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Abstract

Despite the broad interest in meta-learning, the gener-
alization problem remains one of the significant challenges
in this field. Existing works focus on meta-generalization
to unseen tasks at the meta-level by regularizing the meta-
loss, while ignoring that adapted models may not general-
ize to the task domains at the adaptation level. In this pa-
per, we propose a new regularization mechanism for meta-
learning – Minimax-Meta Regularization, which employs
inverted regularization at the inner loop and ordinary reg-
ularization at the outer loop during training. In particular,
the inner inverted regularization makes the adapted model
more difficult to generalize to task domains; thus, optimiz-
ing the outer-loop loss forces the meta-model to learn meta-
knowledge with better generalization. Theoretically, we
prove that inverted regularization improves the meta-testing
performance by reducing generalization errors. We conduct
extensive experiments on the representative scenarios, and
the results show that our method consistently improves the
performance of meta-learning algorithms.

1. Introduction
Meta-learning has been proven to be a powerful

paradigm for extracting well-generalized knowledge from
previous tasks and quickly learning new tasks [47]. It has
received increasing attention in many machine learning set-
tings such as few-shot learning [10, 45, 46, 50] and robust
learning [27,39,42], and can be deployed in many practical
applications [7,21,29,54]. The key idea of meta-learning is
to improve the learning ability of agents through a learning-
to-learn process. In recent years, optimization-based al-
gorithms have emerged as a popular approach for realiz-
ing the learning-to-learn process in meta-learning [10, 28].
These methods formulate the problem as a bi-level opti-
mization problem and have demonstrated impressive per-
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formance across various domains, leading to significant at-
tention from the research community. The primary focus of
our paper is to further advance this line of research.

The training process of meta-learning takes place at two
levels [10, 19]. At the inner-level, a base model, which
is initialized using the meta-model’s parameters, adapts to
each task by taking gradient descent steps over the support
set. At the outer-level, a meta-training objective is opti-
mized to evaluate the generalization capability of the initial-
ization on all meta-training tasks over the query set, help-
ing to ensure that the model is effectively optimized for the
desired goal. With this learning-to-learn process, the final
trained meta-model could be regarded as the model with
good initialization to adapt to new tasks.

Despite the success of meta-learning, the additional level
of learning also introduces a new source of potential over-
fitting [36], which poses a significant challenge to the gen-
eralization of the learned initialization. This generalization
challenge is twofold: first, the meta-model must general-
ize to unseen tasks (meta-generalization); and second, the
adapted model must generalize to the domain of a specific
task, which we refer to as adaptation-generalization. As
the primary objective of meta-learning is to achieve strong
performance when adapting to new tasks, the ability of the
meta-model to generalize well is critical. Recent works
aim to address the meta-generalization problem by meta-
regularizations, such as constraining the meta-initialization
space [52], enforcing the performance similarity of the
meta-model on different tasks [20], and augmenting meta-
training data [33, 36, 51]. These approaches are verified to
enhance generalization to unseen tasks. However, they do
not address the problem of adaptation-generalization to the
data distribution of meta-testing tasks.

To address this issue, we propose Minimax-Meta Regu-
larization, a novel regularization mechanism that improves
both adaptation-generalization and meta-generalization.
Specifically, our approach particularly employs inverted
regularization at the inner-level to hinder the adapted
model’s generalizability to the task domain. This forces the
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meta-model to learn hypotheses that better generalize to the
task domains, which improves adaptation-generalization.
Meanwhile, we use ordinary regularization at the outer-
level to optimize the meta-model’s generalization to new
tasks, which helps meta-generalization. By improving both
adaptation-generalization and meta-generalization simulta-
neously, our method results in a more robust and effective
meta-learning regularization mechanism.

Theoretically, we prove that under certain assumptions,
if we add L2-Norm as the regularization term to the inner-
level loss function, the inverted regularization will reduce
the generalization bound of MAML, while the ordinary reg-
ularization will increase the generalization bound. In terms
of total test error, which includes both generalization error
and training bias caused by regularization, the inverted L2-
Norm also reduces the total test error when the reg parame-
ter is selected within a negative interval. These results sug-
gest that the regularization at the inner-level should be in-
verted. As it has been verified that ordinary regularization at
the outer-level helps the meta-generalization, our theory im-
plies that the proposed Minimax-Meta Regularization helps
both meta-generalization and adaptation-generalization.

We conduct experiments on the few-shot classification
problem for MAML [10] with different regularization types
(ordinary/inverted) at the inner- and outer-level. The results
demonstrate the efficacy of Minimax-Meta Regularization,
and support the theoretical results that regularization at the
inner-level improves test performance only when it’s in-
verted. Additionally, we empirically verify that Minimax-
Meta regularization can be applied with different types of
regularization terms (norm/entropy), implying the flexibil-
ity for applying the proposed method in practice.

