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Abstract

Interpreting and explaining the behavior of deep neural
networks is critical for many tasks. Explainable AI pro-
vides a way to address this challenge, mostly by provid-
ing per-pixel relevance to the decision. Yet, interpreting
such explanations may require expert knowledge. Some re-
cent attempts toward interpretability adopt a concept-based
framework, giving a higher-level relationship between some
concepts and model decisions. This paper proposes Bot-
tleneck Concept Learner (BotCL), which represents an im-
age solely by the presence/absence of concepts learned
through training over the target task without explicit super-
vision over the concepts. It uses self-supervision and tai-
lored regularizers so that learned concepts can be human-
understandable. Using some image classification tasks as
our testbed, we demonstrate BotCL’s potential to rebuild
neural networks for better interpretability 1.

1. Introduction
Understanding the behavior of deep neural networks

(DNNs) is a major challenge in the explainable AI (XAI)

community, especially for medical applications [19,38], for

identifying biases in DNNs [2, 18, 42], etc. Tremendous re-

search efforts have been devoted to the post-hoc paradigm

for a posteriori explanation [29, 33]. This paradigm pro-

duces a relevance map to spot regions in the input image that

interact with the model’s decision. Yet the relevance map

only tells low-level (or per-pixel) relationships and does not

explicitly convey any semantics behind the decision. Inter-

pretation of relevance maps may require expert knowledge.

The concept-based framework [22, 37, 50] is inspired by

the human capacity to learn a new concept by (subcon-

sciously) finding finer-grained concepts and reuse them in

different ways for better recognition [24]. Instead of giv-

ing per-pixel relevance, this framework offers higher-level

*Corresponding author.
1Code is avaliable at https://github.com/wbw520/BotCL and a simple

demo is available at https://botcl.liangzhili.com/.
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Figure 1. Examples of concepts discovered by BotCL in Ima-

geNet [10] and concepts in the input image. BotCL automatically

discovers a set of concepts optimized for the target task and repre-

sents an image solely with the presence/absence of concepts.

relationships between the image and decision mediated by

a limited number of concepts. That is, the decision is ex-

plained by giving a set of concepts found in the image. The

interpretation of the decision is thus straightforward once

the interpretation of each concept is established.

Some works use concepts for the post-hoc paradigm for

better interpretation of the decision [14, 50], while the link

between the decision and concepts in the image is not ob-

vious. The concept bottleneck structure [23] uses the pres-

ence/absence of concepts as image representation (referred

to as concept activation). The classifier has access only to

the concept activation, so the decision is strongly tied to the

concepts. This bottleneck structure has become the main-

stream of the concept-based framework [5, 20, 28, 31].

A major difficulty in this framework is designing a set of

concepts that suits the target task. A promising approach is

handcrafting them [4, 21, 48], which inherently offers bet-

ter interpretability at the cost of extra annotations on the

concepts. Recent attempts automatically discover concepts

[1, 13, 14, 46]. Such concepts may not always be consis-

tent with how humans (or models) see the world [25, 47]

and may require some effort to interpret them, but concept

discovery without supervision is a significant advantage.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Inspired by these works, we propose bottleneck concept
learner (BotCL) for simultaneously discovering concepts

and learning the classifier. BotCL optimizes concepts for

the given target image classification task without supervi-

sion for the concepts. An image is represented solely by

the existence of concepts and is classified using them. We

adopt a slot attention-based mechanism [26, 27] to spot the

region in which each concept is found. This gives an extra

signal for interpreting the decision since one can easily see

what each learned concept represents by collectively show-

ing training images with the detected concepts. Figure 1

shows examples from ImageNet [10]. BotCL discovers a

predefined number of concepts in the dataset, which are ex-

emplified by several images with attention maps. An image

of Great White Shark is represented by the right part of

mouth (Cpt.1) and fins (Cpt.3). BotCL uses a single

fully-connected (FC) layer as a classifier, which is simple

but enough to encode the co-occurrence of each concept and

each class.

Contribution. For better concept discovery, we propose

to use self-supervision over concepts, inspired by the re-

cent success in representation learning [9,16]. Our ablation

study demonstrates that self-supervision by contrastive loss

is the key. We also try several constraints on concepts them-

selves, i.e., individual consistency to make a concept more

selective and mutual distinctiveness for better coverage of

various visual elements. These additional constraints regu-

lar the training process and help the model learn concepts

of higher quality.

