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Abstract

Deep Implicit Function (DIF) has gained much popu-
larity as an efficient 3D shape representation. To capture
geometry details, current mainstream methods divide 3D
shapes into local regions and then learn each one with a
local latent code via a decoder. Such local methods can
capture more local details due to less diversity among local
regions than global shapes. Although the diversity of local
regions has been decreased compared to global approaches,
the diversity in different local regions still poses a challenge
in learning an implicit function when treating all regions
equally using only a single decoder. What is worse, these
local regions often exhibit imbalanced distributions, where
certain regions have significantly fewer observations. This
leads that fine geometry details could not be preserved well.
To solve this problem, we propose a novel Local Pattern-
specific Implicit Function, named LP-DIF, to represent a
shape with clusters of local regions and multiple decoders,
where each decoder only focuses on one cluster of local re-
gions which share a certain pattern. Specifically, we first
extract local codes for all regions, and then cluster them
into multiple groups in the latent space, where similar re-
gions sharing a common pattern fall into one group. After
that, we train multiple decoders for mining local patterns of
different groups, which simplifies the learning of fine geo-
metric details by reducing the diversity of local regions seen
by each decoder. To further alleviate the data-imbalance
problem, we introduce a region re-weighting module to
each pattern-specific decoder using a kernel density estima-
tor, which dynamically re-weights the regions during learn-
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ing. Our LP-DIF can restore more geometry details, and
thus improve the quality of 3D reconstruction. Experiments
demonstrate that our method can achieve the state-of-the-
art performance over previous methods. Code is available
at https://github.com/gtyxyz/lpdif.

1. Introduction
Representing 3D shapes is a fundamental problem for

many applications in 3D computer vision. Recently, Deep

Implicit Function (DIF) [4,22,23,25,28,41] has gained pop-

ularity for efficiently learning the representation of 3D ob-

jects and scenes. In contrast to directly learning explicit 3D

representations [15,30,31] (voxels, point clouds or meshes),

DIF aims to train a neural network to learn the binary occu-

pancy function [25] or signed distance function (SDF) [28],

as given a query location and an input latent code. Such

kind of representation is continuous with arbitrary precision

and can handle various topology, which has achieved the

state-of-the-art results in several shape reconstruction tasks.

Existing DIF methods can be roughly classified into two

categories: global and local approaches. Most of the early

methods [4, 9, 20, 21, 25, 27–29, 35, 37, 40] fall into global

approaches. These methods take advantage of one latent

code and a single decoder to represent the whole shape.

Global approaches often suffer from long training time and

low reconstruction accuracy due to the limited capacity of

capturing local geometry details. More recently, local ap-

proaches [1,3,5,6,10–12,17,19,34,36,38] divide 3D shapes

(often divide by 3D grids) into local regions and then learn

each one with a local latent code via a decoder, where the

decoder shares the geometric similarities among different

local regions. Although such local approaches can capture

some local details, a large diversity of different local regions

still increase the difficulty of learning an implicit function
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(d) Reference(b) Local DIF (c) Ours(a) Global DIF
Figure 1. Visual comparison of 3D shape surface reconstruction. Compared with global DIF (e.g. [28]) and local DIF (e.g. [1]), our method

can reconstruct the shape with fine-grained geometric details. Compared with previous methods that treat all local regions equally using a

single decoder, we regard a shape as clusters of local regions and mine local patterns with different decoders. This alleviates the difficulty

of learning caused by diverse local regions.

when treating all regions equally using only a single de-

coder. In addition, these local regions often exhibit imbal-

anced distributions, where certain regions have significantly

fewer observations, especially in scenes. As a result, fine

geometry details of shapes could not be captured well.

To address the above-mentioned problems, we propose a

novel Local Pattern-specific Implicit Function, named LP-

DIF, for learning 3D shape representation using clusters of

local regions with multiple decoders, where each decoder

only represents one cluster of local regions which share a

certain pattern (geometric features such as facing direction,

number of faces, relative positions to the region center).