2. Related Work
Meta-learning. A line of meta-learning methods has
sought to train recurrent neural networks that ingest entire
datasets [8, 41]. However, they need to place constraints
on the model architecture. Another line aims to learn a
transferable metric space between samples from previous
tasks [31, 34, 44, 49]. However, it is mainly limited to clas-
sification problems. In this paper, we focus on optimization-
based meta-learning methods that learn a meta-initialization
[10–13,18,26,28,35], which are well-generalized for meta-
training tasks, being agnostic to both model architecture and
problems. However, these approaches are shown to be over-
fitting the meta-training tasks [6, 40, 51, 53].
Meta-Regularization. Standard regularizations such as
weight decay [22], dropout [15], and incorporating noise [1,
2, 48], which can significantly enhance the generality of
single-level machine learning. However, it limits the flex-
ibility of fast adaptation in the inner-level [51]. MR-
MAML [52] constrains the search space of the meta-model
and allows the adaptation to be sufficient at the inner-

level. Jamal et al. [20] proposed TAML to enforce the
meta-model to perform similarly across tasks. Rajenran
et al. [37] explored an information-theoretic framework
of meta-augmentation. Yao et al. [51] proposed two task
augmentation methods – MetaMix and Channel Shuffle,
which is theoretically proven to be generalized to unseen
tasks. Ni et al. [33] investigated the distinct ways where
data augmentation can be integrated at both the image
and class levels. Rothfuss et al. [40] addressed the meta-
generalization problem using the PAC-Bayesian frame-
work. However, these works focus on meta-generalization,
while adaptation-generalization is merely considered.

3. Preliminary

Model-Agnostic Meta-Learning (MAML) [10] with a
single inner-step is adopted as the representative algorithm
to derive the theoretical results in this paper. We follow the
framework proposed by Fallah et al. [9] to make problem
formulation for MAML with a single inner-step. We de-
note each data point by z = (x, y) ∈ Z and evaluate the
performance of a model parameterized by w ∈ W using
loss function ℓ(w, z). Tasks {Ti}mi=1 are drawn from dis-
tributions {Pi}mi=1, with corresponded population loss for
model w defined as Li(w) := Ez∼pi [ℓ(w, z)]. Through-
out the paper, we adopt the hat notation to denote empirical
losses, i.e., L̂(w;D) := 1

|D|
∑

z∈D ℓ(w, z) means the em-
pirical loss of model w with dataset D.

Fi(w) is defined to evaluate the performance of the
model updated by one single stochastic gradient descent
(SGD) from w, on task Ti. Di denotes a data batch con-
sisting of K samples drawn from Pi. The goal of MAML is
to find a good model parameter w that generally performs
well across different tasks after taking the SGD step:

min
w∈W

F (w) :=
1

m

m∑
i=1

Fi(w)

=
1

m

m∑
i=1

EDi
Ez∼pi

ℓ
w − α

K

∑
z′∈Di

∇ℓ (w, z′) , z


(1)

However, directly solving (1) is usually impractical since
the true task distributions {Pi}mi=1 are usually unknown.
Instead, the common practice is to approximate Fi by the
empirical loss. For simplicity, suppose we have access to
totally 2n training samples from each task Ti, and we fur-
ther group the samples into two distinct sets of size n: S in

i

for meta-training(support) at inner-level and Sout
i for meta-

validation(query) at outer-level. Then, for each task Ti, we
have one corresponding training set Si :=

{
S in
i ,Sout

i

}
.

During training, each distinct K-shot data batch Di is sam-
pled from each S in

i to serve as a meta-training(support) set.
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The approximation of (1) is given by

argmin
w∈W

F̂ (w,S) := 1

m

m∑
i=1

F̂i (w,Si) (2)

where S := {Si}mi=1. And F̂i stands for empirical loss that
estimates Fi by

F̂i (w,Si) :=

1(
n
k

) ∑
Din

i
⊂Sin

i

|Din
i |=K

1

n

∑
z∈Sout

i

ℓ

w − α

K

∑
z′∈Din

i

∇ℓ (w, z′) , z


MAML solves the minimization problem in (2) by us-

ing each per-task gradient ∇F̂i (w,Si) to take SGD step at
meta-level. Specifically, at each iteration t, for each sam-
pled task data {Dt, in

i ,Dt, out
i }, MAML calculates

wt+1
i := wt − βt∇wtL̂

(
wt − α∇L̂

(
wt,Dt, in

i

)
,Dt, out

i

)
(3)

and update the model at the end of each iteration by

wt+1 :=
1

r

∑
i∈Bt

wt+1
i

where Bt is the set of indices of r randomly chosen tasks
at iteration t. When referring to the per-task adapted
model in the paper, we denote it as w′t

i and its calcula-
tion is in fact embedded within (3), that is, w′t

i := wt −
α∇L̂

(
wt,Dt, in

i

)
.