2. Related Works
2.1. Explainable AI

XAI focuses on uncovering black-box deep neural net-

works [3, 6, 12, 32, 35, 36, 41, 43, 46]. A major approach

is generating a relevance map that spots important regions

for the model’s decision. Various methods have been de-

signed for specific architectures, e.g., CAM [49], and Grad-

CAM [33] for convolutional neural networks; [7] for Trans-

formers [40]. However, the interpretation of the relevance

maps may not always be obvious, which spurs different ap-

proaches [34, 45], including context-based ones.

2.2. Concept-based framework for interpretability

A straightforward way to define a set of concepts for a

target task is to utilize human knowledge [22,48]. Such con-

cepts allow quantifying their importance for a decision [21].

A large corpus of concepts [4, 39] is beneficial for delving

into hidden semantics in DNNs [50]. These methods are of

the post-hoc XAI paradigm, but a handcrafted set of con-

cepts can also be used as additional supervision for models

with the concept bottleneck structure [15, 22, 31].

Handcrafting a set of concepts offers better interpretabil-

ity as they suit human perception; however, the annotation

cost is non-negligible. Moreover, such handcrafted con-

cepts may not always be useful for DNNs [47]. These prob-

lems have motivated automatic concept discovery. Super-

pixels are a handy unit for finding low-level semantics, and

concepts are defined by clustering them [13, 14, 30]. An-

other interesting approach is designing a set of concepts to

be sufficient statistics of original DNN features [46]. These

methods are designed purely for interpretation, and concept

discovery is made aside from training on the target task.

The concept bottleneck structure allows optimizing a

set of concepts for the target task. ProtoPNet [8] adopts

this structure and identifies concepts based on the dis-

tance between features and concepts. SENN [1] uses self-

supervision by reconstruction loss for concept discovery.

SENN inspired us to use self-supervision, but instead of

reconstruction loss, we adopt contrastive loss tailored. For

a natural image classification task, this contrastive loss is

essential for concept discovery.

3. Model
Given a dataset D = {(xi, yi)|i = 1, 2, . . . , N}, where

xi is an image and yi is the target class label in the set Ω
associated with xi. BotCL learns a set of k concepts while

learning the original classification task. Figure 2a shows an

overview of BotCL’s training scheme, consisting of a con-

cept extractor, regularizers, and a classifier, as well as self-

supervision (contrastive and reconstruction losses).

For a new image x, we extract feature map F = Φ(x) ∈
R

d×h×w using a backbone convolutional neural network Φ.

F is then fed into the concept extractor gC , where C is a ma-

trix, each of whose κ-th column vector cκ is a concept pro-
totype to be learned. The concept extractor produces con-

cept bottleneck activations t ∈ [0, 1]k, indicating the pres-

ence of each concept, as well as concept features V ∈ R
d×k

from regions where each concept exists. The concept acti-

vations in t are used as input to the classifier to compute

score s ∈ [0, 1]|Ω|. We use self-supervision and regular-

izers for training, taking t and V as input to constrain the

concept prototypes.

3.1. Concept Extractor

Concept extractor uses slot attention [26, 27]-based

mechanism to discover visual concepts in D. We first add

position embedding P to feature map F to retain the spatial

information, i.e., F ′ = F +P . The spatial dimension of F ′

is flattened, so its shape is l × d, where l = hw.

The slot-attention computes attention over the spatial di-

mension for concept κ from cκ and F ′. Let Q(cκ) ∈ R
d,

and K(F ′) ∈ R
d×l denote nonlinear transformations for cκ

and F ′, respectively, given as multi-layer perceptrons with

three FC layers and a ReLU nonlinearity between them. At-

tention aκ ∈ [0, 1]l is given using a normalization function
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Figure 2. (a) The model pipeline. (b) Self-supervision and regularizers.

φ (refer to supp. material) as

aκ = φ(Q(cκ)
�K(F ′)). (1)

This attention indicates where concept κ presents in the

image as shown in Figure 1. If concept κ is absent, corre-

sponding entries of aκ are all close to 0. We summarize the

presence of each concept into concept activation tκ by re-

ducing the spatial dimension of aκ as tκ = tanh(
∑

m aκm),
where aκm is the m-th element of aκ.