Specifically, we first extract the local latent codes for all

local regions divided by 3D grids, and then cluster them

into multiple groups in the latent space, where similar re-

gions sharing a common pattern fall into one group. After

that, we train a separate pattern-specific decoder for each

group of regions, which reduces data-imbalance among dif-

ferent patterns of regions and simplifies the learning of fine

geometric details of 3D structures by limiting the diver-

sity of regions seen to each decoder. To further alleviate

the region-imbalance problem, we introduce a region re-

weighting module to each pattern-specific decoder by ker-

nel density estimator, which dynamically re-weights the re-

gions during learning. Our main contributions can be sum-

marized as follows.

• We propose a novel LP-DIF to learn local pattern-

specific deep implicit function of 3D shapes for re-

constructing highly detailed geometry. Compared with

previous methods that treat all local regions equally us-

ing a single decoder, we regard a shape as clusters of

local regions and mine local patterns with different de-

coders. This alleviates the difficulty of learning caused

by diverse local regions.

• We introduce a dynamic region re-weighting module,

which could provide more focus on less common re-

gions to tackle the data-imbalance problem in each pat-

tern decoder. As a result, the regions with less appear-

ances can be captured more accurately.

• Our method could be applied in multiple objects, sin-

gle complex objects and large scale of scenes. We

improve the state-of-the-art accuracy in surface recon-

struction under various benchmarks.

Figure 2 illustrates the main differences between DIF,

local DIF and our method. For DIF approaches, one global

code and a decoder are used for the whole shape. For Lo-

cal DIF methods, multiple local codes and a shared decoder

are used. For our method, multiple clusters of regions are

learned with different decoders.

2. Related Work
In computer vision and graphics, there are two cate-

gories of shape representations: explicit representation and

implicit representation. Explicit geometric representations

[15, 30, 31] such as point clouds, voxels and triangular

meshes have been widely used for representing geometries

for their simplicity and flexibility. More recently, deep im-

plicit representations [4, 25, 28, 39] have been proposed in

the context of shape representation, where the implicit sur-

faces of geometries are represented as the zero-set of spatial

functions with fully connected neural networks. Such kind

of representation is continuous with arbitrary precision and
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Figure 2. Comparison between DIF, local DIF and our method. (a) DIF methods leverage one global code and one decoder, often suffer

from long training speed and low reconstruction quality due to the limited capacity of capturing local geometry details. (b) Local DIF

methods use multiple local codes and one shared decoder, a large diversity of different local regions still increase the difficulty of learning

an implicit function when treating all regions equally using only a single decoder. (c) Our method, LP-DIF, for representing a shape with

some clusters of local regions and multiple decoders, where each decoder only represents one cluster of local regions which share a certain

pattern. (d) Visualization of the clustered local regions.

can handle different topology structure, which has achieved

the state-of-the-art results in several shape reconstruction

task. Implicit representations can be categorized into global

and local approaches.

Global Deep Implicit Shape Representation. In recent

years, implicit functions have been introduced into neural

networks [25, 28] and show promising results. Early ap-

proaches learn one latent code and one single global im-

plicit network to represent the whole shape. For example,

DeepSDF [28] learned an implicit function where the net-

work output represents the signed distance of the input point

to its nearest surface, where zero-set of the learned function

implicitly represents the surface of the shape. Other ap-

proaches [25,29] defined the implicit functions as 3D occu-

pancy probability functions and turned shape representation

into a point classification problem. Following these meth-

ods, [35, 37] improved the expressiveness of the implicit

functions by introducing high frequency signals with peri-

odic activation. [39] proposed to represent the volume den-

sity as an implicit function of the signed distance in neural

volume rendering for high-quality novel view generation.

However, these methods suffer from long training time and

low reconstruction accuracy for high resolution data due to

the limited capacity of decoder to capture local geometry

details.

Local Deep Implicit Shape Representation. To cap-

ture more geometry details, current mainstream methods

divide 3D shapes into many local regions and then learn

each one with a local latent code via a decoder. Some re-

cent works [1, 29] proposed to divide the whole 3D shape

uniformly into 3D grids, where they either assign each lo-

cal grid with a latent code or trilinearly interpolate local la-

tent codes based on querying location. In LIG [17], this

idea was applied to 3D scenes. NGLOD [36] leveraged

sparse octree instead of uniform grids to increase efficiency.