In the context of evaluating the performance of meta-
learning algorithms, the test error is generally considered
the most critical metric. This error represents the popula-
tion loss of a meta-model, denoted as A(S), obtained by
algorithm A with a given dataset S. The test error can be
decomposed into three distinct terms:

EA,S

[
F (A(S))−min

W
F
]

(test error) =

EA,S

[
F̂ (A(S),S)−min

W
F̂ (·,S)

]
︸ ︷︷ ︸

training error

+ EA,S [F (A(S))− F̂ (A(S),S)]︸ ︷︷ ︸
generalization error

+ES

[
min
W

F̂ (·,S)
]
−min

W
F︸ ︷︷ ︸

≤0

(4)
Fallah et al. [9] have shown that the first training er-

ror term will converge to zero as the number of training
steps T increases, given that the loss function ℓ(w, z) sat-
isfies certain assumptions, and that the third term is non-
positive. Therefore, to improve the performance of the ob-
tained model on the test error, we aim to apply regulariza-
tion to reduce the generalization error term.

4. Method
In this section, we introduce the Minimax-Meta Regu-

larization method for bi-level meta-learning and its applica-
tion to the popular MAML algorithm. We also provide an
intuitive explanation of the effectiveness of the inner-level
inverted regularization.

4.1. Minimax-Meta Regularization

Our Minimax-Meta Regularization method is designed
to improve the generalization performance of bi-level meta-
learning by combining two types of regularizations: one at
the outer-level and the other at the inner-level. In partic-
ular, we propose to use an ordinary regularization at the
outer-level to encourage the meta-model to learn more gen-
eralized hypotheses, and an inverted regularization at the
inner-level to increase the adaptation difficulty and help the
meta-model improve generalization during training.

Specifically, when the regularizations involved can be
achieved in the loss function, the Minimax-Meta Regular-
ization shifts the learning objective of the inner level from
L̂
(
wt,Dt, in

i

)
to

L̂
(
wt,Dt, in

i

)
+ σinInverted Reg

(
wt,Dt, in

i

)
,

and the learning objective of the outer level from
L̂
(
w′t

i,D
t, out
i

)
to

L̂
(
w′t

i,D
t, out
i

)
+ σoutOrdinary Reg

(
w′t

i,D
t, out
i

)
,

where σin and σout are regularization coefficients.
The outer-level regularization term

Ordinary Reg (w,D) can be any classic ordinary
regularization term, such as L1/L2-Norm or information
entropy regularization, which encourages the meta-model
to learn more generalized hypotheses. In contrast, the
inner-level regularization term Inverted Reg (w,D)
should be an inverted regularization term, which could
typically be achieved by changing the sign of an ordi-
nary regularization term (e.g., negative L1/L2-Norm,
inverted entropy regularization), and this increases the
adaptation difficulty and forces the meta-model to learn
better-generalized hypotheses.

It is worth noting that the inner-level inverted regulariza-
tion is only added during the training phase, and we do not
use it for the meta-testing phase. Specifically, during the
meta-testing phase, which evaluates the performance of the
learned meta-model on new tasks, we only adapt the model
without any additional regularization to avoid influencing
its task-specific performance.
Intuition for Inverted Regularization at Inner-level. The
intuition behind using inverted regularization at the inner-
level is that it can help the meta-model learn better-
generalized hypotheses (meta-knowledge) by increasing the
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Algorithm 1 Minimax-MAML

Require: Datasets S =
{
S in
i ,Sout

i

}m

i=1
; total number of

iterations T ; regularization coefficients σin and σout.
1: Initialize the meta-model w0

2: for t = 0 to T − 1 do
3: Randomly sample r tasks with indices stored in Bt;
4: for each sampled task Ti do
5: Sample a support data batch Dt, in

i from S in
i ;

6: Sample a query data batch Dt, out
i from Sout

i ;
7: (Inner-level) Compute per-task adapted param-

eters with gradient descent:

w′t
i := wt − α∇wt

(
L̂
(
wt,Dt, in

i

)
+ σinInverted Reg

(
wt,Dt, in

i

))
;

8: (Outer-level) SGD step for meta-model, save
per-task meta-weight for meta-update:

wt+1
i := wt − βt∇wt

(
L̂
(
w′t

i,D
t, out
i

)
+ σoutOrdinary Reg

(
w′t

i,D
t, out
i

))
;

9: end for
10: Meta-update wt+1 := 1

r

∑
i∈Bt

wt+1
i

11: end for
12: Return: wT

adaptation difficulty during training. Specifically, by mak-
ing the adapted model more difficult to learn a general-
ized hypothesis by fitting the meta-support set, the meta-
model is forced to learn better-generalized meta-knowledge
to achieve good performance on the meta-query set. In this
sense, we can think of the Minimax-Meta Regularization as
a form of “adversarial training” for the meta-model, which
can improve its generalization performance during training.
Importantly, the “adversarial training” is only applied dur-
ing the training phase and is not used during meta-testing.
Thus, the meta-model does not carry the “adversarial train-
ing” burden in the actual deployment after learning better-
generalized meta-knowledge, which can lead to better gen-
eralization in the new environment.

