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Abstract

Compared to the great progress of large-scale vision
transformers (ViTs) in recent years, large-scale models
based on convolutional neural networks (CNNs) are still
in an early state. This work presents a new large-scale
CNN-based foundation model, termed Internlmage, which
can obtain the gain from increasing parameters and train-
ing data like ViTs. Different from the recent CNNs that focus
on large dense kernels, Internlmage takes deformable con-
volution as the core operator, so that our model not only
has the large effective receptive field required for down-
stream tasks such as detection and segmentation, but also
has the adaptive spatial aggregation conditioned by input
and task information. As a result, the proposed Internlm-
age reduces the strict inductive bias of traditional CNNs
and makes it possible to learn stronger and more robust
patterns with large-scale parameters from massive data like
ViTs. The effectiveness of our model is proven on challeng-
ing benchmarks including ImageNet, COCO, and ADE20K.
It is worth mentioning that Internlmage-H achieved a new
record 65.4 mAP on COCO test-dev and 62.9 mloU on
ADE20K, outperforming current leading CNNs and ViTs.

1. Introduction

With the remarkable success of transformers in large-
scale language models [3—8], vision transformers (ViTs) [2,
—15] have also swept the computer vision field and are
becoming the primary choice for the research and prac-
tice of large-scale vision foundation models. Some pio-
neers [16—20] have made attempts to extend ViTs to very
large models with over a billion parameters, beating convo-
lutional neural networks (CNNs) and significantly pushing
the performance bound for a wide range of computer vision
tasks, including basic classification, detection, and segmen-
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Figure 1. Comparisons of different core operators. (a) shows
the global aggregation of multi-head self-attention (MHSA) [1],
whose computational and memory costs are expensive in down-
stream tasks that require high-resolution inputs. (b) limits the
range of MHSA into a local window [2] to reduce the cost. (c)
is a depth-wise convolution with very large kernels to model long-
range dependencies. (d) is a deformable convolution, which shares
similar favorable properties with MHSA and is efficient enough
for large-scale models. We start from it to build a large-scale CNN.

tation. While these results suggest that CNNs are inferior
to ViTs in the era of massive parameters and data, we ar-
gue that CNN-based foundation models can also achieve
comparable or even better performance than ViTs when
equipped with similar operator-/architecture-level designs,
scaling-up parameters, and massive data.

To bridge the gap between CNNs and ViTs, we first
summarize their differences from two aspects: (1) From
the operator level [9, 21, 22], the multi-head self-attention
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(MHSA) of ViTs has long-range dependencies and adap-
tive spatial aggregation (see Fig. 1(a)). Benefiting from the
flexible MHSA, ViTs can learn more powerful and robust
representations than CNNs from massive data. (2) From
the architecture view [9,22,23], besides MHSA, ViTs con-
tain a series of advanced components that are not included
in standard CNNss, such as Layer Normalization (LN) [24],
feed-forward network (FFN) [1], GELU [25], etc. Although
recent works [21,22] have made meaningful attempts to in-
troduce long-range dependencies into CNNs by using dense
convolutions with very large kernels (e.g., 31 x31) as shown
in Fig. 1 (c), there is still a considerable gap with the state-
of-the-art large-scale ViTs [16, 18-20,26] in terms of per-
formance and model scale.

In this work, we concentrate on designing a CNN-based
foundation model that can efficiently extend to large-scale
parameters and data. Specifically, we start with a flexible
convolution variant—deformable convolution (DCN) [27,

]. By combining it with a series of tailored block-
level and architecture-level designs similar to transformers,
we design a brand-new convolutional backbone network,
termed Internlmage. As shown in Fig. 1, different from
recently improved CNNs with very large kernels such as
31x31 [22], the core operator of InternImage is a dynamic
sparse convolution with a common window size of 3x3, (1)
whose sampling offsets are flexible to dynamically learn ap-
propriate receptive fields (can be long- or short-range) from
given data; (2) the sampling offsets and modulation scalars
are adaptively adjusted according to the input data, which
can achieve adaptive spatial aggregation like ViTs, reduc-
ing the over-inductive bias of regular convolutions; and (3)
the convolution window is a common 33, avoiding the
optimization problems and expensive costs caused by large
dense kernels [22,29].

With the aforementioned designs, the proposed Intern-
Image can efficiently scale to large parameter sizes and
learn stronger representations from large-scale training
data, achieving comparable or even better performance to
large-scale ViTs [2, 11, 19] on a wide range of vision tasks.
In summary, our main contributions are as follows:

(1) We present a new large-scale CNN-based founda-
tion model—InternImage. To our best knowledge, it is the
first CNN that effectively scales to over 1 billion parameters
and 400 million training images and achieves comparable or
even better performance than state-of-the-art ViTs, showing
that convolutional models are also a worth-exploring direc-
tion for large-scale model research.