ACORN [24] proposed to adaptively optimize the coor-

dinate decomposition to achieve higher accuracy in large-

scale scenes. DCC-DIF [19] optimized the local latent code

learning by introducing dynamic grid positions. IFNet [6]

utilized multiple level of latent codes in a hierarchical way.

LPI [3] divided the global shape into multiple local parts in

latent space to allow easier shape parts learning and blend-

ing. PatchNet [38] was proposed to divide a shape into

local patches with no fixed structure. Points2surf [10] in-

corporated local information surrounding each point, but it

typically takes a lot of time for point-wise distance calcula-

tion. Although such local methods can capture some local

details, a large diversity of different local regions still poses

an challenge for learning an implicit function when treating

all regions equally using only a single decoder. In addition,

these local regions often exhibit imbalanced distributions,

where certain regions have significantly fewer observations.

As a result, fine geometry details could not be captured well.

Several methods [8, 13] have been proposed to learn multi-

ple decoders for point deformations, however, their meth-

ods cannot be applied in learning implicit representations

for shapes. MDIF [5, 33] used multiple levels of decoders

in a hierarchical way, however, it did not consider the rela-

tionship between local regions. In novel view synthesizing,

KiloNeRF [32] utilized thousands of tiny MLPs to represent
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different parts of the scenes. The simple and effective way

to introduce multiple decoders is to assign each local region

with a decoder, however, it is normally not feasible due to

time and space constraint and the prior information of the

local regions could not be preserved. In contrast, we intro-

duce clustering for the local regions as a trade-off between

reconstruction accuracy and efficiency.

3. Method
Given K discrete points X = {xk} and their signed dis-

tances S = {sk} from a 3D surface, our goal is to regress a

continuous function that outputs the closest signed distance

to the 3D surface given a spatial point x. To achieve this

goal, we propose to learn a local pattern-specific DIF. The

architecture of LP-DIF and differences between our LP-DIF

and other methods are illustrated in Figure 2 . In this sec-

tion, we first introduce latent embedding learning and local

region feature extraction in Sec. 3.1. Then we describe our

pattern clustering module in Sec. 3.2. After that we present

our pattern decoder with density adaptive re-weighting in

Sec. 3.3. At last, we illustrate our training process in Sec.

3.4.

3.1. Learning Latent Embedding for Local Regions

At the beginning, we choose to train a local DIF net-

work [1, 17] to learn latent embedding for local regions to

extract coarse local features for clustering. Local DIF [1,17]

is a special category of DIF, which is defined as a signed

distance function f(x, z) modeled with Multilayer Percep-

trons (MLP), mapping each query point x near a surface

to the signed distance domain continuously with condition

code z. A shape S is defined as the zero level set of f(x, z):

S = {x ∈ R
3|fθ(x, z) = 0}, (1)

where θ is the parameter of the MLP. To be able to repre-

sent multiple shapes in the same time, the condition z is

optimized for each shape, and the parameter θ is shared for

all the shapes. Local DIF is defined on partitioned space of

shape S. A normalized 3D space is usually partitioned into

d×d×d regions {Bi} ⊆ R
3, i = 0...N−1. All the regions

have their separate codes zi, sharing the same parameter θ.

The entire surface is defined as:

S = {x ∈ R
3|
∑

fθ(T (x), zi) = 0}, (2)

where T (x) is the re-centering function of x, which trans-

forms the points in each region to their local coordinates.

After training of local DIF, all local regions have their codes

zi, which serve as the local features of corresponding re-

gions.

Code constraint. For DIF methods, it is important to con-

strain the latent codes of all the regions during training. Tra-

ditional Local DIF methods [1, 28] use L2 norm loss on the

learned latent codes. However, in our method, we found

that L2 norm loss could lead to latent codes being spread

randomly in space, which is not good for subsequent clus-

tering and latent code learning. Therefore, we constrain all

local latent codes to be distributed within a hyper-sphere.

