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Abstract

Recently, visual-language navigation (VLN) – entailing
robot agents to follow navigation instructions – has shown
great advance. However, existing literature put most empha-
sis on interpreting instructions into actions, only delivering
“dumb” wayfinding agents. In this article, we devise LANA,
a language-capable navigation agent which is able to not
only execute human-written navigation commands, but also
provide route descriptions to humans. This is achieved by si-
multaneously learning instruction following and generation
with only one single model. More specifically, two encoders,
respectively for route and language encoding, are built and
shared by two decoders, respectively for action prediction
and instruction generation, so as to exploit cross-task know-
ledge and capture task-specific characteristics. Throughout
pretraining and fine-tuning, both instruction following and
generation are set as optimization objectives. We empirically
verify that, compared with recent advanced task-specific
solutions, LANA attains better performances on both in-
struction following and route description, with nearly half
complexity. In addition, endowed with language generation
capability, LANA canexplain tohumanitsbehavioursandas-
sist human’s wayfinding. This work is expected to foster fu-
ture efforts towards building more trustworthy and socially-
intelligent navigation robots.

1. Introduction

Developing agents that can interact with humans in natu-
ral language while perceiving and taking actions in their en-
vironments is one of the fundamental goals in artificial intel-
ligence. As a small step towards this target, visual-language
navigation (VLN) [4] – endowing agents to execute natural
language navigation commands – recently received signifi-
cant attention. In VLN space, much work has been done on
language grounding – teaching agents how to relate human
instructions with actions associated with perceptions. How-
ever, there has been far little work [27, 70, 1, 77, 23] on the
reverse side – language generation – teaching agents how to
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Figure 1: LANA is capable of both instruction following and gen-
eration. Its written report benefits human-robot collaboration, and,
to some extend, can explain its behavior: it takes a wrong action at
step 2 as it mistakes the dining room for bedroom. After gathering
more information at step 3, it changes to the correct direction.

verbalize a vivid description of navigation routes. More criti-
cally, existing VLN literature separately train agents that are
specialized for each single task. As a result, the delivered
agents are either strong wayfinding actors but never talking,
or conversable route instructors but never walking.

This article underlines a fundamental challenge inVLN:
Can we learn a single agent that is capable of both naviga-
tion instruction following and route description creation?

We propose LANA, a language-capable navigation agent,
that is fully aware of such challenge (Fig.1). By simultane-
ously learning instruction grounding and generation, LANA
formalises human-to-robot and robot-to-human communi-
cation, conveyed using navigation-oriented natural language,
in a unified framework. This is of great importance, because:
i) It completes the necessary communication cycle between
human and agents, and promotes VLN agent’s real-world
utility [58]. For instance, when an agent takes long time to
execute a navigation command, during which sustained hu-
man attention is infeasible and undesirable, the agent should
report its progress [72]. Also, agents are expected to direct
human in agents’ explored areas [81], which is relevant for
search and rescue robots in disaster regions [71, 19], guide
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robots in public spaces [77], and navigation devices for the
visually impaired [36]. ii) Two-way communication is inte-
gral to tight human-robot coordination (i.e., “I will continue
this way · · · ”) [7], and boosts human trust in robot [6, 24],
hence increasing the acceptance of navigation robots. iii) De-
veloping the language generation skill makes for more ex-
plainable robots, which can interpret their navigation beha-
viors in a form of human-readable route descriptions.

Technically, LANA is built as a Transformer-based, multi-
task learning framework. The network consists of two uni-
modal encoders respectively for language and route encod-
ing, and two multimodal decoders respectively for route-to-
instruction and instruction-to-route translation, based on the
two encoders. The whole network is end-to-end learned with
the tasks of both instruction grounding and generation, dur-
ing both pretraining and fine-tuning phases. Taken all these
together, LANA provides a unified, powerful framework that
explores both task-specific and cross-task knowledge at the
heart of model design and network training. LANA thus can
better comprehend linguistic cues (e.g., words, phrases, and
sentences), visual perceptions, actions over long temporal
horizons and their relationships, even in the absence of ex-
plicit supervision, and eventually benefits both the two tasks.

We conduct extensive experiments on three famous VLN
datasets (i.e., R2R [4], R4R [38], REVERIE [62]), for both
instruction following and generation, giving a few intriguing
points: First, LANA successfully solves the two tasks using
only one single agent, without switching between different
models. Second, with an elegant and integrated architecture,
LANA performs comparable, or even better than recent top-
leading, task-specific alternatives. Third, compared to learn-
ing each task individually, training LANA on the two tasks
jointly obtains better performance with reduced complexity
and model size, confirming the advantage of LANA in cross-
task relatedness modeling and parameter efficiency. Forth,
LANA can explain to human its behavior by verbally describ-
ing its navigation routes. LANA can be essentially viewed as
an explainable VLN robot, equipped with a self-adaptively
trained language explainer. Fifth, subjective analyses reveal
our linguistic outputs are of higher quality than the baselines
but still lag behind human-generated utterances. While there
is still room for improvement, our results shed light on a pro-
mising direction of future VLN research, with great poten-
tial for explainable navigation agents and robot applications.