While the concept of using inverted regularization at the
inner-level to improve generalization may seem too intu-
itional or counterintuitive to some, we provide a theoretical
analysis in the next section to support its utility.

4.2. Application to MAML

To apply Minimax-Meta Regularization to MAML, we
modify the MAML algorithm by adding the regularization
to the inner- and outer-level training objective. The mod-
ified algorithm, which we refer to as Minimax-MAML,
is shown in Algorithm 1. Note that this modification for
Minimax-Meta Regularization is also generally applicable
to other MAML variants.

5. Theoretical Analysis
In this section, we provide an analysis of the effective-

ness of inverted regularization in meta-learning by taking
L2-Norm regularization at the inner-level of the single-step
MAML algorithm as a typical example, which is very pos-
sible to generalize to other regularization.

It is important to note that the process of adding regu-
larization often involves changes to the loss function dur-
ing training. This means if the model is obtained by a new
regularized algorithm Ã, it is usually optimized for a differ-
ent function F̃ (·) instead of the original F (·) (e.g., added
weight-norm in the inner-level). However, in the meta-
testing phase, the model’s test error is still calculated us-
ing F (·). As a result, to evaluate the test error change with
a new regularized method Ã, instead of directly adopting
(4)’s decomposition in Preliminary, we need to further de-
compose the test error by

EÃ,S

[
F (Ã(S))−min

W
F
]

(test error) =

EÃ,S

[
F̂ (Ã(S),S)− F̂ (argmin

W

ˆ̃F (·,S),S)
]

︸ ︷︷ ︸
training error

+ EÃ,S [F (Ã(S))− F̂ (Ã(S),S)]︸ ︷︷ ︸
generalization error

+ ES

[
min
W

F̂ (·,S)
]
−min

W
F︸ ︷︷ ︸

≤0

+ ES

[
F̂ (argmin

W

ˆ̃F (·,S),S)−min
W

F̂ (·,S)
]

︸ ︷︷ ︸
training bias

(5)

where ˆ̃F (·) refers to the regularized empirical loss function.
(5) has one more training bias term compared to (4), which
is caused by the changing of the objective function. Usually,
regularization would reduce the expected generalization er-
ror while increasing the training bias. The goal of regular-
ization is to decrease test error by reducing generalization
error while trading off training bias.

Adding L2-Norm regularization at the inner-level for
MAML could be obtained by changing the inner-level
training objective from L̂

(
wt,Dt, in

i

)
to (L̂

(
wt,Dt, in

i

)
+

δ
2∥w

t∥2), where δ is the regularisation parameter. The meta
updating rule would be accordingly changed from (3) to:

wt+1
i :=

wt − βt∇wtL̂
(
wt − α∇wt(L̂

(
wt,Dt, in

i

)
+

δ

2
∥wt∥2)),Dt, out

i

)
(6)

Here δ can be either positive or negative to represent the
ordinary and inverted regularization, respectively. We treat
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δ as a variable and analyze how its value would influence the
generalization error and the training bias of the total error
introduced in (5).

The analysis of generalization error closely follows the
work of [9], and holds the same assumptions about function
ℓ(·, z) and task distribution as follows.

Assumption 1. We assume the function ℓ(·, z) satisfies the
following properties for any z ∈ Z:

1. (Strong convexity) ℓ(·, z) is µ-strongly convex, i.e.,
(∇ℓ(w, z)−∇ℓ(u, z))T (w − u) ≥ µ∥w − u∥2;

2. (Lipschitz in function value) ℓ(·, z) has gradients with
norm bounded by G, i.e., ∥∇ℓ(w, z)∥ ≤ G;

3. (Lipschitz gradient) ℓ(·, z) is L-smooth, i.e.,
∥∇ℓ(w, z)−∇ℓ(u, z)∥ ≤ L∥w − u∥;

4. (Lipschitz Hessian) ℓ(·, z) has ρ-Lipschitz Hessian,
i.e.,

∥∥∇2ℓ(w, z)−∇2ℓ(u, z)
∥∥ ≤ ρ∥w − u∥

Assumption 2. We assume FZ is the Borel σ-algebra over
Z and Z is a Polish space. And each pi is a non-atomic
distribution over (Z,FZ)

5.1. Generalization Error

We derive our generalization bound for MAML with
L2 regularization at the inner-level through the theoretical
framework proposed by [9], which mainly adopts an algo-
rithmic stability approach for the derivation. We denote the
algorithm combines MAML with inner-level regularization
as Ã, and the below generalization bound could be obtained.
We provide detailed proof in Appendix.