3.2. Feature Aggregation

For training, we also aggregate features in F correspond-

ing to concept κ into concept feature vκ by

vκ = Faκ, (2)

which gives the average of image features over the spatial

dimension weighted by attention.

3.3. Classifier

We use a single FC layer without a bias term as the clas-

sifier, and concept activation t = (t1, . . . , tk)
� is the only

input, serving as the concept bottleneck [22]. Formally, let-

ting W be a learnable matrix, prediction ŷ ∈ R
|Ω| is given

by

ŷ = Wt. (3)

This classifier can be roughly interpreted as learning the

correlation between the class and concepts. Let wω be the

raw vector of W corresponding to class ω ∈ Ω, and wωκ is

its κ-th element. A positive value of wωκ means that con-

cept κ co-occurs with class ω in the dataset, so its presence

in a new image positively supports class ω. Meanwhile, a

negative value means the concept rarely co-occurs.

4. Training
4.1. Self-supervision for Concept Discovery

The absence of concept labels motivates us to incorpo-

rate self-supervision for concept discovery. We employ two

losses for different types of target tasks.

Reconstruction loss. SENN [1] uses an autoencoder-like

structure for learning better representation. We assume

this structure works well when visual elements are strongly

tied with the position2 since even discrete concepts should

have sufficient information to reconstruct the original im-

age. Based on this assumption, we design a reconstruction

loss for self-supervision. As shown in Figure 2b, decoder

D only takes t as input and reconstructs the original image.

We define our reconstruction loss as

lrec =
1

|B|
∑
x∈B

‖D(t)− x‖2. (4)

Contrastive loss. The composition of natural images is

rather arbitrary, so information in t should be insufficient

to reconstruct the original image. we thus design a simple

loss for an alternative, borrowing the idea from the recent

success of contrastive learning for self-supervision [9, 16].

We leverage the image-level labels of the target classifi-

cation task. Let t̂ = 2t−1k, where 1k is the k-dimensional

vector with all elements being 1. If a pair (t̂, t̂′) of concept

activations belong to the same class (i.e., y = y′ for y and

y′ corresponding to t̂ and t̂′), they should be similar to each

other since a similar set of concepts should be in the cor-

responding images, and otherwise dissimilar. The number

|Ω| of classes can be smaller than the number |B| of images

in a mini-batch so that a mini-batch can have multiple im-

ages of the same class. Therefore, we use sigmoid instead

of softmax, leading to

lret = − 1

|B|
∑

α(y, y′) log J(t̂, t̂′, y, y′), (5)

where α is the weight to mitigate the class imbalance prob-

lem (see supp. material) and

J(t̂, t̂′, y, y′) =

{
σ(t̂�t̂′) for y = y′

1− σ(t̂�t̂′) otherwise
. (6)

2For example, images of “7” in MNIST almost always have the acute

angle in the top-right part.
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4.2. Concept Regularizers

We also employ concept regularizers to facilitate train-

ing. They constrain concept prototypes {cκ} through {vκ}.

Individual consistency. For better interpretability, each

learned concept should not have large variations. That is,

the concept features vκ and v′κ of different images should

be similar to each other if tκ is close to 1. Let Hκ denote

the set of all concept features of different images in a mini-

batch, whose activation is larger than the empirical thresh-

old ξ, which is dynamically calculated as the mean of tκ in a

mini-batch. Using the cosine similarity sim(·, ·), we define

the consistency loss as:

lcon = −1

k

∑
κ

∑
vκ,v′

κ

sim(vκ, v
′
κ)

|Hκ|(|Hκ| − 1)
, (7)

where the second summation is computed over all combi-

nations of concept features vκ and v′κ. This loss penalizes a

smaller similarity between vκ and v′κ.

Mutual distinctiveness. To capture different aspects of

images, different concepts should cover different visual el-

ements. This means that the average image features of con-

cept κ within a mini-batch, given by v̄κ =
∑

vκ∈Hκ
vκ,

should be different from any other vκ′ . We can encode this

into a loss term as

ldis =
∑
κ,κ′

sim(v̄κ, v̄κ′)

k(k − 1)
, (8)

where the summation is computed over all combinations of

concepts. Note that concept κ is excluded from this loss if

no image in a mini-batch has concept κ.