2. Related Work
Navigation Instruction Following. Building autonomous,
language-based navigation agents is a long-standing target
for natural language processing and robotics communities.
Rather than previous studies bounded to controlled environ-
mental context [55, 71, 10, 5, 57], Anderson et al. [4] lift
such task to a photo-realistic setting – VLN, stimulating in-
creasing interest in computer vision field. Early efforts were

built upon recurrent neural networks. They explore diverse
training strategies [83, 82], mine extra supervisory signals
from synthesized samples [27, 70, 28] or auxiliary tasks [82,
35, 53, 94, 77], and explore intelligent path planning [39, 54,
80]. For structured and long-range context modeling, recent
solutions were developed with environment map [93, 13, 21,
79], transformerarchitectures [33, 60, 48, 63, 11], and multi-
modal pretraining [56, 31, 30, 12].

Unlike existing VLN solutions that are all specialized for
navigation instruction following, we are ambitious to build a
powerful agent that is able to not only execute navigation in-
structions but also describe its navigation routes. We stick to
this target throughout our algorithm – from network design,
to model pretraining, to fine-tuning. Through jointly learn-
ing instruction execution and generation, our agent can bet-
ter ground instructions into perception and action, and, to cer-
tain degree, interpret its behavior and foster human trust.
Our target and visual-dialog navigation [72] are different
(yet complementary), as the latter only focuses on the situa-
tion where agents use language to ask for human assistance.
Navigation Instruction Generation. The study of instruc-
tion creation [17] can date back to the 1960s [52]. Early work
[87, 2, 51] found human route direction is tied to cognitive
map [42], and impacted by many factors, e.g., cultural back-
ground [73] and gender [37]. They also reached a consensus
that involving turn-by-turn directions and salient landmarks
makes instructions easier for human to follow [50, 76, 66].
Based on these efforts, a few computational systems are de-
veloped using pre-built templates [50, 29], or hand-crafted
rules [18]. Though providing high-quality output in targeted
scenarios, they require expertise of linguistic knowledge and
extensive effort for building the templates/rules. Some data-
driven solutions [16, 58, 19, 26] emerged later, yet confined
to simplified grid-like or perception-poor environments.

Generating natural language instructions has long been
viewed as a core functionality of socially intelligent robots
and been of great interest in many disciplines such as robo-
tics [29], linguistics [68], cognition[42, 25], psychology [73],
and geo science [20]. Surprisingly little has been done in the
field of embodied vision. For the rare exceptions [27, 70, 67,
1, 77, 23], [27, 70, 67] are only to augment the training data
for boosting wayfinding, and, all of them learn a single agent
specialized for instruction generation. Our idea is fundamen-
tally different. We are to build a language-capable navigation
agent that masters both instruction following and creation.
As a result, this work represents an early yet solid attempt
towards socially intelligent, embodied navigation robots.
Auxiliary Learning in VLN. There are several VLN solu-
tions [53, 94, 78] exploit extra supervision signals from auxi-
liary tasks to aid navigation policy learning. For the auxiliary
tasks, representative ones include next-step orientation reg-
ression [94], navigation progress estimation [53], path back-
translation [94, 77], trajectory-instruction compatibility pre-
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Figure 2: Architecture overview of LANA (§3.1).

diction [94], as well as final target localization [93].
These VLN solutions put focus on instruction following;

the auxiliary tasks are the means, not the end. By contrast,
we aim to build one single agent that learns to master both
instruction following and creation well.Although [77] pays
equal attention to instruction following and generation un-
der a dual-task learning scheme, it still learns two separate
single-task agents. Moreover, the aforementioned auxiliary
tasks, in principle, can be utilized by our agent.
Vision-Language Pretraining for VLN. Vision-language
pretraining [64, 69, 14] on massive-scale image-text pairs
has recently witnessed rapid progress. It has been proven that
transferable cross-modal representations can be delivered via
such pretraining and facilitate downstream tasks [84, 47,
92, 64, 44, 46, 90, 89]. Such training regime has become
increasingly popular in VLN. In particular, a few early
endeavors [45, 33] directly adopt general vision-language
pretraining for VLN, without considering task-specific na-
ture. Later, [30, 31, 12] conduct pretraining on abun-
dant web image-captions [30] or synthesized trajectory-
instruction pairs [31, 12] with different VLN-specific proxy
tasks. [11, 63] introduce history-aware proxy tasks for more
VLN-aligned pretraining.

From the view of proxy task, existing VLN pretraining
follows the masked language modeling regime [40]. Differ-
ently, our pretraining is based on language generation, which
helps the agent to capture the linguistic structures so as to
reach comprehensive understanding of language commands
and boost instruction execution. Recent advance [86, 91, 22,
85] in general vision-language pretraining also confirm the
value of generative language modeling. Moreover, for LANA,
instruction generation is not merely a proxy task that is of-
ten dropped after pretraining, but also a main training target
during fine-tuning, and the fundamental basis for the ability
of language-based route direction during deployment.