The intuition is to process the latent codes in a way similar

to normalizing them before entering the network. We up-

date z according to Eq. (3) after every step of learning of

z.

zi =

{
zi if ||zi|| ≤ 1
zi

||zi|| otherwise
(3)

3.2. Pattern Clustering

After training of the local DIF, each region from the

whole set of shapes will be encoded by the condition zij for

region Bi and shape Sj , j = 0...M − 1. A shape normally

consists of many empty or near-empty regions. To alleviate

the influence of these regions, we first remove regions with

SDF positive rate (the percentage of positive SDF samples

within one local region) out of [0.01, 0.99]. The intuition

is that if one region has almost all SDF samples to be posi-

tive or negative, this region will be far away from any shape

surfaces and need no training. After learning of local DIF,

there are regions Bi that are learned well with low recon-

struction errors, we remove these easy-to-learn regions with

error threshold ε. The remaining regions are aggregated into

P clusters by finding the cluster center ck of their condition

codes with K-means by optimizing 4. We empirically select

P = 4 to balance between training speed and accuracy. The

clustered local regions are visualized in Figure 2 (d).

argmin
ck

P∑
k=0

N∑
i=0

M∑
j=0

||zij − ck||2. (4)

Region border consistency. We found that the division of

shape and clustering lead to inconsistent surface estimates

near the boundaries of local regions. To alleviate this prob-

lem, we utilize overlap between close local regions. The

fθ(T (x, zi)) near the boundaries (distance less than 0.05)

will be averaged by the nearby local regions. The region

border consistency is a post-processing procedure. Local

regions from all clusters are first processed together back to

a whole shape according to their spatial locations.

3.3. Pattern Decoder

We have multiple pattern decoders to cover each cluster.

The structure of each pattern decoder consists of 9-layer

MLP and a skip connection. Specifically, local code and

query point coordinate are concatenated and fed into MLP,

and point coordinate is concatenated again after 4 layers.

The output of the network is signed distance to the nearest

surface.
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Figure 3. Pattern decoder with density-adaptive re-weighting. To

further alleviate the region-imbalance problem, we introduce a re-

gion re-weighting module to each pattern-specific decoder by ker-

nel density estimator, which dynamically re-weights the regions

during learning.

Density-adaptive re-weighting. Among the learned lo-

cal codes, certain regions may have less appearances than

others, and therefore they are usually neglected by the de-

coder. To recover more details, it is important to focus more

on these regions. First we estimate the space density D of

local codes based on their density distributions using kernel

density estimation. Gaussian kernel is selected with band-

width h = 0.35. Now we can re-weight region Bi with

weight ωi =
1
D during loss calculation. There are two ways

of re-weighting the regions, fixed and dynamic. In fixed

way, we only update the weight once with pre-extracted lo-

cal codes. In the dynamic way, the re-weighting is applied

every time after local codes being updated by the pattern

decoder.

3.4. Training

Our LP-DIF is trained in three stages. In the first stage,

we extract the features from local regions by learning a

coarse local DIF. In the second stage, we cluster the local

regions based on their local features. At last, we train multi-

ple pattern decoders on clustered regions. Note that for each

pattern decoder, we use simple decoders so we have similar

total number of decoder parameters with local DIF. Dur-

ing training, we optimize decoders and latent codes, while

during testing, like other auto-decoder methods, we fix all

decoders and only optimize latent codes.

Point sampling. We sample data pairs (xk, sk) from Sj as

supervision. Sj is a mesh or point cloud with normals nk.

First we sample points along normal directions with normal

distribution N(0, θ). Then we sample random points {xk}
and calculate their signed distances {sk} based on the clos-

est distances.

Smooth L1 loss. To increase the weight in regions with

larger errors, we introduce smooth L1 loss [26], defined by

Lsdf
k =

{
1
2 (fθ(xk)− sk)

2 if |(fθ(xk)− sk)| < 1
((fθ(xk)− sk)− 1

2 ) otherwise
(5)

Gradient loss. It is important to train a DIF with gradient

consistency. We apply constraint on the gradient of each

sampled points, denoted as

Lgrad
k (xk) = e−(100sk)

2

(1− 〈∇f(xk),nk〉
||f(xk)|| ||nk|| ), (6)

We use cosine similarity of xk and the normal of its nearest

sampled surface point, and make xk closer to the surface

have larger influence.