(2) We successfully scale CNNs to large-scale settings
by introducing long-range dependencies and adaptive spa-
tial aggregation using an improved 3x3 DCN operator, and
explore the tailored basic block, stacking rules, and scaling
strategies centered on the operator. These designs make ef-
fective use of the operator, enabling our models to obtain
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Figure 2. Performance comparison on COCO of different
backbones. The proposed InternIlmage-H achieves a new record
65.4 box AP on COCO test-dev, significantly outperforming state-
of-the-art CNNs and large-scale ViTs.

the gains from large-scale parameters and data.

(3) We evaluate the proposed model on representative
vision tasks including image classification, object detec-
tion, instance and semantic segmentation, and compared it
with state-of-the-art CNNs and large-scale ViTs by scal-
ing the model size ranging from 30 million to 1 billion,
the data ranging from 1 million to 400 million. Specifi-
cally, our model with different parameter sizes can consis-
tently outperform prior arts on ImageNet [30]. InternImage-
B achieves 84.9% top-1 accuracy trained only on the
ImageNet-1K dataset, outperforming CNN-based counter-
parts [21,22] by at least 1.1 points. With large-scale pa-
rameters (i.e., 1 billion) and training data (i.e., 427 million),
the top-1 accuracy of Internlmage-H is further boosted to
89.6%, which is close to well-engineering ViTs [2, 19] and
hybrid-ViTs [20]. In addition, on COCO [31], a challeng-
ing downstream benchmark, our best model Internlmage-H
achieves state-of-the-art 65.4% box mAP with 2.18 billion
parameters, 2.3 points higher than SwinV2-G [16] (65.4 vs.
63.1) with 27% fewer parameters as shown in Fig. 2.

2. Related Work

Vision foundation models. Convolutional neural net-
works (CNNs) became the mainstream for visual recogni-
tion after the large-scale dataset and computation resources
were available. Straining from AlexNet [32], lots of deeper
and more effective neural network architectures have been
proposed, such as VGG [33], GoogleNet [34], ResNet [35],
ResNeXt [36], EfficientNet [37, 38], etc. In addition to the
architectural design, more sophisticated convolution opera-
tions such as depth-wise convolution [39] and deformable
convolution [27, 28] are formulated. By considering the
advanced designs of transformers, modern CNNs showed
promising performance on the vision tasks by discover-
ing better components in macro/micro designs and intro-
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ducing improved convolutions with long-range dependen-
cies [21,22,40] or dynamic weights [41].

In recent years, a new line of vision foundation mod-
els focuses on transformer-based architecture. ViT [9] is
the most representative model, which achieves great suc-
cess in vision tasks thanks to global receptive fields and
dynamic spatial aggregation. However, global attention in
ViT suffers from expensive computational/memory com-
plexity, especially on large feature maps, which limits its
application in downstream tasks. To address this problem,
PVT [10, 11] and Linformer [42] performed global atten-
tion on the downsampled key and value maps, DAT [43]
employed deformable attention to sparsely sample informa-
tion from value maps, while HaloNet [44] and Swin trans-
former [2] developed local attention mechanisms and used
haloing and shift operations to transfer information among
adjacent local regions.

Large-scale models. Scaling up models is an important
strategy to improve feature representation quality, which
has been well-studied in the natural language processing
(NLP) domain [45]. Inspired by the success in the NLP
field, Zhai et al. [19] first extended ViT to 2 billion pa-
rameters. Liu ef al. [16] enlarged the hierarchical-structure
Swin transformer to a deeper and wider model with 3 bil-
lion parameters. Some researchers developed large-scale
hybrid ViTs [20,46] by combining the advantages of ViTs
and CNNss at different levels. Recently, BEiT-3 [17] further
explored stronger representations based on ViT with large-
scale parameters using multimodal pre-training. These
methods significantly raise the upper bound of basic vi-
sion tasks. However, research on CNN-based large-scale
models has lagged behind transformer-based architectures
in terms of the total number of parameters and performance.
Although newly-proposed CNNs [21,22, 40, 47] introduce
long-range dependencies by using convolutions with very
large kernels or recursive gated kernels, there is still a con-
siderable gap with state-of-the-art ViTs. In this work, we
aim to develop a CNN-based foundation model that can ex-
tend efficiently to a large scale comparable to ViT.

3. Proposed Method

To design a large-scale CNN-based foundation model,
we start with a flexible convolution variant, namely de-
formable convolution v2 (DCNv2) [28] and make some
tune-ups based on it to better suit the requirements of large-
scale foundation models. Then, we build the basic block
by combining the tuned convolution operator with advanced
block designs used in modern backbones [16, 19]. Finally,
we explore the stacking and scaling principles of DCN-
based blocks to build a large-scale convolutional model that
can learn strong representations from massive data.

stem
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Figure 3. Overall Architecture of Internlmage, where the core
operator is DCNv3, and the basic block composes of layer normal-
ization (LN) [24] and feed-forward network (FFN) [1] as trans-
formers, the stem and downsampling layers follows conventional
CNN’s designs, where “s2” and “p1” mean stride 2 and padding
1, respectively. Constrained by the stacking rules, only 4 hyper-
parameters (C1,C’, L1, L3) can decide a model variant.