3. Methodology
Task Setup. Our target is to build a language-capable navi-
gation agent, which masters both instruction following and
generation tasks, using one single model instance only.
• Instruction following: the agent needs to find a route R=
{rt}Tt=1of T steps to a target location, following a human-
written instruction X={xl}Ll=1 of L words. At each step
t, the agent gets a panoramic RGB percept Ot, discretized
into K= 36 views, i.e., Ot= {ot,k ∈R3×224×224}Kk=1. The
agent selects a navigation action at, i.e., a navigable view,

from{ot,k}k to perform. Together, Ot and at determine
the route state rt at step t, i.e., rt=(Ot, at).

• Instruction generation: the agent observes a navigation
routeR={rt}Tt=1, i.e., a sequence of actions{at}Tt=1 along
with the panoramic percept {Ot}Tt=1, and must verbalize
a grounded description X={xl}Ll=1 of the route R.

Method Overview. To address our challenging setting, we
devise LANA, a Transformer-based, multi-task VLN agent
(Fig. 2) that exploits cross-task commonalities throughout
architecture design (§3.1) and network training (§3.2).

3.1. Model Architecture
LANA can take the navigation routeR={rt}t as input and

output corresponding description X={xl}l, and vice versa.
To achieve such bi-directional translation between naviga-
tion route R and instruction X , and explore cross-task rela-
tedness, LANA is elaborately designed as a composition of:
• Route Encoder Er and Language Encoder E l for unimoda-

lity representation encoding based on self-attention; and
• Language Decoder Dl and Route Decoder Dr for cross-

attention based route-language bi-directional translation.
The two unimodal encoders are shared between and jointly
trainedwiththetwomultimodaldecoders.Theyworkclosely:
• Instruction Following: at navigation step t, LANA respec-

tively feeds the entire instruction X and the sequence of
historical route states {r1, · · ·, rt−1} and current percept
Ot into the corresponding encoders, and utilizes the route
decoder Dr to predict the navigation action at.

• Instruction Generation: at generation step l, LANA respec-
tively feeds the full route R and prior predicted words
{x1, · · ·, xl−1} into the corresponding encoders, and uti-
lizes the language decoder Dl to predict the next word xl.

We remark that LANA conducts the instruction generation
task in an autoregressive manner. In this way, both the two
decoders are conditioned on both the two encoders, leading
to extensive visual and linguistic knowledge exchange.
Route Encoder Er. Er takes input either the entire route, i.e.,
R={rt}Tt=1={(Ot, at)}Tt=1, during instruction generation;
or historical route states along with current observation, i.e.,
{r1, · · ·, rt−1, Ot}= {O1, a1, · · ·, Ot−1, at−1, Ot}, during
wayfinding. Hence it has two types of input tokens corre-
sponding to the panoramic observation Ot and action at. In
particular, the observation token of Ot is calculated by:

Ot = [ot,1,ot,2, · · · ,ot,K ] ∈ RK×d,

ot,k = Fv(vt,k) + Fθ(θt,k) + τ t + τO ∈ Rd,
(1)
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where vt,k and θt,k are respectively the visual and orienta-
tion embeddings of view ot,k; Fv/θ is linear projection for
feature dimension alignment; τ t∈Rd embeds the temporal
order – t; and τO∈Rd is a learnable type embedding which
indicates ot,k is an observation token.

Similarly, the action token of at is given as:

at = Fv(vt,at) + Fθ(θt,at) + τ t + τA ∈ Rd, (2)

where vt,at
and θt,at

respectively embed the visual view and
turned angle that are associated with action at. Analogous
to Eq. 1, τA∈Rd encodes the action token type.

Tokenizing all the Ksubviews {ot,k}kof each panoramic
percept Ot allows LANA to access/memorize all the obser-
vations along the navigation route. Unfortunately, consider-
ing such many tokens causes unaffordable computation load
for self-attention based encoding. To pursue a good balance
between computational cost and representation ability, we
first compute an action-attentive route state:

rt=at + ct ∈ Rd,

ct=cross att(at,Ot)=cross att(at, [ot,k]
K
k=1) ∈ Rd.

(3)

Through cross-attention, i.e., cross att(·, ·), action-related
visual context ct are gathered and compressed into a d-
dimensional vector. Then the output of Er is obtained via:

Ins. following: [r̄1:t−1, Ōt] =self att([r1:t−1,Ot]) ∈R(t−1+K)×d,

Ins. generation: [r̄1:T ] =self att([r1:T ]) ∈RT×d.
(4)

Language Encoder E l. E l takes input either the complete
instruction, i.e., X = {xl}Ll=1, during wayfinding; or previ-
ously generated words, i.e., {x1, · · ·, xl−1}, during instruc-
tion generation. It is built as a standard Transformer language
encoder for contextualized linguistic feature extraction:

Ins. following: [x̄1:L]=E l([x1:L]) ∈RL×d,

Ins. generation: [x̄1:l−1]=E l([x1:l−1]) ∈R(l−1)×d,
(5)

where E l contains several blocks, each of which has a multi-
head self-attention layer and a feed-forward sub-layer [65];
position embeddings are omitted for the sake of brevity.