Theorem 1 (generalization bound). If Assumption 1 and 2
hold. With α ≤ 1

2L , βt ≤ 1
αρG+(1−αδ−αµ)2L , δ < 1

2α and
αρG
µ < ( 12 − αL)2. The model Ã(S) generated by the last

iterate of MAML with regularized updating rule introduced
in (6) satisfies

EÃ,S [F (Ã(S))− F̂ (Ã(S),S)] ≤
2G2(1 + αL)(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
·

(
1

αρG+ (1− αµ− αδ)2L
+

1

−αρG+ (1− αL− αδ)2µ
)

where the expectation is taken over the randomness of Ã
and sampling of S.

The generalization bound could be regarded as a func-
tion GB(δ), and its derivative GB′(δ) is positive ∀δ ∈
(−∞, 1

2α )
1. It suggests that GB(δ) is monotonically in-

creasing if δ ∈ (−∞, 1
2α ), implying that L2 regulariza-

tion at the inner-level decreases the generalization bound of
MAML only when it’s inverted (i.e. δ < 0). And ordinary
regularization (i.e. δ ∈ (0, 1

2α )) at the inner-level would
increase the generalization bound.

1 Derivation is included in Appendix A.3.1. δ ≥ 1
2α

are excluded from
discussion because they may break the convexity of the meta loss function.

5.2. Training Bias

Theorem 2 (training bias bound). If Assumption 1 and 2
hold. With α ≤ 1

2L , δ < 1
2α and αρG

µ < ( 12 − αL)2. The
training bias from MAML with inner-level L2 regularization
to the original MAML is bounded by

ES

[
F̂ (argmin

W

ˆ̃F (·,S),S)−min
W

F̂ (·,S)
]
≤

α2(αρG+ (1− αµ)2L)((1− αµ− αδ)L∥w∗∥+G)2δ2

2(−αρG+ (1− αL− αδ)2µ)2

where ∥w∗∥ := maxS ∥ argminw F̂ (w,S)∥, the maximum
is taken over sampling of S.

The training bias bound could also be regarded as a func-
tion TB(δ). We could observe that TB(δ) > TB(0) = 0
for δ ̸= 0, which suggests that training bias is inevitable
when regularization is adopted. Another important finding
is that for any legal choice of δ0 > 0, we have TB(−δ0) <
TB(δ0)

2, which suggests that the inverted regularization
has less corruption to training bias bound at the inner-level
than the ordinary regularization with the same coefficient.

5.3. Test Error

Since the training error term in the test error (5) vanishes
with iteration T as long as the outer-level loss is strongly-
convex [9], the training error term could be negligible for
δ < 1

2α . So we could just consider the training bias and
generalization error for bounding the test error, i.e.,

EÃ,S

[
F (Ã(S))−min

W
F
]
≤

2G2(1 + αL)(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
·

(
1

αρG+ (1− αµ− αδ)2L
+

1

−αρG+ (1− αL− αδ)2µ
)︸ ︷︷ ︸

generalization error bound GB(δ)

+
α2(αρG+ (1− αµ)2L)((1− αµ− αδ)L∥w∗∥+G)2δ2

2(−αρG+ (1− αL− αδ)2µ)2︸ ︷︷ ︸
training bias bound TB(δ)

The test error bound could be described by TE(δ) :=
TB(δ) + GB(δ). When δ is positive, we have TB(δ) >
TB(0) and GB(δ) > GB(0) (since GB′(δ) > 0 ∀δ ∈
(−∞, 1

2α )), which suggests ordinary regularization at the
inner-level worsens the model’s test error bound. Instead,
for inverted regularization, since TE′(0) = TB′(0) +
GB′(0) = 0+GB′(0)> 0, there must be an interval [δ∗, 0)
in which all values can be used as the inverted regularization
parameter to decrease the test error bound.