3.1. Deformable Convolution v3

Convolution vs. MHSA. Previous works [21, 22, 48]
have extensively discussed the differences between CNN's
and ViTs. Before deciding on the core operator of InternIm-
age, we first summarize the main differences between regu-
lar convolution and MHSA.

(1) Long-range dependencies. Although it has long been
recognized that models with large effective receptive fields
(long-range dependencies) usually perform better on down-
stream vision tasks [49-51], the de-facto effective receptive
field of CNNs [33,35] stacked by 33 regular convolutions
is relatively small. Even with very deep models, the CNN-
based model still cannot acquire long-range dependencies
like ViTs, which limits its performance.

(2) Adaptive spatial aggregation. Compared to MHSA
whose weights are dynamically conditioned by the input,
regular convolution [52] is an operator with static weights
and strong inductive biases such as 2D locality, neigh-
borhood structure, translation equivalence, etc. With the
highly-inductive properties, models composed by regular
convolutions might converge faster and require less train-
ing data than ViTs, but it also restricts CNNs from learn-
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ing more general and robust patterns from web-scale data.
More robustness experiments are detailed in the supplemen-
tary material.

Revisiting DCNv2. A straightforward way to bridge the
gap between convolution and MHSA is to introduce long-
range dependencies and adaptive spatial aggregation into
regular convolutions. Let us start with DCNv2 [28], which
is a general variant of regular convolution. Given an input
x € REXHXW and current pixel pg, DCNv2 can be formu-
lated as:

K

¥(po) = > wiemx(po + pr + Apy), (1)
k=1

where K represents the total number of sampling points,
and k enumerates the sampling point. wj; € RE*C de-
notes the projection weights of the k-th sampling point,
and m; € R represents the modulation scalar of the k-
th sampling point, which is normalized by sigmoid func-
tion. p; denotes the k-th location of the pre-defined grid
sampling {(—1,—1),(-1,0),...,(0,+1),..., (+1,41)} as
in regular convolutions, and Apy is the offset correspond-
ing to the k-th grid sampling location. We see from the
equation that (1) for long-range dependencies, the sampling
offset Apy, is flexible and able to interact with short- or
long-range features; and (2) for adaptive spatial aggrega-
tion, both the sampling offset Ap; and modulation scalar
my, are learnable and conditioned by input x. So it can be
found that DCNv2 shares similar favorable properties with
MHSA, which motivated us to develop large-scale CNN-
based foundation models on the basis of this operator.

Extending DCNv2 for Vision Foundation Models. In
common practice, DCNv2 is usually used as an extension
to regular convolutions, loading pre-trained weights of reg-
ular convolutions and fine-tuning for better performance,
which is not exactly suitable for large-scale vision founda-
tion models that need to be trained from scratch. In this
work, to address this problem, we extend DCNv2 from as-
pects as follows:

(1) Sharing weights among convolutional neurons. Sim-
ilar to regular convolution, different convolutional neu-
rons' in original DCNV2 have independent linear projection
weights, and thus its parameter and memory complexity
are linear with the total number of sampling points, which
significantly limits the efficiency of the model, especially
in large-scale models. To remedy this problem, we bor-
row the idea from the separable convolution [53] and de-
tach the original convolution weights wy, into depth-wise
and point-wise parts, where the depth-wise part is respon-
sible by the original location-aware modulation scalar my,
and the point-wise part is the shared projection weights w
among sampling points.

'A 3% 3 regular convolution has 9 linear projection neurons.

(2) Introducing multi-group mechanism. The multi-
group (head) design first appeared in group convolu-
tion [32], and it is widely used in MHSA [ 1] of transformers
and works with adaptive spatial aggregation to effectively
learn richer information from different representation sub-
spaces at different locations. Inspired by this, we split the
spatial aggregation process into G groups, each of which
has individual sampling offsets Apy; and modulation scale
m;, and thus different groups on a single convolution layer
can have different spatial aggregation patterns, resulting in
stronger features for downstream tasks.

(3) Normalizing modulation scalars along sampling
points. The modulation scalars in the original DCNv2 are
element-wise normalized by the sigmoid function. There-
fore, each modulation scalar is in the range [0, 1], and the
sum of the modulation scalars of all sample points is not sta-
ble and varies from O to K. This leads to unstable gradients
in DCNv2 layers when training with large-scale parame-
ters and data. To alleviate the instability issues, we change
element-wise sigmoid normalization to softmax normaliza-
tion along sample points. In this way, the sum of the modu-
lation scalars is constrained to 1, which makes the training
process of models at different scales more stable.

Combining the mentioned modifications, the extended
DCNv2, marked as DCNv3, can be formulated as Eqn. (2).