We note that, during the training of the instruction gen-
eration task, causal future mask [74] is applied to each self-
attention layer, ensuring each word token can only attend to
the previous ones, and allowing our single model to tackle
both instruction following and generation simultaneously.
Route DecoderDr.Dr is for instruction-to-route translation.
Concretely, at navigation step t,Dr takes input the complete
instruction embedding x̄1:L, historical route states r̄1:t−1, as
well as current observation feature Ōt= ōt,1:K , and outputs
probability distribution pt∈△Kof action selection over cur-
rent K subviews ot,1:K1. More specifically, Dr is built as a
stack of several cross-attention-based blocks for modeling
cross-modal relationships. For each block, we have:

1Note that, in addition to theK action subviews,STOP token is also con-
sideredhere, leading toK+1decisionchoices.WeomitSTOP for simplicity.

[r̂1:t−1, ôt,1:K ]= cross att([r̄1:t−1, ōt,1:K ], x̄1:L), (6)
[r̄1:t−1, ōt,1:K ]←self att([r̂1:t−1, ôt,1:K ]). (7)

Eq. 6 obtains language-enhanced route and observation rep-
resentations, i.e., r̂1:t−1 and ôt,1:K , through cross-attention.
Eq. 7 adopts self-attention to model temporal dependencies
among historical route states r̂1:t−1, and capture the corre-
lations between r̂1:t−1 and current observation Ôt= ôt,1:K .

After several Dr decoder blocks, the action probability
over the K subviews ot,1:K is given as:

pt = softmax({Fr(ōk)}Kk=1) ∈ △K , (8)

where Fr : Rd→ R is a two-layer feed-forward network for
action score mapping, as in [11, 93].
Language DecoderDl. Dl is for route-to-instruction trans-
lation. Concretely, at instruction generation step l, Dl takes
input the full route states r̄1:T , and the embeddings of pre-
viously generated instruction words x̄1:l−1, and outputs pro-
bability distribution ql ∈△M of word selection over a pre-
defined vocabulary with M words. Analogous toDr,Dl has
several cross-attention based blocks. Each block is given as:

x̂1:l−1= cross att(x̄1:l−1, r̄1:T ), (9)
x̄1:l−1←causal self att(x̂1:l−1). (10)

Eq. 9 lets the text attend to the route context. In Eq. 10, we
adopt the causally-masked self-attention, instead of normal,
bi-directional self-attention, to force Dl to “attend-ahead”,
which is needed for autoregressive inference.

After several Dl decoder blocks, the probability over the
M -word vocabulary is given as:

ql = softmax(F l(x̄l−1)) ∈ △M , (11)

whereFr:Rd→RM is a two-layer feed-forward network for
the prediction of the word score distribution.

3.2. Network Training

All the modules of LANA, i.e., two unimodal encoders Er
and E l, as well as two multimodal decoders Dr and Dl, are
jointly end-to-end learned, by optimizing the training objec-
tives of instruction following and generation.
Instruction Generation. For each instruction-route training
pair (X,R), whereX=x1:L andR= r1:T , LANA learns in-
struction generation by predicting xl based on the full route
R and proceeding reference words x0:l−1. We append two
special tokens to X , i.e., x0 = [BOS] and xL+1 = [EOS], res-
pectively indicating the start and end of the instruction sen-
tence. To generate word xl, LANA respectively feeds R and
x0:l−1 into Er and E l for unimodal encoding (cf. Eq. 4&5).
Conditionedontherouteand linguisticembeddings, i.e., r̄1:T
and x̄1:l−1,Dlgives the word probability ql (cf.Eq.11). The
training objective of instruction generation, formulated as
the language modeling loss, can be written as:

Lg = −
L+1∑
l=1

log(p(xl|x0:l−1, R)) = −
L+1∑
l=1

log(ql(xl)), (12)
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where ql(xl)∈ [0, 1] is the probability of word xl. LANA is
trained to minimize the negative log-likelihood of the refer-
ence instruction words. Teacher-forcing [88] is used here to
enable the parallel text input. Worth mentioning is that, ex-
isting VLN pretraining methods [30, 31, 30, 11, 63] rely
on the masked language modeling (MLM) strategy. Since
MLM only predicts a small portion (typically 15%) of input
words during each training iteration, it is less efficient for
large-scale pretraining data, as pointed out by many recent
literature in general vision-language pretraining [34, 9, 15].
Instruction Following. For each training pair (X,R), where
X = x1:L and R = r1:T = (Ot, at)1:T , LANA concurrently
learns instruction following by predicting at based on the
full instructionX , history from expert demonstration r1:t−1,
and the current percept Ot. Specifically, LANA respectively
feeds X and {r1:t−1, Ot} into E l and Er (cf. Eq. 4&5). Con-
ditioned on the output unimodal encodings, i.e., x̄1:L and
[r̄1:t−1, Ōt], Dr gives the action probability pt (cf. Eq. 8).
The training objective of instruction following is to mini-
mize the negative log-likelihood of the target view actionat:

Lf =−
T∑

t=1

log(p(at|r0:t−1, Ot, X))=−
T∑

t=1

log(pt(at)). (13)

LANA is end-to-end learned with the two training targets
(cf. Eq.12&13) during both pretraing and fine-tuning phases.
Note that the encoders Er and E l receive the supervision sig-
nals from both instruction generation (cf. Eq. 12) and fol-
lowing (cf. Eq. 13). Moreover, such a joint learning frame-
work grants LANA improved interpretability – LANA can be
viewed as a navigator born with a language explainer Dl.