The total loss function could be formulated as

L = Lsdf + λLgrad, (7)

where λ = 1.0 for all our experiments.

4. Experiments
We evaluate the effectiveness of our method compared

with the state-of-the-art methods on several different as-

pects: (1) the representation performance on 3D objects

dataset, (2) the performance on large-scale synthetic and

real scenes data, and (3) reconstruction power on single

complex object reconstruction.

4.1. 3D Objects Dataset Reconstruction

Dataset and metric. We run the experiments on the

ShapeNet dataset [2] with the same settings with [5]. The

dataset contains a subset of 13 categories in ShapeNet with

train/test splits from [7]. We evaluate geometric reconstruc-

tion quality with L2 Chamfer Distance (CD) and F-Score.

For L2 Chamfer Distance, we take exactly the same settings

as [5]. We sampled 100K signed distances near the surface

and 100K signed distances uniformly around the space. We

estimate CD using 100,000 randomly sampled points on the

ground truth and the reconstructed meshes. Additionally, in

all experiments, we compute the F-Score at a threshold of

τ , as F-Score is a metric less sensitive to outliers. F-Score

is the mean of recall (percentage of reconstruction to target

distances under τ ) and precision (vice versa). For object

reconstruction we use τ = 0.01. To be consistent with [5],

we divide the whole space into 16 × 16 × 16 regions. We

also compare with NGLOD [36] in ShapeNet150 dataset

following their evaluation protocol.

Quantitative comparison. The comparison results be-

tween LP-DIF and other state-of-the-art methods are shown

in Table 1. LP-DIF achieves the best performance across

all categories in terms of average L2 Chamfer Distance and

F-score. Compared with MDIF (auto-decoder branch) [5]

and DDC-DIF [19], LP-DIF achieves the best performance

in most categories, which shows the representational power

of our method for representing multiple objects. As in Table

2, our method performs better than the deepest level of [36].

To test the generalization ability of our method, We train our

model on one category (chair) and tested on another (un-

seen). A subset of the cross-category performance is shown

in Table 3. Our method has more accuracy than MDIF [5]

in unseen categories (bookshelf). In addition, as local re-

gions share similar feature across categories, the accuracy

for seen and unseen categories is almost the same for our

method.
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CD Mean ↓ F-score ↑
Category Occ. [29] IMNet [4] L.DIF [5] MDIF [5] DCC-DIF [19] Ours Occ [29] IMNet [4] L.DIF [5] MDIF [5] DCC-DIF [19] Ours

airplane 0.25 0.13 0.044 0.028 0.011 0.0115 89.8 91.7 98.5 98.6 99.7 99.86
bench 0.34 0.22 0.121 0.052 0.017 0.0211 85.2 88.6 96.0 96.0 99.5 99.64
cabinet 0.32 0.23 0.063 0.051 0.131 0.0405 83.2 89.2 96.6 96.6 96.4 98.42

car 0.58 0.26 0.09 0.088 0.218 0.0332 69.3 82.7 93.1 93.0 92.7 98.84
chair 0.38 0.43 0.042 0.035 0.037 0.0294 80.2 82.5 97.7 97.6 99.1 99.43

display 0.35 0.20 0.043 0.019 0.028 0.0256 82.3 89.4 98.6 98.7 99.4 99.64
lamp 1.47 2.76 0.795 0.795 0.327 0.0180 62.9 73.8 93.5 93.5 97.3 99.58
rifle 0.39 0.55 0.060 0.057 0.007 0.0062 86.1 81.1 96.9 96.9 99.9 99.97
sofa 0.31 0.16 0.208 0.037 0.036 0.0264 85.2 89.3 98.3 98.4 99.1 99.64