G K
Y(pO) = Z Z nggkxg(po +pr + Apgk)) 2
g=1k=1
where G denotes the total number of aggregation groups.
For the g-th group, w, € RCXC/, mg; € R denote the
location-irrelevant projection weights of the group, where
C’ = C/G represents the group dimension. mg; € R de-
notes the modulation scalar of the k-th sampling point in
the g-th group, normalized by the softmax function along
the dimension K. x4 € RE *HXW represents the sliced in-
put feature map. Apyy, is the offset corresponding to the
grid sampling location py, in the g-th group.

In general, DCNv3, as an extension of the DCN series,
enjoys three merits as follows: (1) This operator made up
for the deficiencies of regular convolution in terms of long-
range dependencies and adaptive spatial aggregation; (2)
Compared with attention-based operators such as common
MHSA and closely-related deformable attention [43, 54],
this operator inherits the inductive bias of convolution,
making our model more efficient with fewer training data
and shorter training time; (3) This operator is based on
sparse sampling, which is more computational and mem-
ory efficient than previous methods such as MHSA [1] and
re-parameterizing large kernel [22]. In addition, due to
the sparse sampling, DCNv3 only needs a 3x3 kernel to
learn long-range dependencies, which is easier to be op-
timized and avoids extra auxiliary techniques such as re-
parameterizing [22] used in large kernels.
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3.2. InternImage Model

Using DCNvV3 as the core operator brings a new prob-
lem: how to build a model that can make effective use of the
core operator? In this section, we first present the details
of the basic block and other integral layers of our model,
and then we construct a new CNN-based foundation model
termed Internlmage, by exploring a tailored stacking strat-
egy for these basic blocks. Finally, we study scaling-up
rules for the proposed model to obtain the gain from in-
creasing parameters.

Basic block. Unlike the widely used bottlenecks in tradi-
tional CNNs [35], the design of our basic block is closer to
ViTs, which is equipped with more advanced components
including LN [24], feed-forward networks (FFN) [1], and
GELU [25]. This design is proved to be efficient [2, 10,

,21,22] in various vision tasks. The details of our ba-
sic block are illustrated in Fig. 3, where the core operator
is DCNv3, and the sampling offsets and modulation scales
are predicted by passing input feature x through a separable
convolution (a 3x3 depth-wise convolution followed by a
linear projection). For other components, we use the post-
normalization setting [55] by default and follow the same
design as that of the plain transformer [, 9].

Stem & downsampling layers. To obtain hierarchical
feature maps, we use convolutional stem and downsampling
layers to resize the feature maps to different scales. As
shown in Fig. 3, the stem layer is placed before the first
stage to reduce the input resolution by 4 times. It consists
of two convolutions, two LN layers, and one GELU layer,
where the kernel size of the two convolutions is 3, the stride
is 2, the padding is 1, and the output channel of the first con-
volution is half of the second one. Similarly, the downsam-
pling layer is made up of a 3x3 convolution with a stride
of 2 and a padding of 1, followed by one LN layer. It sits
between the two stages and is used to downsample the input
feature map by 2 times.

Stacking rules. To clarify the block-stacking process,
we first list the hyper-parameters of InternImage as follows:

C;: the channel number of the i-th stage;

G the group number of the DCNv3 in the i-th stage;

L;: the number of basic blocks in the i-th stage.

Since our model has 4 stages, a variant is decided by 12
hyper-parameters, whose search space is too large to ex-
haustively enumerate and find the best variant. To reduce
the search space, we summarize the design experiences of
prior arts [2,21,35] into 4 rules as shown in Fig. 3, where
the first rule makes the channel numbers of the last three
stages determined by the channel number C; of the first
stage, and the second rule lets the group number correspond
to the channel number of stages. For the number of stacked
blocks in different stages, we simplify the stacking pattern
to “AABA”, which means the block number of stage 1, 2,
and 4 are the same, and are not greater than that of the stage

model name | C1 | C" | Li234 | #params
InternImage-T (origin) 64 16 4,4,18,4 30M
InternImage-S 80 16 4,4,21,4 50M
Internlmage-B 112 16 4,4,21,4 97M
Internlmage-L 160 16 5,5,22,5 223M
Internlmage-XL 192 16 5,5,24,5 335M
Internlmage-H 320 32 6,6,32,6 1.08B

Table 1. Hyper-parameters for models of different scales.
InternImage-T is the origin model, and -S/B/L/XL/H are scaled
up from -T. “#params” denotes the number of parameters.

3 as illustrated in the last two rules. With these rules, a
Internlmage variant can be defined by using only 4 hyper-
parameters (C1,C’, Ly, L3).

Let us choose a model with 30 million parameters as the
origin and discretize C to {48, 64,80}, L; to {1,2,3,4, 5},
and C’ to {16,32}. In this way, the original huge search
space is reduced to 30, and we can find the best model
from the 30 variants by training and evaluating them in Im-
ageNet [30]. In practice, we use the best hyper-parameter
setting (64, 16, 4, 18) to define the origin model and scale it
to different scales.