4.3. Quantization Loss

Concept activation t can be sufficiently represented by

a binary value, but we instead use a continuous value for

training. We design a quantization loss to guarantee values

are close to 0 or 1, given by

lqua =
1

k|B|
∑
x∈B

∥∥abs(t̂)− 1κ

∥∥2 , (9)

where abs(·) gives the element-wise absolute value and ‖ ·‖
gives the Euclidean norm.

4.4. Total Loss

We use softmax cross-entropy for the target classification

task’s loss, donated by lcls. The overall loss of BotCL is

defined by combining the losses above as

L = lcls + λRlR + λconlcon + λdisldis + λqualqua, (10)

where lR is either lrec or lret depending on the target domain,

λqua, λcon, λdis, and λR are weights to balance each term.

5. Results

5.1. Experimental Settings

We evaluate BotCL on MNIST [11], CUB200 [44], and

ImageNet [10]. For evaluating discovered concepts, we re-

generated a synthetic shape dataset (Synthetic) [46].

For MNIST, we applied the same networks as [1] for the

backbone and the concept decoder. For CUB200 (same data

split as [22]) and ImageNet, we used pre-trained ResNet

[17] as the backbone with a 1 × 1 convolutional layer to

reduce the channel number (512 for ResNet-18 and 2048 for

ResNet-101) to 128. We chose a concept number k = 20 for

MNIST and k = 50 for the other natural image datasets. To

generate Synthetic, we followed the setting of [46], where

18,000 images were generated for training and 2,000 for

evaluation. We used k = 15 with ResNet-18 backbone.

Images were resized to 256× 256 and cropped to 224×
224 (images in Synthetic were directly resized to 224×224).

Only random horizontal flip was applied as data augmenta-

tion during training. The weight of each loss was defaulted

to λqua = 0.1, λcon = 0.01, λdis = 0.05, and λR = 0.1.

5.2. Classification Performance

We compare the performance of BotCL with correspond-

ing baselines (LeNet for MNIST and ResNet-18 for others

with a linear classifier), our reimplementation of k-means

and PCA in [46],3 and state-of-the-art concept-based mod-

els. Table 1 summarized the results. BotCL with contrastive

loss (BotCLCont) achieves the best accuracy on CUB200,

ImageNet, and Synthetic, outperforming the baseline lin-

ear classifiers. It is also comparable to the state-of-the-art

on MNIST and Synthetic. BotCL with reconstruction loss

(BotCLRec) shows a performance drop over CUB200, Im-

ageNet, and Synthetic, while it outperforms BotCLCont on

MNIST. This behavior supports our assumption that the re-

construction loss is useful only when concepts are strongly

tied to their spatial position. Otherwise, t is insufficient to

reconstruct the original image, and BotCL fails. Contrastive

self-supervision is the key to facilitating concept discovery.

We also explore the relationship between the number of

classes and BotCL’s accuracy over CUB200 and ImageNet.

We used small and large variants of ResNet as the back-

bone. We extracted subsets of the datasets consisting of the

first n classes along with the class IDs. Figure 3 shows that

BotCL has a competitive performance when the number of

classes is less than 200. We conclude that BotCL hardly de-

grades the classification performance on small- or middle-

sized datasets. However, this is not the case for n > 200
(refer to supp. material for larger n and different k’s).

3Implementation details are in supp. material.
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Figure 3. Classification accuracy vs. the number of classes. We used subsets of CUB200 and ImageNet with k = 50 and ResNet-18 and

ResNet-101 backbones.

Table 1. Performance comparison in classification accuracy. The

best concept-based method is highlighted in bold. BotCLRec and

BotCLCont are both BotCL but with reconstruction and contrastive

loss, respectively. For ImageNet, we used the first 200 classes.