speaker 0.38 0.17 0.065 0.044 0.146 0.0424 78.1 89.4 97.3 97.3 96.1 97.86
table 0.31 0.30 0.107 0.046 0.029 0.0285 87.2 88.6 96.5 97.6 99.3 99.50

telephone 0.19 0.11 0.043 0.027 0.010 0.0202 88.9 96.5 99.6 99.3 99.6 99.58

watercraft 0.35 0.39 0.075 0.067 0.042 0.0156 80.3 84.7 97.4 97.2 98.3 99.70

mean 0.43 0.46 0.135 0.102 0.081 0.0245 81.4 86.7 96.9 97.0 98.2 99.36

Table 1. Surface reconstruction comparison on test set of shapenet in terms of mean L2 chamfer distance (multiplied by 1e3) and F-score.

Methods LOD3 [36] LOD4 [36] LOD5 [36] LP-DIF

CD Mean ↓ 0.112 0.069 0.062 0.025

Table 2. Comparison in ShapeNet150 with NGLOD [36].

Methods Sofa Lamp Bookshelf

MDIF [5] (seen/unseen) (CD↓) 0.0370/ - 0.7950/ - -/ 0.0910

LP-DIF (seen/unseen) (CD↓) 0.0264/ 0.0265 0.0180/ 0.0185 -/ 0.0490

Table 3. Cross-category performance in ShapeNet.

IFNetConvOccNet Ours GTLIGOccNet

Figure 4. Visual comparison with OccNet [25], ConvOccNet [29],

IFNet [6], and LIG [17], our method could reconstruct more ge-

ometry detail on ShapeNet.

Qualitative comparison. In Figure 4, we visually com-

pared 3D surface reconstruction on Shapenet with other DIF

methods [6,17,25,29], from which we find that LP-DIF re-

constructs more geometry details while other method tends

to lose details on thin structures.

LI
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Figure 5. Comparison for surface reconstruction on SceneNet with

sparse sampling.

(c) GT(a) LIG (b) Ours
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Figure 6. Comparison for surface reconstruction on 3D Scene

dataset with dense sampling.

4.2. 3D Scene Reconstruction

Dataset and metric. We conduct our experiments on a syn-

thetic dataset: SceneNet [14], and a real scanned dataset:

3D Scene dataset [42]. As scenes in SceneNet dataset are

not watertight, and have many double-sided faces creating

conflicting normals, we pre-process SceneNet to watertight

using methods from [16]. We drop scenes with empty inner

spaces after the watertighting process. We sample a con-

stant density of points according to the area of faces (1000

points per m2 for SceneNet and 10000 points per m2 for 3D

Scene dataset). For all the scene-level experiments, we ran-
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domly sample 2 million points on the generated mesh and

the ground truth mesh when estimating L1 CD, and we use

τ = 0.025 (2.5cm) for F-score. Since data is provided in a

physically-meaningful scale, we use world coordinate (me-

ters) for computing CD. Note that these two metrics are not

always consistent as CD is more sensitive to outliers. For

scene-level experiments, we directly optimize latent codes

and decoders on the scenes, and we divide the whole space

into 32× 32× 32 regions.

Quantitative comparison. The comparison results be-

tween LP-DIF and other state-of-the-art methods are shown

in Table 4. LP-DIF achieves the best performance across

all categories in terms of average L1 Chamfer Distance and

F-score both in sparse (Scenenet) and dense (3D SceneNet

dataset) sampling settings, which proves better representa-

tional power of our method. Compared with scenenet with

sparse sampling setting, our method improves more on 3D

scenenet dataset with dense sampling settings.

Qualitative comparison. In Figure 5 and 6, we visually

compared 3D surface reconstruction of scene dataset with

other DIF methods, from which we find that LP-DIF recon-

structs more geometry details and less missing parts than

other method.