Scaling rules. Based on the optimal origin model un-
der the aforementioned constraints, we further explore the
parameter scaling rules inspired by [37]. Specifically, we
consider two scaling dimensions: depth D (i.e., 3L1 + L3)
and width C, and scale the two dimensions using «, 5 and
a composite factor ¢. The scaling rules can be written as:
D'=a?D and C] = Cy,

where o > 1, 8 > 1, and o' ~ 2. Here, 1.99
is specific for InternImage and calculated by doubling the
model width and keeping the depth constant. We experi-
mentally find out that the best scaling setting is o = 1.09
and 8 = 1.36, and then we base on it to construct In-
ternlmage variants with different parameter scales, namely
Internlmage-T/S/B/L/XL, whose complexity is similar to
those of ConvNeXt [21]. To further test the capability, we
built a larger InternIlmage-H with 1 billion parameters, and
to accommodate very large model widths, we also change
the group dimension C’ to 32. The configurations are sum-
marized in Table 1.

4. Experiment

We analyze and compare Internlmage with the leading
CNNs and ViTs on representative vision tasks including im-
age classification, object detection, instance and semantic
segmentation. Besides the experiments in the main paper,
due to space constraints, more experimental setups and ab-
lation studies are presented in the supplementary materials.

4.1. Image Classification

Settings. We evaluate the classification performance of
Internlmage on ImageNet [30]. For fair comparisons, fol-
lowing common practices [2,10,21,56], Internlmage-T/S/B
are trained on ImageNet-1K (~1.3 million) for 300 epochs,
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method type | scale | #params | #FLOPs | acc (%)
Swin-T [2] 2242 29M 5G 81.3
CoAtNet-0 [20] 2242 | 25M 4G 81.6
PVTv2-B2[11] 2242 | 25M 4G 82.0

2242 22M 5G 81.4
2562 | 28M 6G 81.8
2242 | 29M 5G 82.1
2242 | 30M 5G 83.5

DeiT III-S [62]
SwinV2-T/8 [16]
ConvNeXt-T [21]
Internlmage-T (ours)

Swin-S [2] 2242 50M 9G 83.0
CoAtNet-1 [20] 2242 42M 8G 83.3
PVTv2-B4 [11] 2242 | 63M 10G 83.6

2562 | 50M 12G 83.7
2242 | 50M 9G 83.1
2242 50M 8G 84.2

SwinV2-S/8 [16]
ConvNeXt-S [21]
Internlmage-S (ours)

Swin-B [2] 2242 88M 15G 83.5
CoAtNet-2 [20] 2242 | 75M 16G 84.1
PVTv2-B5 [11] 2242 | 82M 12G 83.8

2242 | 87M 18G 83.8
2562 | 88M 20G 84.2
2242 79M 15G 83.5
2242| 88M 15G 83.8
2242 97M 16G 84.9
3842 197M | 104G | 87.3
3842| 275M | 190G | 87.9
3842 | 304M | 191G | 87.7
3842| 197M | 115G | 87.6
3842 | 172M 96G 86.6
3842 | 198M | 101G | 87.5
3842 | 350M | 179G | 87.8
3842| 223M | 108G | 87.7
3842| 335M | 163G | 88.0
5182| 1.84B | 5160G | 90.5
5122 | 147B | 1521G | 90.5
5122 | 2.44B | 2586G | 90.9

DeiT II-B [62]
SwinV2-B/8 [16]
RepLKNet-31B [22]
ConvNeXt-B [21]
InternImage-B (ours)
Swin-L¥ [2]
CoAtNet-4% [20]
DeiT III-L [62]
SwinV2-L/24% [16]
RepLKNet-31LF [22]
ConvNeXt-L¥ [21]
ConvNeXt-XL¥ [21]
InternImage-L¥ (ours)
IntemImage—XLi (ours)
ViT-G/14% [19]
CoAtNet-6# [20]
CoAtNet-7# [20]

Florence-CoSwin-H# [57] - 893M - 90.0
SwinV2-G# [16] 6402 | 3.00B - 90.2
RepLKNet-XL# [22] 3842 | 335M | 129G | 87.8
BiT-L-ResNet152x4%# [63] 4802 | 928M - 87.5

2242| 1.08B | 188G | 889
6402 | 1.08B | 1478G | 89.6

InternImage—H# (ours)
InternImage—H# (ours)

il e lc ket il T It

Table 2. Image classification performance on the ImageNet val-
idation set. “type” refers to model type, where “T” and “C” de-
note transformer and CNN, respectively. “scale” is the input scale.
“acc” is the top-1 accuracy. “*” indicates the model is pre-trained
on ImageNet-22K [30]. “#” indicates pretraining on extra large-
scale private dataset such as JFT-300M [64], FLD-900M [57], or
the joint public dataset in this work.

and Internlmage-L/XL are first trained on ImageNet-22K
(~14.2 million) for 90 epochs and then fine-tuned on
ImageNet-1K for 20 epochs. To further explore the ca-
pability of our model and match the large-scale private
data used in previous methods [16, 20, 57], we adopt M3I
Pre-training [58], a unified pre-training approach available
for both unlabeled and weakly-labeled data, to pre-train
Internlmage-H on a 427 million joint dataset of public
Laion-400M [59], YFCC-15M [60], and CC12M [61] for
30 epochs, and then we fine-tune the model on ImageNet-
1K for 20 epochs.

