes the train-
ing process scaling-up friendly. In contrast, previous vision-
language models [26, 30, 31, 34, 62, 69, 74] usually em-
ploy multiple pretraining tasks, such as image-text contrast,
image-text matching, and word-patch/region alignment. We
show that a much smaller batch size can be used with the
mask-then-predict task. In comparison, contrastive-based
models [24, 45, 69, 70] usually need a very large batch size
for pretraining, which brings more engineering challenges,
such as GPU memory cost. For example, CoCa [69] uses
65k batch size, CLIP [45] uses 32k batch size, and Flo-
rence [70] uses 24k batch size. In contrast, BEIT-3 enables
a much smaller 6k batch size for pretraining. Moreover,
unlike the global dependency between examples as in con-
trastive learning, it is straightforward to implement gradient
accumulation for masked data modeling.

2.3. Scaling Up: BEIT-3 Pretraining

Backbone Network We scale up the model capacity of
BEIT-3 to a giant-size Transformer model following the
setup of ViT-giant [71]. The giant-size model consists of
a 40-layer Multiway Transformer with 1408 hidden size,
6144 intermediate size, and 16 attention heads. All layers
contain both vision experts and language experts. Vision-
language experts are also employed in the top three Mul-
tiway Transformer layers. The self-attention module is
shared across different modalities. BEIT-3 giant model
consists of 1.9B parameters in total, including 692M param-
eters for vision experts, 692M for language experts, 52M
for vision-language experts, 90M for word embeddings, and
317M for the shared self-attention module. Notice that
only vision-related parameters (i.e., comparable size as ViT-
giant; about 1B) are activated when the model is used as a
vision encoder. Similarly, only text-related weights are used
for language tasks.

Pretraining Data BEIT-3 is pretrained on both
monomodal and multimodal data. For multimodal
data, there are about 15M images and 21M image-text
pairs collected from five public datasets: Conceptual
12M (CC12M) [8], Conceptual Captions (CC3M) [52],
SBU Captions (SBU) [42], COCO [37] and Visual Genome
(VG) [27]. Notice that the image tokenizer VQ-KDCLIP [43]
is learned with the guidance from CLIP [45]. Given CLIP
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Task Dataset Metric Previous
Systems BEIT-3

Semantic Segmentation ADE20K mIoU 61.4 [64] 62.8 (+1.4)
Object Detection COCO AP 63.3 [72] 63.7 (+0.4)
Instance Segmentation COCO AP 54.7 [29] 54.8 (+0.1)
Image Classification ImageNet† Top-1 acc. 89.0 [64] 89.6 (+0.6)

Visual Reasoning NLVR2 Acc. 87.0 [69] 92.6 (+5.6)
Visual QA VQAv2 VQA acc. 82.3 [69] 84.0 (+1.7)
Image Captioning COCO‡ CIDEr 145.3 [61] 147.6 (+2.3)
Finetuned Retrieval COCO R@1 72.5 [70] 76.0 (+3.5)
Finetuned Retrieval Flickr30K R@1 92.6 [70] 94.2 (+1.6)
Zero-shot Retrieval Flickr30K R@1 86.5 [69] 88.2 (+1.7)

Table 1. Overview of BEIT-3 results on various vision and vision-
language benchmarks. We compare with previous strong models,
including FD-SwinV2 [64], DINO [72], Mask DINO [29], FD-
CLIP [64], CoCa [69], OFA [61], Florence [70]. The comparison
models are state-of-the-art when we collect the results (timestamp:
08/22/2022). We report the average of top-1 image-to-text and
text-to-image results for retrieval tasks. “†” indicates ImageNet
results only using publicly accessible resources. “‡” indicates im-
age captioning results without CIDEr optimization.

is trained with 400M image-text pairs, we note that our
model also indirectly touches these data. For monomodal
data, we use 14M images from ImageNet-21K and 160GB
text corpora [5] from English Wikipedia, BookCorpus [76],
OpenWebText1, CC-News [38], and Stories [57].