3.3. Implementation Details

Network Architecture. The route Er and language E l enco-
ders respectively have one and nine layers, and the decoders
DrandDl both have four blocks. The feature dimension is set
as d=768. The orientation feature θk of view ok (cf. Eq. 1)
is defined as: θk=(cosφk, sinφk, cosϕk, sinϕk), where φ
and ϕ are the angles of heading and elevation, respectively.
Training. Following recent VLN practice [56, 31, 30, 11,
63], the pretraining and fine-tuning paradigm is adopted:
• Pretraining: With the two training objectives (cf. Eq. 12&

13), LANA is pretrained on offline-sampled instruction-
route pairs from PREVALENT [31], including 104K ori-
ginal R2R samples and 6482K synthesized ones. LANA
is trained for 100K iterations, using Adam optimizer [41]
with 1e-4 learning rate, andN=128 batch size.

• Fine-tuning: Then we fine-tune LANA on different VLN
datasets, still using our two training tasks (cf. Eq. 12&13).
Following the standard protocol [33, 77, 32, 82], the train-
ing of instruction following is based on the mixture of im-
itation learning and reinforcement learning. In this stage,
we set the learning rate to 1e-5 and batch size to 8.

We use four NVIDIA Tesla A100 GPUs for network train-
ing, and sample only one training task for each mini-batch.

Inference. Once trained, LANA is capable of both following
and verbalizing navigation instructions with only one single
model instance, without any architectural change. Specifi-
cally, for instruction following, greedy search, i.e., selecting
the action with the highest probability at each prediction
step, is adopted and terminated when STOP is chosen. For
instruction generation, the sentence is predicted in an au-
toregressive manner, i.e., generating one word at a time un-
til EOS is chosen, conditioned on previous generated ones.

4. Experiment
We evaluate LANA for both instruction following (§4.1)

and generation (§4.2) tasks, followed by a series of diag-
nostic experiments (§4.3) and qualitative studies (§4.4).

For each task, we give scores of two versions of LANA:
• LANAmt: jointly learn the two target tasks throughout pre-

training and fine-tuning. Thus, such multi-task version only
has one single agent instance, tested on the two tasks.

• LANAst: jointly pre-train on the two tasks, but fine-tune on
each task individually. There are two single-task agent in-
stances; each is only tested on the corresponding task.

We collect here key observations from our subsequent expe-
riments: i) LANA performs comparable, or even better than
prior tasks-specific agents; ii) LANAmt outperforms LANAst

with more efficient parameter utilization; iii) LANA can pro-
vide test-time behavioral interpretation by verbalizing des-
criptions of its navigation routes; and iv) our model design
and training targets indeed contribute to our strong results.

4.1. Performance on Instruction Following
Dataset. We conduct experiments on three VLN datasets:
• R2R [4]: It has four splits, i.e., train (61 scenes, 14, 039

instructions), val seen (61 scenes, 1, 021 instructions),
val unseen (11 scenes, 2, 349 instructions), and test
unseen (18 scenes, 4, 173 instructions). There are no
overlapping scenes between train and unseen splits.

• R4R [38]: It extends R2R by connecting two close tail-to-
head trajectories and corresponding instructions in R2R.
R4R contains three sets, i.e., train (61 scenes, 233, 613
instructions), val seen (61 scenes, 1, 035 instructions),
and val unseen (11 scenes, 45, 162 instructions).

• REVERIE [62]: It replaces detailed instructions in R2R
with high-level descriptions of target locations and ob-
jects. It is composed of four sets, i.e., train (53 scenes,
10, 466 instructions), val seen (61 scenes, 1, 371 in-
structions), val unseen (10 scenes, 3, 753 instructions),
and test unseen (16 scenes, 6, 292 instructions).

Evaluation Metric. For R2R, we follow conventions [4, 27]
to report four evaluation metrics: i) Success Rate (SR), ii)
Trajectory Length (TL), iii) Oracle success Rate (OR), and
iv) Success rate weighted by Path Length (SPL), where SR
and SPL are of priority. For R4R, we further adopt v) Cov-
erage weighted by Length Score (CLS) [38], vi) normalized
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R2R val unseen R2R test unseen
Methods

SR↑ SPL↑ OR↑ TL↓ SR↑ SPL↑ OR↑ TL↓
BT-follower [27] [NeurIPS2018] 36 - 45 - 35 28 44 14.8

EDrop-follower [70] [NAACL2019] 52 48 - 10.7 51 47 59 11.7
AuxRN [94] [CVPR2020] 55 50 62 - 55 51 62 -

PREVALENT [31] [CVPR2020] 58 53 - 10.2 54 51 - 10.5
VLN⟳BERT [33] [CVPR2021] 63 57 - 12.0 63 57 - 12.4

AirBERT [30] [ICCV2021] 62 56 - 11.8 62 57 - 12.4
HAMT [11] [NeurIPS2021] 65 59 - 11.9 63 58 - 12.7

HOP [63] [CVPR2022] 64 57 - 12.3 64 59 - 12.7
LANAst (ours) 66 60 73 11.9 64 59 71 12.4
LANAmt (ours) 68 62 76 12.0 65 60 71 12.6

Table 1: Quantitative comparison results (§4.1) for instruction fol-
lowing on R2R [4]. ‘−’: unavailable statistics.