Results. Table 2 shows the classification results of mod-
els with different scales. With similar parameters and com-
putational costs, our models are comparable or even su-

perior to the state-of-the-art transformer-based and CNN-
based models. For example, Internlmage-T achieves 83.5%
top-1 accuracy, outperforming ConvNext-T [21] with a
clear margin of 1.4 points. Internlmage-S/B keeps the
leading position and Internlmage-B surpasses the hybrid-
ViT CoAtNet-2 [20] by 0.8 points. When pre-trained on
ImageNet-22K and the large-scale joint dataset, the top-1
accuracy of Internlmage-XL and -H are boosted to 88.0%
and 89.6%, respectively, which is better than previous
CNNSs [22,63] also trained with large-scale data, and closes
the gap with the state-of-the-art large-scale ViTs to about 1
point. This gap may be caused by the discrepancy between
large-scale inaccessible private data and the aforementioned
joint public data. These results show that our Internlmage
not only has good performance on the common parameter
scale and the public training data, but also can effectively
extend to large-scale parameters and data.

4.2. Object Detection

Settings. We verify the detection performance of our
Internlmage on the COCO benchmark [31], on top of
two representative object detection frameworks: Mask R-
CNN [66], and Cascade Mask R-CNN [67]. We follow
common practices [2, | 1] to initialize the backbone with
pre-trained classification weights, and train models use a
1x (12 epochs) or 3x (36 epochs) schedule by default.

Results. As shown in Table 3, when using Mask R-
CNN for object detection, we find that under a compara-
ble number of parameters, our models significantly surpass
their counterparts. For example, with the 1 X training sched-
ule, the box AP (APP) of InternImage-T is 4.5 points better
than Swin-T [2] (47.2 vs. 42.7), and 3.0 points higher than
ConvNeXt-T [21] (47.2 vs. 44.2). With the 3 x multi-scale
training schedule, more parameters, and more advanced
Cascade Mask R-CNN [67], Internlmage-XL achieves APP
of 56.2, surpassing ConvNeXt-XL by 1.0 points (56.2 vs.
55.2). Similar results are also seen in instance segmentation
experiments. With the 1x training schedule, InternIlmage-T
yields 42.5 mask AP (i.e., AP™), which outperforms Swin-
T and ConvNeXt-T by 3.2 points (42.5 vs. 39.3) and 2.4
points (42.5 vs. 40.1), respectively. The best AP™ 48.8 is
obtained by Internlmage-XL with Cascade Mask R-CNN,
which is at least 1.1 points higher than its counterparts.

To further push the performance bound of object detec-
tion, we follow the advanced setting used in leading meth-
ods [16, 17, 26,70, 74] to initialize the backbone with the
weights pre-trained on ImageNet-22K or the large-scale
joint dataset, and double its parameters via the composite
techniques [74] (see Fig. 2). Then, we fine-tune it along
with the DINO [70] detector on the Objects365 [75] and
COCO datasets one after another for 26 epochs and 12
epochs, respectively. As shown in Table 4, our method
achieves the best results of 65.0 AP® and 65.4 AP® on
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Mask R-CNN 1 x schedule

Mask R-CNN 3 x+MS schedule

method #params #ELOPS | ypb  Apb  Apb. APm APm APm | APP APb, APh. AP™ AP® APR
Swin-T [2] 48M 267G | 427 652 468 393 622 422 | 46.0 68.1 503 41.6  65.1 449
ConvNeXt-T [21] 48M 262G | 442 66.6 483 40.1 633 428 | 462 679 50.8 417 650 449
PVTv2-B2[11] 45M 309G | 453  67.1 496 412 642 444 | 478 697 526 431 66.8  46.7
ViT-Adapter-S [65] 48M 403G | 447 658 483 399 625 428 | 482 697 525 428 664 459
InternImage-T (ours) 49M 270G | 472 69.0 521 425  66.1 458 | 49.1 704 541 437 673 473
Swin-S [2] 69M 354G | 448 666 489 409 634 442 | 482 698 528 432 670 46.1
ConvNeXt-S [21] 70M 348G | 454 679 500 41.8 652 451 | 479 70.0 527 429 669 462
PVTv2-B3[11] 65M 397G | 47.0 68.1 517 425 657 457 | 484 698 533 432 669  46.7
InternImage-S (ours) 69M 340G | 478 69.8 52.8 433 67.1 46.7 | 49.7 71.1 545 445 685 478
Swin-B [2] 107M 496G 46.9 — - 42.3 — — 48.6  70.0 53.4 433 67.1 46.7
ConvNeXt-B [21] 108M 486G | 470 694 517 427 663  46.0 | 485 70.1 533 435 671 46.7
PVTv2-B5[11] 102M 557G 474  68.6 51.9 42.5 65.7 46.0 | 484 692 52.9 42.9 66.6 46.2
ViT-Adapter-B [65] 120M 832G | 470 682 514 418 651 449 | 496 706 540 436 677 469
Internlmage-B (ours) 115M 501G 48.8 709 54.0 44.0 67.8 474 | 503 714 553 44.8 68.7 48.0
method #param #FLOPs Cascade Mask R-CNN 1x schedule Cascade Mask R-CNN 3 x+MS schedule
Swin-L¥ [2] 253M 1382G | 51.8 71.0 562 449 684 489 | 539 724 588 46.7 70.1 50.8
ConvNeXt-L¥ [21] 255M 1354G | 535 728 58.3 46.4 70.2 50.2 548 738 59.8 47.6 71.3 51.7
RepLKNet-31L* [22] 229M 1321G - — — - - — 539 725 586 465 700  50.6
HorNet-L¥ [40] 259M 1358G - — — — — 56.0 — — 48.6 — —
InternImage-L¥ (ours) 27TM 1399G | 549 74.0 59.8 47.7 71.4 52.1 56.1 74.8 60.7 48.5 72.4 53.0
ConvNeXt-XL¥ [21] 407M 1898G | 536 729 585 465 703 505 | 552 742 599 477 716 522
Internimage-XL¥ (ours) 387TM 1782G | 553 744 60.1 48.1 71.9 524 562 75.0 61.2 48.8 72.5 534