Pretraining Settings We pretrain the model for 1M steps.
Each batch contains 6144 samples in total, including 2048
images, 2048 texts, and 2048 image-text pairs. The batch
size is much smaller than contrastive models [24, 45, 69].
BEIT-3 giant model uses 14 × 14 patch size and is pre-
trained at resolution 224×224. We use the same image aug-
mentation as in BEIT [3], including random resized crop-
ping, horizontal flipping, and color jittering [66]. A Senten-
cePiece tokenizer [28] with 64k vocab size is employed to
tokenize the text data. We use the AdamW [40] optimizer
with β1 = 0.9, β2 = 0.98 and ϵ =1e-6 for optimization.
We use a cosine learning rate decay scheduler with a peak
learning rate of 1e-3 and a linear warmup of 10k steps. The
weight decay is 0.05. Stochastic depth [20] with a rate of
0.1 is used. The pretraining process takes about two weeks
using 256 A100 40GB GPUs.

3. Experiments
We extensively evaluate BEIT-3 on major public bench-

marks for both vision-language and vision tasks. Table 1
presents the overview of the results. BEIT-3 obtains re-
markable performance on a wide range of vision and vision-
language tasks.

1http://skylion007.github.io/OpenWebTextCorpus

Model VQAv2 NLVR2

test-dev test-std dev test-P

Oscar [34] 73.61 73.82 79.12 80.37
VinVL [74] 76.52 76.60 82.67 83.98
ALBEF [31] 75.84 76.04 82.55 83.14
BLIP [30] 78.25 78.32 82.15 82.24
SimVLM [63] 80.03 80.34 84.53 85.15
Florence [70] 80.16 80.36 - -
OFA [61] 82.00 82.00 - -
Flamingo [1] 82.00 82.10 - -
CoCa [69] 82.30 82.30 86.10 87.00

BEIT-3 84.19 84.03 91.51 92.58

Table 2. Results of visual question answering and visual reasoning
tasks. We report vqa-score on VQAv2 test-dev and test-standard
(test-std) splits, accuracy for NLVR2 development set (dev) and
public test set (test-P).

3.1. Vision-Language Downstream Tasks

We evaluate the capabilities of BEIT-3 on the widely
used vision-language understanding and generation bench-
marks, including visual question answering [18], visual rea-
soning [55], image-text retrieval [37, 44], and image cap-
tioning [37].

Visual Question Answering (VQA) The task requires
the model to answer natural language questions about input
images. Following previous work [2, 26, 74], we conduct
finetuning experiments on the VQA v2.0 dataset [18] and
formulate the task as a classification problem. The model is
trained to predict answers from the 3129 most frequent an-
swer candidates in the training set. BEIT-3 is finetuned as
a fusion encoder to model deep interactions of images and
questions for the VQA task. We concatenate the embed-
dings of a given question and an image, and then feed the
input embeddings into Multiway Transformers to jointly en-
code the image-question pair. The final pooled output is fed
into a classifier layer to predict the answer. The results are
reported in Table 2, BEIT-3 outperforms previous models
by a large margin (more than 1.7 points), achieving 84.03
with a single model.

Visual Reasoning The task needs models to perform joint
reasoning about images and natural language descriptions.
We evaluate the model on the popular NLVR2 [55] bench-
mark, which is to determine whether a textual descrip-
tion is true about a pair of images. Following previous
work [26, 74], we construct two image-text pairs based on
the triplet input. We finetune BEIT-3 as a fusion encoder
to jointly encode the image-text pairs. The final pooled out-
puts of the two pairs are concatenated and then fed into a
classifier layer to predict the label. As shown in Table 2,
BEIT-3 achieves prominent results for visual reasoning,
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Model
MSCOCO (5K test set) Flickr30K (1K test set)

Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98.0 99.2 75.6 94.1 96.8
VinVL 75.4 92.9 96.2 58.8 83.5 90.3 - - - - - -
ALBEF 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100.0 85.6 97.5 98.9
BLIP 82.4 95.4 97.9 65.1 86.3 91.8 97.4 99.8 99.9 87.6 97.7 99.0
ALIGN 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100.0 84.9 97.4 98.6
FILIP 78.9 94.4 97.4 61.2 84.3 90.6 96.6 100.0 100.0 87.1 97.7 99.1
Florence 81.8 95.2 - 63.2 85.7 - 97.2 99.9 - 87.9 98.1 -

BEIT-3 84.8 96.5 98.3 67.2 87.7 92.8 98.0 100.0 100.0 90.3 98.7 99.5

(a) Finetuned results on COCO and Flickr30K.