R4R val unseen
Methods

CLS ↑ nDTW ↑ SDTW ↑ SR ↑ TL ↓
BT-follower [27] [NeurIPS2018] 30 - - 24 19.9

RCM [82] [CVPR2019] 35 30 13 26 28.5
PTA [43] [NeurIPS2021] 37 32 10 24 17.7

EDrop-follower [70] [NAACL2019] 34 - 9 29 27.0
OAAM [61] [ECCV2020] 40 - 11 31 13.8

ActiveVLN [80] [ECCV2020] 59 44 22 32 19.7
EGP [21] [NeurIPS2020] 44 37 18 30 18.3

HAMT [11] [NeurIPS2021] 57.7 50.3 31.8 44.6 -
LANAst (ours) 58.6 51.9 31.4 43.0 22.7
LANAmt (ours) 59.7 52.3 31.7 43.2 22.1

Table 2: Quantitative comparison results (§4.1) for instruction fol-
lowing on R4R [38].

REVERIE val unseen REVERIE test unseen
Methods

SR ↑ SPL ↑ OR ↑ TL ↓ RGS ↑ RGSPL ↑ SR ↑ SPL ↑ OR ↑ TL ↓ RGS ↑ RGSPL ↑
RCM [82] [CVPR2019] 9.29 6.97 14.23 11.98 4.89 3.89 7.84 6.67 11.68 10.60 3.67 3.14

VLN⟳BERT [33] [CVPR2021] 30.67 24.90 35.02 16.78 18.77 15.27 29.61 23.99 32.91 15.86 16.50 13.51
AirBERT [30] [ICCV2021] 27.89 21.88 34.51 18.71 18.23 14.18 30.28 23.61 34.20 17.91 16.83 13.28

HAMT [11] [NeurIPS2021] 32.95 30.20 36.84 14.08 18.92 17.28 30.40 26.67 33.41 13.62 14.88 13.08
HOP [63] [CVPR2022] 30.39 25.10 35.30 17.16 18.23 15.31 29.12 23.37 32.26 17.05 17.13 13.90

LANA (ours) 34.00 29.26 38.54 16.28 19.03 16.18 33.50 26.89 36.41 16.75 17.53 14.25

Table 3: Quantitative comparison results (§4.1) for instruction following on REVERIE [62].

R2R val seen R2R val unseenMethods
SPICE↑ Bleu-1↑ Bleu-4↑ CIDEr↑ Meteor↑ Rouge↑ SPICE↑ Bleu-1↑ Bleu-4↑ CIDEr↑ Meteor↑ Rouge↑

BT-speaker [27] [NeurIPS2018] 0.203 0.537 0.155 0.121 0.233 0.350 0.188 0.522 0.142 0.114 0.228 0.346
EDrop-speaker [70] [NAACL2019] 0.202 - 0.245 0.493 0.228 0.467 0.181 - 0.237 0.422 0.225 0.458

VLS [1] [CVPRW2019] 0.214 0.549 0.157 0.137 0.228 0.352 0.197 0.548 0.159 0.132 0.231 0.357
CCC-speaker [77] [CVPR2022] 0.231 0.728 0.287 0.543 0.236 0.493 0.214 0.708 0.272 0.461 0.231 0.477

LANAst (ours) 0.251 0.743 0.305 0.522 0.243 0.502 0.223 0.722 0.287 0.433 0.235 0.490
LANAmt (ours) 0.256 0.759 0.314 0.533 0.245 0.503 0.226 0.736 0.298 0.457 0.238 0.498

Table 4: Quantitative comparison results (§4.2) for instruction generation on R2R [4].

Dynamic Time Warping (nDTW), and vii) Success weighted
by nDTW (SDTW). For REVERIE, the first four metrics are
also employed for its navigation sub-task, and viii) Remote
Grounding Success rate (RGS) and ix) RGS weighted by
Path Length (RGSPL) are additionally used for overall per-
formance evaluation.

Quantitative Result. Several famous and recent advanced
solutions [27, 70, 94, 82, 80, 31, 33, 21, 30, 11, 77, 63] for
instruction following are involved in comparison. Note that
we report the score of the single model under the single run
setup following the tradition [33, 77, 63, 11]. As shown
in Table 1, LANAst, which is only fine-tuned on wayfind-
ing after multi-task pretraining, demonstrates comparable,
if not better, results than those alternatives on R2R. Remark-
ably, LANAmt, which learns to interpret navigation paths
alongside following instructions, even yields better naviga-
tion performance. For instance, LANAmt lifts LANAst by
2% and 1% SPL, on val unseen and test respectively.
This verifies the efficacy of our language-capable naviga-
tion scheme and multi-task learning strategy. More signif-
icant improvements can be observed on R4R (cf. Table 2)
and REVERIE (cf. Table 3), where the former focuses on
long-horizon navigation with longer instructions and trajec-
tories, while the latter gives abstract instructions only. These
results confirm our generality and versatility. It is important

to note that all the competitors are only aware of wayfind-
ing, while our agent can generate grounded route descrip-
tions for interpreting its navigation behaviors/plans.