Table 3. Object detection and instance segmentation performance on COCO val2017. The FLOPs are measured with 1280x800
inputs. AP" and AP™ represent box AP and mask AP, respectively. “MS” means multi-scale training.

method detector #params APP
val2017test-dev

Swin-L¥ [2] HTC++ [2] 284M | 58.0 58.7
Swin-L¥ [2] Soft-Teacher [68] 284M | 60.7 61.3
Florence-CoSwin-H# [ JIDyHead [69] 637TM | 62.0 624
ViT-Adapter-L¥ [65] HTC++ [2] 40IM | 62.6 62.6
Swin-L¥ [2] DINO [70] 218M | 63.2 63.3
FocalNet-H* [71] DINO [70] 746M | 642 643
ViT-Huge [72] Group-DETRv2 [72]| 629M - 64.5
SwinV2-G# [16] HTC++ [2] 3.00B | 62.5 63.1
BEiT-3% [17] ViTDet [73] 190B | — 637
FD-SwinV2-G# [26] HTC++ [2] 3.00B — 64.2
Internmage-XL¥ (ours) [DINO [70] 602M | 642 643
InternImage—H# (ours)  [DINO [70] 2.18B | 65.0 654

Table 4. Comparison of the state-of-the-art detectors on
COCO val2017 and test-dev.

COCO val2017 and test-dev. Compared to previous state-
of-the-art models, we surpass FD-SwinV2-G [26] by 1.2
points (65.4 vs. 64.2), with 27% fewer parameters and with-
out complicated distillation processes, which shows the ef-
fectiveness of our models on the detection task.

4.3. Semantic Segmentation

Settings. To evaluate the semantic segmentation per-
formance of Internlmage, we initialize the backbone with
pre-trained classification weights and train our models with
UperNet [77] on ADE20K [78] for 160k iterations and
compare fairly with previous CNN-based and transformer-
based backbones. To further reach top performance, we arm
Internlmage-H with more advanced Mask2Former [76], and
adopt the same training settings in [17,65].

Results. As shown in Table 5, when using UperNet
[77] for semantic segmentation, our Internlmage consis-
tently outperforms prior arts [2, 21, 22, 29]. For exam-

method ggg #params | #FLOPs [?éggj r(nl\I/IOSI)J
Swin-T [2] 5122 [ 60M 945G | 445 458
ConvNeXt-T [21] 5122 | 60M 939G | 46.0 46.7
SLaK-T [29] 5122 | 65M 936G | 476  —
InternImage-T (ours) 5122 59M 944G 479 48.1
Swin-S [2] 5122 8IM 1038G | 47.6 495
ConvNeXt-S [21] 5122 | &M 1027G | 48.7 496
SLaK-S [29] 5122 | 9IM 1028G | 494  —
InternImage-S (ours) 5122 8OM 1017G | 50.1 50.9
Swin-B [2] 5122 121M | 1188G | 481 497
ConvNeXt-B [21] 5122 | 122M | 1170G | 49.1 49.9
RepLKNet-31B [22] 5122 | 112M | 1170G | 49.9 50.6
SLaK-B [29] 5122 | 135M | 1172G | 502  —
InternImage-B (ours) 5122 128M 1185G | 50.8 51.3
Swin-L¥ [2] 6402 [ 234M | 2468G | 52.1 535
RepLKNet-31L¥ [22] 6402 | 207M | 2404G | 524 52.7
ConvNeXt-L¥ [21] 6402 | 235M | 2458G | 532 537
ConvNeXt-XL¥ [21] 6402 | 391M | 3335G | 53.6 54.0
InternImage—Li (ours) 6402 | 256M 2526G | 539 54.1
Internlmage-XL¥ (ours) | 6402 | 368M | 3142G | 55.0 55.3
SwinV2-G# [16] 8962 | 3.00B — — 599
InternImage-H# (ours) | 8962 | 1.12B | 3566G | 59.9 60.3
BEIT-3%# [17] 8962 | 1.90B — — 6238
FD-SwinV2-G# [26] 8962 | 3.00B - - 614
Internlmage-H” (ours) + | ¢9c2 | 1315 | 4635G | 625 629
Mask2Former [76] ) ’ '