Model
Flickr30K (1K test set)

Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10

FLAVA 67.7 94.0 - 65.2 89.4 -
CLIP 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN 88.6 98.7 99.7 75.7 93.8 96.8
FILIP 89.8 99.2 99.8 75.0 93.4 96.3
Florence 90.9 99.1 - 76.7 93.6 -
Flamingo 89.3 98.8 99.7 79.5 95.3 97.9
CoCa 92.5 99.5 99.9 80.4 95.7 97.7

BEIT-3 94.9 99.9 100.0 81.5 95.6 97.8

(b) Zero-shot results on Flickr30K.

Table 3. Finetuning and zero-shot results of image-to-text and text-to-image retrieval. UNITER [9] and VinVL [74] are fusion-encoder
models. ALBEF [31] and BLIP [30] first obtain top-k candidates using their dual encoders and then use fusion encoders to rerank the
candidates. BEIT-3 and the other models [1, 24, 45, 53, 68–70] are dual-encoder models. Notice that dual-encoder models are more
efficient than fusion-encoder-based models for retrieval tasks because of representation caching.

outperforming CoCa by about 5.6 points. The performance
on NLVR2 reaches above 90% for the first time.

Image-Text Retrieval The task is to measure the sim-
ilarity between images and texts. There are two di-
rections depending on the modality of the retrieved tar-
get: image-to-text retrieval, and text-to-image retrieval.
Two popular retrieval benchmarks, i.e., COCO [37], and
Flickr30K [44], are used to evaluate the model. Following
previous work [26, 74], we use the Karpathy split [25] for
the two benchmarks. BEIT-3 is finetuned as a dual encoder
for efficient image-text retrieval. Dual-encoder models sep-
arately encode images and texts to obtain their represen-
tations. Then we calculate the cosine similarity scores of
these representations. Dual-encoder models are more effi-
cient than fusion-encoder models. Because they do not have
to jointly encode all possible image-text pairs.

We directly finetune BEIT-3 on COCO and Flickr30K,
although the model is not pretrained with image-text con-
trastive loss. Surprisingly, BEIT-3 outperforms previous
strong models only using a small amount of contrastive
training. The results demonstrate that BEIT-3 effectively
learns alignments between images and texts via masked data
modeling. In order to improve the performance, we per-
form intermediate finetuning with an image-text contrastive
objective on the pretraining image-text pairs. We finetune
the model with much fewer steps than pretraining. Then we
use the model to evaluate zero-shot and finetuned image-
text retrieval. The finetuned results are reported in Table 3a,
dual-encoder BEIT-3 outperforms prior models by a large
margin, achieving 3.0/4.0 absolute improvement on COCO
top-1 image-to-text/text-to-image retrieval, and 0.8/2.4 ab-
solute improvement on Flickr30K top-1 image-to-text/text-
to-image retrieval. BEIT-3 also significantly outperforms
fusion-encoder-based models, which require more compu-
tation cost than dual-encoder models for inference. As

Model COCO Captioning

BLEU@4 METEOR CIDEr SPICE

Oscar [34] 37.4 30.7 127.8 23.5
VinVL [74] 38.5 30.4 130.8 23.4
BLIP [30] 40.4 - 136.7 -
SimVLM [63] 40.6 33.7 143.3 25.4
OFA [61] 43.9 31.8 145.3 24.8
Flamingo [1] - - 138.1 -
CoCa [69] 40.9 33.9 143.6 24.7

BEIT-3 44.1 32.4 147.6 25.4

Table 4. Results of COCO image captioning. We report BLEU@4,
METEOR, CIDEr, and SPICE on the Karpathy test split. For sim-
plicity, we report results without using CIDEr optimization.

shown in Table 3b, BEIT-3 also achieves better perfor-
mance on Flickr30K zero-shot retrieval.