4.2. Performance on Instruction Generation
Dataset. We compare machine generated route descriptions
with the human-written instructions, on two VLN datasets:

• R2R [4]: As R2R test is preserved for benchmarking in-
struction following agents, we report the performance of
instruction generation on val sets. Each R2R navigation
path is associated with three ground-truth instructions.

• R4R [38]: Performance is reported on R4Rval sets, where
each path corresponds to nine ground-truth instructions.

REVERIE [62] is not involved as its instructions are high-
level, concise descriptions of remote objects, which cannot
serve our purpose of grounded instruction generation.
Evaluation Metric. Following [1, 77], we opt for five text
metrics: i) BLEU [59], ii) CIDEr [75], iii) METEOR [8], iv)
ROUGE [49], and v)SPICE [3]. For each navigation path, the
metrics are averaged over all the corresponding groundtruth
instructions. SPICE is considered as the primary metric.
Quantitative Result. We compare LANA with four instruc-
tion generation algorithms [27, 70, 1, 77]. Table 4 and Ta-
ble 5 summarize our comparison results. We can find that
our task-specific agent, i.e., LANAst, already outperforms all
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R4R val seen R4R val unseenMethods
SPICE↑ Bleu-1↑ Bleu-4↑ CIDEr↑ Meteor↑ Rouge↑ SPICE↑ Bleu-1↑ Bleu-4↑ CIDEr↑ Meteor↑ Rouge↑

BT-speaker [27] [NeurIPS2018] 0.164 0.691 0.223 0.099 0.213 0.453 0.207 0.387 0.088 0.139 0.172 0.359
EDrop-speaker [70] [NAACL2019] 0.209 0.750 0.281 0.216 0.245 0.473 0.218 0.433 0.106 0.200 0.187 0.363

CCC-speaker [77] [CVPR2022] 0.219 0.758 0.312 0.245 0.252 0.480 0.233 0.403 0.115 0.206 0.193 0.365
LANAst (ours) 0.237 0.768 0.327 0.264 0.265 0.483 0.259 0.437 0.123 0.216 0.199 0.375
LANAmt (ours) 0.245 0.772 0.333 0.287 0.261 0.484 0.262 0.443 0.128 0.231 0.200 0.376

Table 5: Quantitative comparison results (§4.2) for instruction generation on R4R [38].

#
Pretraining Fine-tuning Instruction Following Instruction Generaion

Instruction
Following

Instruction
Generation

Instruction
Following

Instruction
Generation SR ↑ SPL ↑ OR ↑ TL ↓ SPICE ↑ Bleu-1 ↑ Bleu-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑

1 ✔ 52.1 48.3 59.3 11.2 - - - - - -
2 ✔ - - - - 0.178 0.692 0.241 0.321 0.216 0.463
3 ✔ ✔ 53.1 48.9 60.9 11.6 0.182 0.704 0.245 0.304 0.219 0.469
4 ✔ ✔ 61.3 55.4 69.7 12.0 - - - - - -
5 ✔ ✔ - - - - 0.215 0.718 0.255 0.378 0.230 0.472
6 ✔ ✔ ✔ 65.7 59.9 73.4 11.9 - - - - - -
7 ✔ ✔ ✔ - - - - 0.223 0.722 0.287 0.433 0.235 0.490
8 ✔ ✔ ✔ ✔ 67.9 61.6 75.7 12.0 0.226 0.736 0.298 0.457 0.238 0.498

Table 6: Ablation study (§4.3) on R2R val unseen [4].

the competitors, across all the metrics and datasets. Note that,
CCC [77], a current top-leading solution, learns the instruc-
tion generation model with the aid of a separate wayfinder.
More impressively, our multi-task agent, i.e., LANAmt, per-
forms on par or even better than LANAst, demonstrating the
algorithmic and functional advantages of our approach.
User Study. To provide a complete measure of the quality of
our created instructions, we conduct a set of human evalua-
tionexperiments,basedonpair-wisecomparison.Concretely,
50 college students are asked to respectively compare the ins-
tructions generated by LANAmt with those created by CCC,
BT-Speaker, and humans, for 100 paths in total. The paths
are sampled from R2R val unseen. Finally, LANA re-
ceive more preference votes, i.e., 63.4% vs CCC 36.6%, and
75.1%vsBT-Speaker24.9%.Yet,human-written instructions
are far more favorable, i.e., 69.3% vs LANA 30.7%, demon-
strating there remains large room for improvement.