2 Derivation is included in Appendix A.3.2
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6. Experiments
We conduct extensive experiments on three types of clas-

sical meta-learning tasks: few-shot classification, few-shot
regression, and robust reweighting. The experiments in-
clude: i) an empirical verification of the regularization at
inner- and outer-level on the Mini-Imagenet few-shot clas-
sification task, which demonstrates the effectiveness of both
the inverted regularization at inner-level and the ordinary
regularization at outer-level; ii) further experiments on few-
shot classification and regression benchmarks to compare
our Minimax-Meta regularized algorithms with other rep-
resentative methods; iii) a few-shot learning experiment on
a limited number of tasks evaluating generalization of dif-
ferent regularization strategies; and iv) an experiment on
meta-reweighting for robust learning, which demonstrates
the broad applicability of our method to different meta-
learning problems. (Due to page-size limitations, the ex-
periments on limited tasks, Meta-Dataset with larger back-
bones, and meta-reweighting are included in the Appendix)

6.1. Few-shot Classification

We first conduct experiments on the few-shot classifica-
tion task, one of the most popular tasks to evaluate meta-
learning algorithms. To verify the effectiveness of our ap-
proach, we adapt Minimax-Meta Regularization into bi-
level optimization meta-learning algorithms and make a
benchmark to compare with other methods.

6.1.1 Experimental Setup

Datasets. For the few-shot classification task, we exper-
iment on the Mini-Imagenet [38, 49] and Omniglot [23]
datasets. The Mini-Imagenet [38] is sampled from Ima-
geNet with 600 instances of 100 classes. In the experiment,
the Mini-Imagenet dataset is split into 64 classes for train-
ing, 12 classes for validation, and 24 classes for testing. The
Omniglot dataset is a collection of 1623 character classes
with different alphabets. Each class in the dataset contains
20 instances. The classes are shuffled and divided into the
training, validation, and test sets, with 1150, 50, and 423
instances in the experiment.
Experimental details. We select MAML [10] as the rep-
resentative bi-level optimization meta-learning algorithm to
conduct the experiment. The few-shot benchmark settings
for Omniglot and Mini-ImageNet experiments provided in
[4] are adopted for our experiment build. Details about the
experiment can be found in Appendix.

To verify the theoretical results and show the effective-
ness of our regularization design, we first conduct an em-
pirical verification experiment on Mini-ImageNet using L2-
Norm as the regularizer.

In other few-shot classification experiments, we use a
combination of L2-Norm and output-entropy as the regu-

larizer to further improve the generalization. (Although we
only use L2-Norm as the sample regularizer to derive the
theoretical results in Section 5, the use of inverted regular-
ization can cover many other regularizers in practice, in-
cluding the entropy regularizer.) That is, in this part of the
experiment, when we say that ”adding ordinary regulariza-
tion” at a certain level, its corresponding learning objective
will include minimizing the L2-Norm of model weights and
maximizing the entropy of the model’s output prediction
(improves generalization); when we say that ”adding in-
verted regularization” at a certain level, its corresponding
learning objective will include maximizing of the L2-Norm
of model weights and minimizing the entropy of the model’s
output prediction (hinders generalization). And we keep the
magnitude of the L2-Norm parameter = 5e-4 and the magni-
tude of the information entropy parameter = 2.0 across the
experiments, i.e., the difference between ordinary and in-
verted regularization in this group of few-shot learning ex-
periments is only the sign of the regularization term. Note
that we only add regularization at the training phase, so the
inner-levels are not regularized in meta-testing time.

6.1.2 Empirical Verification for regularization at
inner- and outer-level.

To verify our view that the regularization at the inner- and
outer-level should respectively be inverted and ordinary, we
conduct two experiments for MAML [10] with different
regularization methods on Mini-Imagenet 5-way few-shot
problem. There are five regularization methods being com-
pared: no regularization, regularize the outer-level, regu-
larize the inner-level, invertedly regularize the inner-level,
and Minimax-Meta Regularization. In the first experiment,
We only use L2-Norm regularization to match the setting of
theoretical analysis. In the second experiment, We use L2-
Norm & entropy combined regularization to verify whether
inverted inner-level regularization is suitable for different
types of regularizers and whether a combination of multiple
regularizers leads to better generalization. We follow [4]’s
setting to build the experiment with 48-48-48-48 conv back-
bone and use the ensemble of per-epoch models to generate
more stable results (MAML baseline achieves higher per-
formance under this setting compared to classic 32-32-32-
32 conv backbone implementations [10]), The results are
respectively presented in Table 1 and 2. Based on the re-
sults, we make the following observations:

Inner-level inverted regularization enhances the gener-
alization performance. Compare the results from “no reg-
ularization” and “invertedly regularize the inner-level”, we
observe that adding inner inverted regularization achieves
accuracy improvements in both 1-shot and 5-shot experi-
ments, which verifies the efficacy of the inner inverted reg-
ularization. This is aligned with our intuition and theoretical
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Table 1. Test accuracy of MAML with different types of regularization in the Mini-Imagenet 5-way MAML Few-shot Classification
experiment (L2-Norm as regularization objective only). Backbone: 48-48-48-48 conv. We report the test accuracy with a 95% confidence
interval for the mean.