Image Captioning The task aims to generate a natu-
ral language caption for the given image. We use the
COCO [37] benchmark, finetune and evaluate the model
on Karpathy split [25]. Following UNILM [15] and s2s-
ft [4], BEIT-3 is used as a conditional generation model
via masked finetuning. To be more specific, a special self-
attention mask is employed for the image captioning task.
Image tokens (i.e., image patches) can only attend to each
other bidirectionally within the image sequence. Tokens
of the caption can attention to image tokens, their leftward
caption tokens, and themselves. During finetuning, we ran-
domly mask some percentage of caption tokens. The model
is trained to recover these tokens based on the clues of the
image and its leftward caption context. We also mask the
special boundary token [SEP] to help the model learn to
terminate the generation. For simplicity, BEIT-3 is trained
with simple cross-entropy loss, without using CIDEr opti-
mization. During inference, we generate the caption tokens

19179



Model Maximum
Image Size

COCO test-dev
APbox APmask

DyHead [12] 2000 60.6 -
Soft Teacher [67] - 61.3 53.0
GLIP [33] - 61.5 -
GLIPv2 [73] - 62.4 -
Florence [70] 2500 62.4 -
SwinV2-G [39] 1536 63.1 54.4
Mask DINO [29] 1280 - 54.7
DINO [72] 2000 63.3 -

BEIT-3 1280 63.7 54.8

Table 5. Results of object detection and instance segmentation on
COCO benchmark. BEIT-3 uses Cascade Mask R-CNN [7] as the
detection head. Our results are reported with multi-scale evalua-
tion. We report the maximum image size used for training. Dy-
Head [12] generates pseudo labels on ImageNet and use the data
as extra OD data. Florence [70] uses FLOD-9M and GLIP [33,73]
is trained with FourODs. The other models use Object365 as the
extra OD data. FLOD-9M and FourODs also contain Object365.
The results of the comparison systems are from the paperswith-
code.com leaderboard (timestamp: 08/22/2022).

one by one in an autoregressive manner. Table 4 presents
the results on COCO captioning. BEIT-3 achieves bet-
ter results compared with previous image captioning mod-
els. The results demonstrate the superiority of BEIT-3 for
vision-language generation.

3.2. Vision Downstream Tasks

In addition to vision-language downstream tasks,
BEIT-3 can be transferred to a wide range of vision down-
stream tasks, including object detection, instance segmenta-
tion, semantic segmentation, and image classification. No-
tice that only vision-related parameters are activated when
BEIT-3 is used as a vision encoder. So the number of ef-
fective parameters is comparable to ViT-giant [71], i.e., the
effective model size is about 1B.

Object Detection and Instance Segmentation We con-
duct finetuning experiments on the COCO 2017 bench-
mark [37], which consists of 118k training, 5k validation,
and 20k test-dev images. We use BEIT-3 as the back-
bone and follow ViTDet [35], including a simple feature
pyramid and window attention, for the object detection
and instance segmentation tasks. Following common prac-
tices [39, 72], we first conduct intermediate finetuning on
the Objects365 [51] dataset. Then we finetune the model on
the COCO dataset. Soft-NMS [6] is used during inference.
Table 5 compares BEIT-3 with previous strong models on
COCO object detection and instance segmentation. BEIT-3
achieves the best results on the COCO test-dev set with a
smaller image size used for finetuning, reaching up to 63.7
box AP and 54.8 mask AP.

Model Crop Size ADE20K
mIoU +MS

HorNet [48] 6402 57.5 57.9
SeMask [23] 6402 57.0 58.3
SwinV2-G [39] 8962 59.3 59.9
ViT-Adapter [10] 8962 59.4 60.5
Mask DINO [29] - 59.5 60.8
FD-SwinV2-G [64] 8962 - 61.4

BEIT-3 8962 62.0 62.8

Table 6. Results of semantic segmentation on ADE20K. “MS”
is short for multi-scale. The results of the comparison sys-
tems are from the paperswithcode.com leaderboard (timestamp:
08/22/2022).