CUB200 ImageNet MNIST Synthetic

Baseline 0.731 0.786 0.988 0.999

k-means∗ [46] 0.063 0.427 0.781 0.747

PCA∗ [46] 0.044 0.139 0.653 0.645

SENN [1] 0.642 0.673 0.985 0.984

ProtoPNet [8] 0.725 0.752 0.981 0.992

BotCLRec 0.693 0.720 0.983 0.785

BotCLCont 0.740 0.795 0.980 0.998

5.3. Interpretability

5.3.1 Qualitative validation of discovered concepts

Figure 4a visualizes aκ, showing concept κ in the image,

over MNIST. We selected 5 concepts out of 20 that are most

frequently activated (i.e., tκ > 0.5) in the training set.4 Tak-

ing digits 0 and 9 as an example, we can observe that they

share Cpts.3-5 and the only difference is Cpt.2 that lo-

cates in the lower edge of the vertical stroke of 9. This

stroke is specific to digit 9. We used BotCLRec, so we can

remove Cpt.2 before reconstruction, which generates an

image like 0 (refer to Section 5.3.3). Some concepts are in-

compatible with human intuition; yet we can interpret such

concepts (e.g., Cpt.1 may attend to the missing stroke that

completes a circle).

For CUB200, we train BotCLConst with n = 50 and

k = 20. Figure 5a shows the attention maps of an image

of yellow headed black bird. We can observe that

the attentions for Cpts.1-5 cover different body parts, in-

cluding the head, wing, back, and feet, which proves that

BotCL can learn valid concepts from the natural image as

well. Supp. material exemplifies all concepts discovered

from MNIST and CUB200.

4Cpts.1-5 are ordered based on the frequency counted in the

dataset.

5.3.2 Consistency and distinctiveness of each concept

BotCL is designed to discover individually consistent and

mutually distinctive concepts. We qualitatively verify this

by showing each concept with its top-5 activated images5

with attention maps in Figure 4b. For MNIST, different

concepts cover different patterns, and each concept covers

the same patterns in different samples (even the samples of

different classes). Figure 5b for CUB200 shows that BotCL

renders a similar behavior on the CUB200 dataset; that is,

the top-5 concepts are responsible for different patterns, and

each of them is consistent.

5.3.3 Contribution of each concept in inference

We can qualitatively see the contribution of each concept by

removing the concept and seeing the changes in the corre-

sponding self-supervision task’s output. As shown in Fig-

ure 4c, when we set the activation of Cpt.2 (responsible

for the vertical stroke of digit 9) to zero, the reconstructed

image looks like digit 0. When Cpt.1, representing the ab-

sence of the circle in digit 7, is deactivated (i.e., t1 is set to

0), a circle emerges in the upper part of the reconstructed

image. The resulting image looks more like digit 9.

For CUB200 shown in Figure 5c, we show images most

similar to the input image in Figure 5a among the dataset

in terms of t̂�t̂′, with ablating each concept. When Cpt.1

(responsible for the yellow head) is deactivated, more black-

head bird images appear in the top-8 images. Cpt.5 covers

birds’ feet and is common among most bird classes. De-

activating this concept does not change the top-8 images.

These observations suggest that although some concepts do

not contribute to classification performance, images are suc-

cessfully represented by combinations of concepts.

5.4. Quantitative Evaluation on Synthetic

One problem of the concept-based approach is the ab-

sence of established quantitative evaluations of concepts

because the choice of concepts may be arbitrary and the

same level of representability may be achieved with differ-

ent sets of concepts. A single predefined set of concepts

5For each concept κ, five images whose tκ is highest among D.
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Figure 4. Concepts for MNIST. (a) Attention maps for different input images. (b) Top-5 activated images (images in the dataset whose

tκ is largest) for each concept. (c) Images reconstructed by our concept decoder with all detected concepts (original) and with a certain

concept deactivated.
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Figure 5. Concepts learned for CUB200. (a) Visualization of 5 most important concepts for yellow headed black bird. (b) Top-5

activated concepts. (c) Image retrieval when all detected concepts were used (original) and when a certain concept was deactivated.

is not enough to evaluate the goodness of discovered con-

cepts. Literature has evaluated concepts qualitatively (as

Section 5.3) or by user study (as Section 5.5).