4.3. Complex 3D Object Reconstruction

Dataset and metric. For complex 3D object reconstruc-

tion, we use Thai Statue, obtained from the Stanford 3D

Scanning Repository [18]. It is an intricate statue, which

consists of 10 million polygons. Fine details of the statue

are challenging to be captured with existing methods. We

randomly sample 2 million points on the generated and the

ground truth meshes when estimating L1 CD, and we use τ
= 0.025 for F-score. For complex 3D object, we directly

optimize latent codes and decoders to fit the shape. For

ACORN [24], we train using their official code and extract

the reconstructed mesh. [24] is trained for several hours un-

til max octants are reached.

Figure 7. Comparison for surface reconstruction on Thai statue.

Our result is comparable with ACORN [24] with slightly better

details.

Quantitative comparison. The comparison results be-

tween LP-DIF and other state-of-the-art methods are shown

in Table 5. LP-DIF achieves the best performance in terms

of average L1 Chamfer Distance and F-score for complex

3D object reconstruction.

Qualitative comparison. In Figure 1, we visually com-

pare 3D surface reconstruction of Thai statue with other

DIF methods, where we find that LP-DIF reconstructs much

more fine geometry details than other methods. In Figure 7,

we compare with ACORN [24]. Our result is comparable

with ACORN with slightly better details.

4.4. Ablation Study

Network capacity and efficiency comparison. We have

summarized the number of parameters used in NGLOD

(LOD5) [36], LDIF [1], MDIF [5], LIG [17], and our

method in Table 6. As in the table, different number of

parameters are used and our method utilized the second

least total number of parameters. We also tested the perfor-

mance under the same total number of parameters in Table

7. As in the first two rows of the table, LDIF [1] and our

method have the similar total number of parameters, where

our method outperforms LDIF [1]. After that, we increase

our MLP to 800-dimensional hidden layers to have the sim-

ilar total number parameters with MDIF [5]. As in the 3-4

rows of the table, the performance of our ablation method

is still better than MDIF [5], but is worse than our origi-

nal decoders. The reason could be that the increased pa-

rameters of network makes the optimization of local latent

code unstable. The performance of our coarse decoder is

also shown in the last row for comparison. We have also

compared the computation time on 8 shapes of ShapeNet

in Table 8. It takes much more time for NGLOD [36] to

train. For L-DIF and LP-DIF, we reported the time needed

to reach the same accuracy level. It takes less time for LP-

DIF than L-DIF.

(a) Random clustering (b) LP-DIF
Figure 8. Comparison with random clustering. (a) Replacing the

clustering process with random assigning each local region into

clusters. (b) Clustering with regards to similarity leads to better

performance.

Ablation on modules. We also conduct a series of exper-

iments on the effectiveness of our modules on Burghers of

3D scenenet dataset. Our baseline is implemented by re-

moving pattern clustering and region re-weighting. First,

we separate the whole space into different number of re-

gions (each region has one code), and test the effect of

our module under different settings. The results are shown

in Table 9, where the baseline model performs better with

more local regions and codes, however, more local codes

occupy much more space. Our model with 7.63 MB lo-

cal codes could have similar performance with the baseline
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CD Mean ↓ F-score ↑ CD Mean ↓ F-score ↑
Category LIG [17] Ours LIG [17] Ours Scene LIG [17] Ours LIG [17] Ours

Bathroom 0.00825 0.00633 98.56 99.66 Burghers 0.0122 0.0039 90.25 99.67
Bedroom 0.00978 0.00730 96.41 99.24 Lounge 0.0131 0.0031 85.49 99.72

Office 0.01452 0.00929 93.92 96.97 CopyRoom 0.0130 0.0034 84.68 99.97
Livingroom 0.01191 0.00987 96.39 98.65 StoneWall 0.0110 0.0031 89.14 99.90

Kitchen 0.00988 0.00825 96.36 98.55 TotemPole 0.0120 0.0041 89.39 99.23

Mean 0.01065 0.00816 96.40 98.67 Mean 0.0122 0.0035 87.79 99.70

Table 4. Surface reconstruction from sparse point cloud on SceneNet and dense point cloud on 3D SceneNet dataset in terms of mean L1

chamfer distance and F-score.

Methods DeepSDF [28] LIG [17] LDIF baseline Ours

CD Mean ↓ 0.740 0.603 0.211 0.176
F-score ↑ 1.3 13.6 21.8 63.6

Table 5. Surface reconstruction comparison on Thai statue in

terms of mean L1 chamfer distance and F-score.