Model Extra Data Image Size ImageNet

With extra private image-tag data
SwinV2-G [39] IN-22K-ext-70M 6402 90.2
ViT-G [71] JFT-3B 5182 90.5
CoAtNet-7 [13] JFT-3B 5122 90.9
Model Soups [65] JFT-3B 5002 91.0
CoCa [69] JFT-3B 5762 91.0

With only public image-tag data
BEIT [3] IN-21K 5122 88.6
CoAtNet-4 [13] IN-21K 5122 88.6
MaxViT [58] IN-21K 5122 88.7
MViTv2 [36] IN-21K 5122 88.8
FD-CLIP [64] IN-21K 3362 89.0
BEIT-3 IN-21K 3362 89.6

Table 7. Top-1 accuracy on ImageNet-1K.

Semantic Segmentation Semantic segmentation aims to
predict the label for each pixel of the given image. We
evaluate BEIT-3 on the challenging ADE20K dataset [75],
which includes 150 semantic categories. ADE20K con-
tains 20k images for training and 2k images for valida-
tion. We directly follow the task transfer settings of ViT-
Adapter [10]. We use a dense prediction task adapter and
employ Mask2Former [11] as the segmentation framework.
As shown in Table 6, BEIT-3 achieves 62.8 mIoU, outper-
forming FD-SwinV2 [64] giant model with 3B parameters
by 1.4 points. It shows that BEIT-3 achieves superior per-
formance on the dense prediction task.

Image Classification We evaluate the model on
ImageNet-1K [50], which contains 1.28M training
images and 50k validation images in 1k classes. Rather
than appending a task layer to the vision encoder [3, 16],
we formulate the task as an image-to-text retrieval task.
We use the category names as texts to construct image-text
pairs. BEIT-3 is trained as a dual encoder to find the
most relevant label for an image. During inference, we
first compute the feature embeddings of possible class
names and the feature embedding of the image. Their
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cosine similarity scores are then calculated to predict the
most probable label for each image. Table 7 reports the
results on ImageNet-1K. We first perform intermediate
finetuning on ImageNet-21K, then we train the model on
ImageNet-1K. For a fair comparison, we compare with
the previous models only using public image-tag data.
BEIT-3 outperforms prior models when only using public
image-tag data.

3.3. Ablation Studies

We conduct ablation studies on base-size models, hav-
ing 12-layer Multiway Transformer blocks with 768 hid-
den size and 3072 intermediate size. The base-size mod-
els use 16 × 16 patch size and are trained at resolution
224× 224. Most settings and hyperparameters are kept the
same as in Section 2.3. We use multimodal data including
CC3M, SBU, COCO, and VG to pretrain the model. The
monomodal data include ImageNet-21K and 16GB text cor-
pora from English Wikipedia and BookCorpus. Notice that
we use the same text corpora as BERT [14] so that we can
directly compare the language-only performance in Table 9.
The models are pretrained for 200K steps with 2e-3 peak
learning rate and 6144 batch size.

Backbone Architecture We study the effects of differ-
ent model architectures. Table 8a shows that Multiway
Transformers perform better than standard Transformers on
three benchmarks. Modality experts introduced in Multi-
way Transformers effectively capture modality-specific in-
formation and improve performance.

Masking Strategy in MVLM We compare two mask-
ing strategies for MVLM, i.e., joint masking, and separate
masking. Specifically, for joint masking, we simultane-
ously mask image patches and text tokens for the same in-
put image-text pair. In contrast, for separate masking, given
an input pair, we randomly mask tokens of one modality
(image or text) while keeping tokens of another modality
unmasked. As shown in Table 8b, separate masking outper-
forms joint masking and learns the alignment of images and
texts more effectively.

Monomodal and Multimodal Data We analyze the ef-
fects of monomodal and multimodal data in Table 8c. Ex-
perimental results indicate that monomodal and multimodal
data positively contribute to performance. Using both types
of pretraining data achieves the best results.