Mini-Imagenet 5-way Few-shot Classification for MAML (Reg Objective: L2-Norm)
Regularization Type Outer Reg Inner Reg 1-Shot 5-Shot

no regularization - - 49.58±0.45% 65.39±0.50%
regularize the outer-level Ordinary - 49.90±0.54% 66.47±1.21%
regularize the inner-level - Ordinary 49.28±0.37% 64.80±0.25%

invertedly regularize the inner-level - Inverted 49.92±0.42% 66.05±0.68%
Minimax-Meta Regularization Ordinary Inverted 50.25±0.38% 68.17±0.92%

Table 2. Test accuracy of MAML with different types of regularization in the Mini-Imagenet 5-way MAML Few-Shot Classification
experiment (Combining L2-Norm and output entropy as regularization objective). Backbone: 48-48-48-48 conv. We report the test
accuracy with a 95% confidence interval for the mean.

Mini-Imagenet 5-way Few-Shot Classification for MAML (Reg Objective: L2-Norm & Entropy)
Regularization Type Outer Reg Inner Reg 1-Shot 5-Shot

no regularization - - 49.58±0.45% 65.39±0.50%
regularize the outer-level Ordinary - 50.23±0.67% 67.18±0.88%
regularize the inner-level - Ordinary 48.07±1.01% 64.32±0.35%

invertedly regularize the inner-level - Inverted 49.96±0.33% 65.91±0.41%
Minimax-Meta Regularization Ordinary Inverted 50.85±0.37% 69.36±0.34%

result.

Inner-level ordinary regularization impairs the general-
ization performance. Compare the results from “no regu-
larization” and “regularize the inner-level”, we observe that
adding inner ordinary regularization suffers from accuracy
impairments. This observation is also consistent with our
intuition and theoretical findings.

Outer-level ordinary regularization enhances the gener-
alization performance. Compare the results from “no regu-
larization” and “regularize the outer-level”, we observe that
adding outer regularization can get accuracy improvements,
which verifies the efficacy of adding ordinary regularization
at the outer-level.

The outer-level ordinary regularization and inner-level
inverted regularization are compatible. We observe that
Minimax-Meta Regularization outperforms solely outer-
level or inverted inner-level regularization, indicating com-
patibility between the regularizations at the two distinct lev-
els. This aligns with the intuition that meta and adaptation
generalization are not conflicting.

Inner-level inverted regularization and the outer-level
ordinary regularization are suitable for combined regular-
izer We observe consistent effects across L2-Norm regular-
izer and L2-Norm & entropy combined regularizer when
using different regularization strategies. Furthermore, com-
bining the L2-Norm and entropy regularizer led to improved
performance compared to using L2-Norm regularizer alone.

6.1.3 Minimax-Meta Regularization for Few-shot
Classification

So far, we have proved that Minimax-Meta Regulariza-
tion is a promising regularization strategy for bi-level meta-
learning. Here, we do experiments to further test the effec-
tiveness of Minimax-Meta Regularization.

The experiments are conducted on Omniglot and Mini-
ImageNet datasets. We implement Minimax-Meta Regular-
ization for bi-level meta-learning algorithms: MAML [10],
which is the most representative bi-level meta-learning al-
gorithm; MAML++ [4], which is an adapted version of
MAML with additional techniques for performance im-
provements. L2-Norm & entropy combined regularizer is
adopted in this experiment.

Representative algorithms with comparable backbone
structures are selected for making the comparison. We use
the 64-64-64-64 conv backbone for the Mini-ImageNet ex-
periment to make a fairer comparison with other methods.
The results are shown in Table 3 and 4.

The results suggest that Minimax-Meta Regularization
generally improves test performances. Minimax-MAML++
achieves the best performance on both datasets.

6.2. Minimax-Meta Regularization for Few-shot
Regression

We then conduct experiments on the few-shot regression
task to test the efficacy of Minimax-Meta Regularization.
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Table 3. Omniglot 20-way 1-shot experiment. We
report the test accuracy with a 95% confidence in-
terval for the mean.

the * indicates result generated in our experiment.
Omniglot 20-way 1-Shot Classification

Accuracy
Meta-SGD [28] 95.93±0.38%
Prototypical Net [44] 96.00%
Meta-Networks [32] 97.00%
GNN [16] 97.40%
Relation Network [46] 97.60±0.20%
R2-D2 [5] 96.24±0.05%
SNAIL [31] 97.64±0.30%
TAML(Entropy) [20] 95.62±0.50%
MAML [10]∗ 94.20±0.41%
Minimax-MAML(ours)∗ 95.76±0.39%
MAML++ [4]∗ 97.21±0.51%
Minimax-MAML++(ours)∗ 97.77±0.06%

Table 4. Mini-Imagenet 5-way few-shot experiment. We report the test accuracy with
a 95% confidence interval for the mean.