We decided to use Synthetic [46] for quantitatively eval-

uating concepts. The task is a multi-label classification that

involves 15 shapes. Combinations of the 5 shapes (shown

in Figure 6a, S.1 to S.5) form 15 classes, and the other 10

shapes are noises6. We deem a shape is covered by concept

κ when the shape’s area and concept κ’s area (the area with

aκ > γ for BotCL, where γ = 0.9 is a predefined threshold)

overlap. Let hsκ = 1 denote shape s overlaps with concept

κ, and hsκ = 0 otherwise. The coverage of s by concept κ
is given by

Coveragesκ = E[hsκ], (11)

where the expectation is computed over the images in the

6Images are generated with random shapes, so there can be multiple

classes (combinations of shapes) in a single image, which forms a multi-

label classification task.

test set with concept κ activated. The concepts and the 5

shapes are associated as a combinatorial optimization prob-

lem so that the sum of Coveragesκ over s are maximized.

We use k = 15 to train BotCL. Figure 6a visualizes

the concept associated with each shape7. A concept is lo-

cated by aκ for 6 images with the highest concept activa-

tions tκ. The concepts cover the associated shapes with

relatively small regions, but one concept usually covers

multiple shapes. This can be further evident in Figure 6b

that shows Coveragesκ. Cpt.8 only covers S.3, whereas

Cpt.1 and Cpt.13 covers multiple shapes.

We use three metrics other than accuracy to evaluate the

performance of concept discovery8: (i) Completeness mea-

sures how well a concept covers its associated shape in the

dataset. (ii) Purity shows the ability to discover concepts

that only cover a single shape. (iii) Distinctiveness quanti-

7Note that in this experiment, only shapes matter but not colors.
8Further details are in supp. material.
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Figure 6. Experiment on Synthetic. (a) S.1-S.5 are the five shapes of which combinations form classes. Attention maps next to each

shape are of the concept that covers the shape. (b) Coveragesκ (the concept associated with each of the five shapes is marked).

fies the difference among concepts based on the coverage.

BotCL with contrastive loss is compared9 with ACE

[14], and two baselines PCA and k-means in [46]. We ap-

ply k-means or PCA to F of all images in the dataset af-

ter flattening the spatial dimensions. The cluster centers or

the principal components are deemed as concepts. Atten-

tion maps can be computed by Euclidean distance or cosine

similarity. Once the attention maps are obtained, we follow

BotCL’s process for classification.

As shown in Table 2, BotCL shows better completeness,

distinctiveness, and accuracy scores than comparative meth-

ods. Although k-means is able to discover concepts, they

are not optimized for the target classification task, and the

performance is low. As we discussed, the concepts learned

by BotCL tend to cover more than one target shape, causing

a comparatively low purity. The cluster center of k-means

is able to capture only one kind of shape at the cost of com-

pleteness. We can also observe that all methods are affected

by concept number k, and generally a larger k ensure bet-

ter performance on all metrics. This result is not surprising,

but we confirmed that a larger k is preferable for better in-

terpretability. We detail the generation of the dataset, im-

plementation of PCA and k-means, and formal definitions

of metrics in supp. material.

5.5. User Study

Our user study is designed to evaluate BotCL with re-

alistic datasets for the challenge of human understanding.

Participants are asked to observe the test images with the

attention map for concept κ (refer to Section 5.3.2) and se-

lect some phrases in the predefined vocabulary that best de-

scribes the concept (i.e., attended regions). They can also

choose None of them if they cannot find any consistent vi-

sual elements. We recruited 20 participants for each concept

9SENN [1] and ProtoPNet [8] are not comparable. SENN’s concepts

globally cover a whole image. ProtoPNet requires way more concepts.

Table 2. Quantitative evaluation on Synthetic. Note that ACE uses

concepts for post-hoc explanation and does not use them for clas-

sification. Comp., Dist., and Acc. mean completeness, distinctive-

ness, and accuracy, respectively.

Comp. Purity Dist. Acc.

k = 5 ACE 0.662 0.274 0.084 —

k-means 0.630 0.724 0.215 0.652

PCA 0.458 0.170 0.298 0.571

BotCL 0.618 0.453 0.281 0.835

k = 15 ACE 0.614 0.221 0.151 —

k-means 0.816 0.978 0.272 0.747

PCA 0.432 0.162 0.286 0.645

BotCL 0.925 0.744 0.452 0.998

Table 3. Results of our user study.