Image Reconstruction Target We compare different tar-
gets used for image reconstruction. As shown in Table 8d,
VQ-KDCLIP [43] performs better than the DALL-E [47] to-
kenizer used in BEIT [3] and per-patch-normalized pixels
proposed by MAE [19].

Text Reconstruction We study the effects of text recon-
struction on monomodal and multimodal data. As shown
in Table 8e, the text reconstruction tasks on monomodal
and multimodal data bring improvements. Text reconstruc-
tion on text corpora learns language representations. More-
over, text reconstruction on multimodal data encourages the
model to learn cross-modal alignments. In addition, we find
that masked language modeling on multimodal data plays a
more important role than on text-only data.

Image Reconstruction Table 8f presents the ablation
study of masked image modeling on monomodal and mul-
timodal data. The results indicate that the image recon-
struction tasks on both types of pretraining data improve
the results. In contrast to text reconstruction, we find that
monomodal data and multimodal data contribute similarly
to image reconstruction.

Language Downstream Tasks Table 9 shows that
our method also achieves competitive performance on
language-only tasks. Following previous work [53, 63],
we conduct experiments on the widely used GLUE [60]
benchmark with a base-size model. Compared with pre-
vious vision-language pretrained models [9, 32, 41, 45, 53,
54, 56, 63], BEIT-3 achieves better performance. BEIT-3
even outperforms SimVLM [63] trained on a much larger
text corpora.

4. Related Work
Vision-language pretraining aims to learn multimodal

representations from large-scale image-text pairs. Model
architecture and pretraining objectives are critical to the ef-
fectiveness of vision-language models.

Vision-Language Architectures There are two main-
stream architectures widely used in previous vision-
language pretrained models: dual-encoder and fusion-
encoder models. Dual-encoder model [24, 45] consists of
an image encoder and a text encoder. It encodes images
and text separately, and then employs cosine similarity to
model the interaction of image and text vectors. Dual-
encoder models achieve promising results for image-text
retrieval tasks with linear time complexity. However, the
simple fusion module is not enough to handle complex
vision-language understanding tasks such as visual reason-
ing. Fusion-encoder models employ a complex fusion mod-
ule with cross-modal attention, to jointly encode images
and text. Previous models [34, 41, 54, 74] use an off-the-
shelf object detector like Faster R-CNN [49] to obtain im-
age region features. Text features are usually word em-
beddings or contextual vectors encoded by a text encoder.
These image and text features are then jointly encoded
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Transformer VQA NLVR2 F30K
Standard 76.1 80.8 82.8
Multiway 76.8 81.4 84.4

(a) Multiway Transformer improves the perfor-
mance over the conventional one.

Strategy VQA NLVR2 F30K
Joint 75.7 79.0 83.1
Separate 76.8 81.4 84.4

(b) Separate masking in MVLM is helpful.

Mono Multi VQA NLVR2 F30K
✓ ✗ 71.3 64.6 79.3
✗ ✓ 75.8 79.3 81.1
✓ ✓ 76.8 81.4 84.4

(c) Whether we conduct masked prediction for
monomodal (mono) and multimodal (multi)
data.

Target VQA NLVR2 F30K
DALL-E [47] 73.2 77.7 76.6
Pixel (w/ norm) [19] 73.3 77.1 75.9
VQ-KDCLIP [43] 76.8 81.4 84.4

(d) Targets used for image reconstruction. VQ-
KDCLIP [43] works the best.

Mono Multi VQA NLVR2 F30K
✗ ✗ 71.5 69.3 77.8
✓ ✗ 73.2 76.4 81.3
✗ ✓ 76.5 80.6 82.7
✓ ✓ 76.8 81.4 84.4

(e) Whether we enable text reconstruction for
monomodal (mono) and multimodal (multi)
data.

Mono Multi VQA NLVR2 F30K
✗ ✗ 71.6 74.3 71.7
✓ ✗ 75.8 79.8 82.0
✗ ✓ 75.6 79.5 81.9
✓ ✓ 76.8 81.4 84.4

(f) Whether we enable image reconstruc-
tion for monomodal (mono) and multimodal
(multi) data.