Table 5. Semantic segmentation performance on the ADE20K
validation set. The FLOPs are measured with 512x2048,
6402560, or 896 x 896 inputs according to the crop size.

ple, with almost the same parameter numbers and FLOPs,
our Internlmage-B reports 50.8 mloU on the ADE20K val,
which is outstanding from the strong counterparts such
as ConvNeXt-B (50.8 vs. 49.1) and RepLKNet-31B (50.8
vs. 49.9). Furthermore, our Internlmage-H yields 60.3 MS
mloU, which is better than SwinV2-G [16], while the pa-
rameter number is much smaller (1.12B vs. 3.00B).
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Figure 4. Model parameters and GPU memory usage of shared
weights v.s unshared weights among convolution neurons. The
left vertical axis indicates the model parameters and the right one
indicates the GPU memory usage per image when the batch size
is 32 and the input image resolution is 224 x 224.
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Figure 5. Visualization of sampling locations for different
groups at different stages. The blue star indicates the query point
(on the left sheep), and the dots with different colors indicate the
sampling locations of different groups.

It is worth noting that, when using Mask2Former [76]
and multi-scale testing, our InternImage-H achieves the best
mloU of 62.9, higher than the current best BEiT-3 [17] on
the ADE20K benchmark. These results demonstrate that
the CNN-based foundation model can also enjoy the divi-
dends of massive data and challenge the leading position of
transformer-based models.

4.4. Ablation Study

Sharing weights among convolution neurons matters.
Large-scale models are sensitive to parameters and memory
cost of the core operator, due to hardware limitations. To
address this problem, we share weights among convolution
neurons of DCNv3. As shown in Fig. 4, we compare the pa-
rameters and memory cost of the models based on DCNv3
with shared or unshared weights. We see that the parame-
ters and memory cost of models with unshared weights are
much higher than the shared one, especially for the -H scale,
the ratio of saved parameters and GPU memory is 42.0%
and 84.2%, respectively. As shown in Table 6, we also ex-
amine that the two models at -T scale have similar top-1
accuracy on ImageNet (83.5 vs. 83.6) and AP® on COCO
(47.2 vs. 47.4), even the model without shared weights has

shared w  multi-group  softmax ‘ top-1 acc ‘ APP  AP™
X 4 v 83.6 474 42.6
v X v 82.3 438 40.0
v v X 65.7 38.7 35.6
v v v 83.5 472 425

Table 6. Ablation comparison of the three modifications in
DCNv3. These experiments are based on InternImage-T for clas-
sification and Mask R-CNN 1x schedule for detection.

66.1% more parameters.

Multi-group spatial aggregation brings stronger fea-
tures. We introduce aggregation groups to allow our model
to learn information from different representation subspaces
like transformers [9]. As shown in Fig. 5, for the same
query pixel, the offsets from different groups are concen-
trated in different regions, resulting in hierarchical seman-
tic features. We also compare the performance of the model
with and without multiple groups. As reported in Table 6,
the model significantly drops 1.2 points on ImageNet and
3.4 points on COCO val2017. In addition, we also see that
in the first two stages, the learned effective receptive field
(ERF) is relatively small, and as the model goes deeper (i.e.,
stages 3 and 4), the ERF increases to be global. This phe-
nomenon is different from ViTs [9, 10, 79] whose ERF is
usually global. Moreover, the normalization of sampling
points improves gradient stability. Without using softmax
normalization leads to 17.8 points drop on ImageNet and
8.5 points drop on COCO.

5. Conclusion & Limitations

We introduce Internlmage, a new large-scale CNN-based
foundation model that can provide strong representations
for versatile vision tasks, such as image classification, ob-
ject detection, and semantic segmentation. We tune the flex-
ible DCNV2 operator to satisfy the requirement of foun-
dation models, and develop a series of blocks, stacking
and scaling rules centered on the core operator. Exten-
sive experiments on object detection and semantic segmen-
tation benchmarks verify that our Internlmage can obtain
comparable or better performance than well-designed large-
scale vision transformers trained with massive data, show-
ing that CNN is also a considerable choice for large-scale
vision foundation model research. Nonetheless, latency re-
mains an issue for DCN-based operators adapting to down-
stream tasks with high-speed requirements. Also, large-
scale CNNs are still in their early stages of development,
and we hope Internlmage can serve as a good starting point.
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