the * indicates result generated in our experiment.
Mini-Imagenet 5-way Few-Shot Classification
Approach Backbone 1-Shot Accuracy 5-Shot Accuracy
Meta-SGD [28] 64-64-64-64 50.47±1.87% 64.03±0.94%
Prototypical Nets [44] 64-64-64-64 49.42±0.78% 68.20±0.66%
GNN [16] 64-96-128-256 50.33±0.36% 66.41±0.63%
R2-D2 [5] 64-64-64-64 49.50±0.20% 65.40±0.20%
LR-D2 [5] 96-192-384-512 51.90±0.20% 68.70±0.20%
MetaOptNet [25] 64-64-64-64 53.23±0.59% 69.51±0.48%
TAML(Entropy) [20] 64-64-64-64 51.73±1.88% 66.05±0.85%
MAML-Meta Dropout [24] 32-32-32-32 51.93±0.67% 67.42±0.52%
MAML-MMCF [51] 32-32-32-32 50.35±1.82% 64.91±0.96%
MAML [10]∗ 64-64-64-64 50.20±1.65% 65.86±0.61%
Minimax-MAM(ours)∗ 64-64-64-64 51.70±0.42% 68.41±1.28%
MAML++ [4]∗ 64-64-64-64 52.96±0.78% 70.02±0.55%
Minimax-MAML++(ours)∗ 64-64-64-64 53.28±0.35% 71.70±0.23%

6.2.1 Experimental Setup

Datasets. We follow the few-shot regression experiment
setting proposed in [40] to build the experiment. One
synthetic and three real-world few-shot regression datasets
are included. The synthetic dataset is created by a 2-
dimensional mixture of Cauchy distributions plus random
GP functions. One real-world dataset is SwissFEL [30]
which corresponds to Swiss Free Electron Laser’s calibra-
tion sessions. Another two datasets are from the PhysioNet
2012 challenge [43], which contains time-series data related
to patients’ health metrics, in particular, the Glasgow Coma
Scale (GCS) and the hematocrit value (HCT).
Experimental details. We implement Minimax-MAML
for the regression task by adding inverted and ordinary L2-
Norm at the inner-level and outer-level of MAML, respec-
tively. To obtain optimal results, unlike the single-inner-
step MAML implemented in [40], we perform three inner
update steps for the meta-training of Minimax-MAML. In
order to verify the effect of minimax, we also compared the
results of unregularized MAML with three inner steps.

6.2.2 Experimental Results

As shown in Table 5, the Minimax-Meta Regularization im-
proved the performance in all four datasets. And Minimax-
MAML achieves near-best performance on the synthetic
Cauchy datasets and outperforms other algorithms on the
two Physionet datasets. The results suggest that the
Minimax-Meta Regularization could improve the perfor-
mance of the few-shot regression task for meta-learning.

7. Conclusion
This paper studies the generalization problem of bi-level

optimization-based meta-learning. While most of the exist-

Table 5. Test RMSE comparison of algorithms in four meta-
learning environments for few-shot regression.

the * indicates the result generated in our experiment, other results are reported from [40]
Cauchy SwissFel Physionet-GCS Physionet-HCT

MLL-GP [14] 0.216±0.003 0.974±0.093 1.654±0.094 2.634±0.144
MLAP [3] 0.219±0.004 0.486±0.026 2.009±0.248 2.470±0.039
NP [17] 0.224±0.008 0.471±0.053 2.056±0.209 2.594±0.107
PACOH-GP [40] 0.209±0.008 0.376±0.024 1.498±0.081 2.361±0.047
PACOH-NN [40] 0.195±0.001 0.372±0.002 1.561±0.061 2.405±0.017
MAML [10](1 inner step) 0.219±0.004 0.730±0.057 1.895±0.141 2.413±0.113
MAML [10](3 inner steps)∗ 0.212±0.003 0.535±0.042 1.532±0.074 2.396±0.047
Minimax-MAML∗ 0.201±0.002 0.477±0.026 1.483±0.052 2.343±0.019

ing works focus on meta-generalization to unseen tasks at
the meta-level, they leave out that adapted models may not
be generalized to the task domain at the adaptation-level.
We give an intuitive explanation of why the inverted regular-
ization at the inner-level could improve the adaptation gen-
eralization of meta-learning. We provide theoretical support
for this intuition by deriving generalization error and train-
ing bias bound. We empirically verify that both inverted
regularization at inner-level and ordinary regularization at
outer-level improve the test performance of meta-learning.
Based on the aligned theoretical and empirical results, we
propose meta-learning with Minimax-Meta Regularization,
combining regularization at inner- and outer-level. Finally,
we conduct experiments on multiple meta-learning tasks to
show the efficacy of the proposed method.
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