Methods # Feature Param # Network Param Total # Param

LOD5 [36] 10122528 23685 10146213

L.DIF [5] 524288 460993 985281

MDIF [5] 44032 18359301 18403333

LIG [17] 131072 227745 358817

Ours 53248 (coarse) + 249856 3745 (coarse) + 463108 769957

Table 6. Network capacity comparison.

Methods # Feature Param # Inference Param Total # Param CD (Airplane)↓ CD (Bench)↓
L.DIF [5] 524288 460993 985281 0.044 0.121

Ours 303104 (53248 + 249856) 466853 (3745 + 463108) 769957 0.012 0.021

MDIF [5] 44032 18359301 18403333 0.028 0.052

Ours-abl-mdif 303104 (53248 + 249856) 17952293 (3745 + 17948548) 18255397 0.0145 0.031

Ours-coarse 53248 2689 55937 0.062 0.167

Table 7. Ablation with similar total number of parameters.

Methods Stage1 Stage 2 Stage 3 Total

NGLOD [36] - - - ˜4000s

LDIF baseline - - - 165s (1.33s ×124epochs)
LP-DIF 20s 1s 141s (2.43s ×58epochs) 162s

Table 8. Computation efficiency comparison.

Methods # of codes code size CD Mean ↓ F-score ↑
Baseline-32 32K 7.63 MB 0.00557 96.78

Baseline-128 2097K 488 MB 0.00389 99.65

LP-DIF-32 32K 7.63 MB 0.00394 99.67
LP-DIF-128 2097K 488 MB 0.00387 99.64

Table 9. Ablation study with different number of local codes. Re-

sult of the baseline method with different number of local codes

are shown in the first two rows. Result of LP-DIF with different

number of local codes are shown in the last two rows. Our method

can achieve same level of accuracy with much less local codes.

Methods CD Mean↓ F-score ↑
Baseline 0.00557 96.78

LP-DIF w/o clustering 0.00446 99.52

LP-DIF w/o re-weighting 0.00419 99.16

LP-DIF 0.00394 99.67

Table 10. Ablation study on components of our model in terms of

mean L1 chamfer distance and F-score.

method with 488 MB local codes. After that, we evaluate

the effectiveness of our clustering module by replacing it

with random assigning cluster indices. As in Figure 8 and

Table 6, the performance is deteriorated with random clus-

tering. The possible reason is that randomly separating local

regions increases the deviation of some local regions from

the cluster centers, causing them to fail in training. Next we

evaluate the components of our model by removing them

separately. We test two variations: (1) removing the clus-

tering module and re-weight on the whole set of regions,

and (2) removing the re-weighting module. The result is

shown in Table 10 and Figure 9 (a) - (c), and we find that

both modules are helpful for achieving good performance.

At last, we test the difference between fixed density estima-

tor and dynamic density estimator. As shown in Figure 9

(d) - (f), dynamic density estimator could reconstruct better

geometry details than fixed one.

(d) (e) (f)

(a) (c)(b)

Figure 9. Ablation study on density-adaptive re-weighting. (a)

Ours w/o density re-weighting. (b) Ours w/ density re-weighting.

(c) Ground truth. (d) Ours w/o density estimator. (e) Ours w/ fixed

density estimator. (f) Ours w/ dynamic density estimator.

5. Conclusion
In this paper, we present LP-DIF, a local pattern-specific

deep implicit function for reconstructing highly detailed ge-

ometry. Compared with previous methods that treat all local

regions equally using a single decoder, we regard a shape

as clusters of local regions and mine local patterns with

different decoders. This alleviates the difficulty of learn-

ing caused by diverse local regions. In addition, we intro-

duce a dynamic region re-weighting module, which could

provide more focus on less common regions to tackle the

data-imbalance problem in each pattern decoder. As a re-

sult, finer details of the local regions are learned more ac-

curately. We demonstrate that our method outperforms the

latest methods under various benchmarks.
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