4.3. Diagnostic Experiment
To thoroughly study the effectiveness of our language-

capable navigation framework, we carry out a series of di-
agnostic experiments on val unseen set of R2R [4], for
both instruction following and generation tasks. The experi-
mental results are summarized in Table 6. More specifically,
a total of eight baselines are involved in our ablation study:

1. fine-tune on instruction following only, w/o pretraining;
2. fine-tune on instruction generation only, w/o pre-training;
3. fine-tune on both instruction following and generation,

w/o pretraining;
4. pretrain and fine-tune on instruction following only;
5. pretrain and fine-tune on instruction generation only;
6. pretrain on both instruction following and generation, and

fine-tune on instruction following only;
7. pretrain on both instruction following and generation, and

fine-tune on instruction generation only;
8. pretrain and fine-tune on both instruction following and

generation.

These baselines can be roughly grouped into three classes:
i) baselines 1,2, and 3 are all w/o pretraining, and fine-tune
on each task either individually or jointly; ii) baselines 4 and
5 pretrain and fine-tune on each task individually; and iii)
baselines 6, 7, and 8 are w/ joint-task pretraining, and fine-
tune on each task either individually or jointly. Baselines 6
and 7 are the two sing-task agents, i.e., LANAst, and base-
line 8 are our finally delivered agent LANAmt; their perfor-
mance have been thoroughly reported in §4.1 and §4.2.

Also, note that baselines 1, 4, and 6 only master wayfind-
ing, while baselines 2, 5, and 7 can only undertake the route
description task. Baselines 3 and 8 are capable of both.

Several essential conclusions can be drawn:
• Joint-task fine-tuning can benefit the performance of both

tasks (baseline 3 vs 1 vs 2);
• Joint-task pretraining and fine-tuning can benefit the per-

formance of both tasks (baseline 8 vs 6 vs 7);
• Pretraining can facilitate the final performance (baseline

4 vs 1, baseline 5 vs 2, baseline 6 vs 1, baseline 7 vs 2,
and baseline 8 vs 3);

• Joint-task pretraining is more favored than single-task
pretraining (baseline 8 vs 4 vs 5);

• Joint-task pretraining and fine-tuning is more favored
than all the other training strategies (baseline 8 vs 1-7).

Note that, joint-tasking pretraining and fine-tuning not only
promotes the performance, but increases parameter effi-
ciency, i.e., baseline 8 (143 M) vs 6 + 7 (220 M = 123 M +
97 M). In a nutshell, our ablative experiments solidly ver-
ify the power of our idea, the efficacy of our algorithmic
design, and our advantage in efficient-parameter utilization.
4.4. Qualitative Experiment

Fig. 3 depicts three exemplar navigation episodes from
val unseen set of R2R [4] . Fig. 3 (a) compares LANAmt

against LANAst on the instruction following task. As seen,
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Figure 3: (a-b) Visual comparison results between LANAmt and LANAst for (a) instruction following and (b) instruction generation tasks.
The start and end points of a navigation route are respectively denoted by and . (c) LANA is able to interpret its navigation behavior
using natural language. The generated report keeps the monitor updated on the navigation process, and even helps reveal the failure mode.
For example, at step 2-3, LANAmt enters the storeroom because LANAmt thought it is a bedroom. See §4.4 for more detailed discussion.

LANAmt performs robust in this challenging case, while
LANAst fails to reach the target location. As both LANAmt

and LANAst are built with similar network architectures and
pretraining protocol, we attribute this to the exploration of
cross-task knowledge during fine-tuning. Fig. 3 (b) visua-
lizes comparison on instruction creation. As seen, LANAmt

outputs more grounded instructions that contain precise ac-
tion descriptions (e.g., turn left, walk down) as well as sa-
lient landmarks (e.g., double doors, dining table, refrigera-
tor). These descriptions have similar properties as human-
generated texts, even involving some landmarks (e.g., sofa)
that are informative yet missed in human reference. Fig. 3 (c)
shows that, LANA can offer real-time behavioral interpreta-
tion by showing human text report of its navigation process.
This not only eases human from consistent monitoring, but
also reveals its inner mode to some extent. For example, the
report at step 1-3 informs that LANA wrongly recognizes
the storeroom as the bedroom – this is why LANA chooses
to enter the storeroom at step 2. In short, as a language-
capable navigator, LANA shows advantages in (post-hoc)
interpretability and human-robot bi-directional communica-
tion, which are the basic premises of human trust generated.

5. Conclusion and Discussion

This work calls for a paradigm shift from current VLN
agents – strong language-aided wayfinders but without lan-
guage generation ability – towards more language-capable
navigation robots that can not only execute navigation ins-
tructions but also verbally describe the navigation routes.
We present LANA, which learns to master both instruction
following and generation with one single model. LANA per-
forms on par or even better than previous task-specific so-
lutions in both tasks, with much reduced complexity. Cru-
cially, LANA can write high-quality route descriptions that
are informative to interpret its behavior and direct humans
in collaboration. We believe LANA provides a solid basis for
the creation of language-capable robots and brings us clo-
ser to the ultimate goal of building socially-intelligent and
trustworthy robots. Future work should reinforce LANA with
the knowledge of large-scale pretrained foundation models.
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