Table 8. Ablation studies of BEIT-3. We conduct experiments on a base-size model. We report vqa-score on VQA test-dev set, accuracy
on NLVR2 dev set, and average of top1 recall of image-to-text and text-to-image retrieval on Flickr30K dev set. The models are finetuned
as a dual encoder for Flickr30K. Gray indicates the default setting of BEIT-3.

Model SST-2 RTE QQP MNLI QNLI Avg

BERT [14] 92.5 62.5 90.6 84.4 91.0 84.2

VisualBERT [32] 89.4 56.6 89.4 81.6 87.0 80.8
UNITER [9] 89.7 55.6 89.2 80.9 86.0 80.3
VL-BERT [54] 89.8 55.7 89.0 81.2 86.3 80.4
ViLBERT [41] 90.4 53.7 88.6 79.9 83.8 79.3
LXMERT [56] 90.2 57.2 75.3 80.4 84.2 77.5
CLIP [45] 88.2 55.2 76.8 33.5 50.5 60.8
SimVLM [63] 90.9 63.9 90.4 83.4 88.6 83.4
FLAVA [53] 90.9 57.8 90.4 80.3 87.3 81.3
BEIT-3base 92.6 66.5 91.0 83.8 90.8 84.9

Table 9. Finetuning results of base-size models on the dev set of
the GLUE [60] benchmark. Comparison results are taken from
[22]. Our numbers are averaged over three runs with different
seeds. We also report the average results (Avg) across datasets.

by the fusion module, which usually adopts a multi-layer
Transformer network. Recently, Pixel-BERT [21] and AL-
BEF [31] use CNN/vision Transformer to encode images
and remove object detectors. ViLT [26] uses a shared Trans-
former network to jointly encode image patches and word
embeddings. Fusion-encoder models achieve superior per-
formance on vision-language understanding tasks such as
vision reasoning. But it requires quadratic time complex-
ity for retrieval tasks, which leads to a much slower in-
ference speed than the dual-encoder models. VLMO [62]
unifies dual-encoder and fusion-encoder models and intro-
duces Multiway Transformers to encode various modalities
within a shared Transformer block. In this work, we adopt
the Multiway Transformers as the backbone network given
its simplicity and flexibility. BEIT-3 can also be finetuned
as a dual-encoder model or fusion-encoder model.

Pretraining Tasks Many multimodal pretraining objec-
tives have been proposed, including image-text contrastive

learning [24, 45, 68], image-text matching [26, 31, 56, 62],
masked language modeling [17, 26, 34, 54, 56] or prefix
language modeling [63], masked region classification [56],
word-patch/region alignment [9, 26]. SimVLM [63] trains
the vision-language model using prefix language modeling
on image-text pairs and text-only data. FLAVA [53] com-
bines masked image modeling with masked language mod-
eling, image-text contrast and matching based on a fusion-
encoder model. Masked image modeling and masked lan-
guage modeling are applied to the monomodal encoders.
Masked multimodal modeling, image-text contrast and
matching losses are used for the multimodal encoder. Com-
pared with SimVLM, BEIT-3 introduces richer visual su-
pervision via masked image modeling and masked vision-
language modeling. Different from FLAVA, we use a shared
Multiway Transformer for different modalities and adopt
one-stage training from scratch.

5. Conclusion

In this paper, we present BEIT-3, a general-purpose
multimodal foundation model, which achieves remarkable
performance across a wide range of vision and vision-
language benchmarks. The key idea of BEIT-3 is that im-
age can be modeled as a foreign language, so that we can
conduct masked “language” modeling over images, texts,
and image-text pairs in a unified way. We also demonstrate
that Multiway Transformers can effectively model differ-
ent vision and vision-language tasks, making it an intrigu-
ing option for general-purpose modeling. BEIT-3 is sim-
ple and effective, and is a promising direction for scaling
up multimodal foundation models. For future work, we are
working on pretraining multilingual BEIT-3 and including
more modalities (e.g., audio) in BEIT-3 to facilitate the
cross-lingual and cross-modality transfer, and advance the
big convergence of large-scale pretraining across tasks, lan-
guages, and modalities.
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