CDR ↑ CC ↑ MIC ↓
Dataset Concepts Mean Std Mean Std Mean Std

MNIST Annotated 1.000 0.000 0.838 0.150 0.071 0.047

BotCL 0.825 0.288 0.581 0.274 0.199 0.072

Random 0.122 0.070 0.163 0.074 0.438 0.039

CUB200 Annotated 0.949 0.115 0.595 0.113 0.512 0.034

BotCL 0.874 0.156 0.530 0.116 0.549 0.036

Random 0.212 0.081 0.198 0.039 0.574 0.031

of MNIST and 30 participants for CUB200 using Amazon

Mechanical Turk.

We defined three metrics to summarize the participants’

responses. (i) Concept discovery rate (CDR): The ratio of

the responses that are not None of them to all responses. A

higher CDR means participants can find some consistent vi-

sual elements for many concepts. (ii) Concept consistency
(CC): The ratio of exact matches out of all pairs of partic-

ipants’ responses. A high value means many participants

use the same phrases to describe a concept. (iii) Mutual in-
formation between concepts (MIC): The similarity of the

response distribution, computed over all possible pairs of

concepts. This value is high when multiple concepts cover
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(a)

(b)

Figure 7. Results of ablation study. (a) Hyperparameter values vs. classification accuracy on ImageNet and CUB200. (b) Hyperparameter

values vs. classification accuracy and other metrics on Synthetic.

the same visual elements; therefore, lower is better.

For comparison, we also evaluated a manual annota-

tion10 and random scribbling for the same images. Ta-

ble 3 shows that BotCL yields good scores for all metrics

on both datasets (close to the manual annotation), show-

ing the learned concepts are interpretable for humans (from

CDR), consistent (from CC), and mutually distinct (from

MIC). More details are in supp. material.

5.6. Ablation Study

We conducted ablation studies using the default hyper-

parameters except for the one to be explored. As there is no

ground truth concept for CUB200 and ImageNet, only ac-

curacy is evaluated (Figure 7a). For Synthetic, accuracy and

the three metrics in Section 5.4 are employed ( Figure 7b).

Impact of k. A small k decreases the accuracy and other

metrics, which means the necessity of searching the mini-

mum number of concepts. Also, training tends to fail for all

datasets when k is large (detailed in the supp. materials).

The number of concepts should be tuned for each dataset.

This sensitivity is one of BotCL’s limitations.

Impact of λqua. This hyperparameter controls how

close t should be to a binary. The accuracy and the other

metrics worsen when λqua gradually increases. BotCL en-

codes some information into t (such as the area that a con-

cept occupies), which is lost for larger λqua. An extreme

value may also cause vanishing gradients.

Impact of λcon and λdis. The individual consistency

and mutual distinctiveness losses hardly affect the perfor-

mance on CUB200 and ImageNet, although we can see a

slight drop when the values are zero for CUB200. For Syn-

thetic, the performance metrics vary as they are designed

to be. Meanwhile, the accuracy is relatively insensitive

to these hyperparameters. The choice of concepts may be

10The authors annotated.

highly arbitrary, and different sets of concepts may achieve

similar classification performance. This arbitrariness may

allow the designing of dedicated concept regularizers for the

target task. However, training failures happen when they are

set to be large. A small value benefits training.

Impact of λR. Due to the lower performance of the re-

construction loss, we studied the impact of the contrastive

loss only. The contrastive loss almost always improves the

classification accuracy. The performance boost is signif-

icant in CUB200 and Synthetic. As ImageNet has more

training data, this may imply that self-supervision greatly

contributes to the learning of concepts when training sam-

ples are limited. These results demonstrate the importance

of the contrastive loss. This is interesting since this loss

uses the same labels as the classification loss.

6. Conclusion

This paper presents BotCL for learning bottleneck con-

cepts. Our qualitative and quantitative evaluation showed

BotCL’s ability to learn concepts without explicit supervi-

sion on them but through training for a target classification

task. We also demonstrated that BotCL could provide inter-

pretability on its decision and learned concepts themselves.

Limitations. One limitation of BotCL is that it requires

tuning the number k of concepts for each dataset. It might

be an interesting research direction to estimate k, e.g., based

on the number of classes in a given classification task. We

will investigate the phenomenon to mitigate this problem.
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