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Abstract

The task of key-points detection and description is to es-
timate the stable location and discriminative representa-
tion of local features, which is a fundamental task in vi-
sual applications. However, either the rough hard positive
or negative labels generated from one-to-one correspon-
dences among images may bring indistinguishable samples,
like false positives or negatives, which acts as inconsis-
tent supervision. Such resultant false samples mixed with
hard samples prevent neural networks from learning de-
scriptions for more accurate matching. To tackle this chal-
lenge, we propose to learn the transformation-predictive
representations with self-supervised contrastive learning.
We maximize the similarity between corresponding views of
the same 3D point (landmark) by using none of the neg-
ative sample pairs and avoiding collapsing solutions. Fur-
thermore, we adopt self-supervised generation learning and
curriculum learning to soften the hard positive labels into
soft continuous targets. The aggressively updated soft la-
bels contribute to overcoming the training bottleneck (de-
rived from the label noise of false positives) and facili-
tating the model training under a stronger transformation
paradigm. Our self-supervised training pipeline greatly de-
creases the computation load and memory usage, and out-
performs the sota on the standard image matching bench-
marks by noticeable margins, demonstrating excellent gen-
eralization capability on multiple downstream tasks.

1. Introduction
Local visual descriptors are fundamental to various com-

puter vision applications such as camera calibration [37],
3D reconstruction[19], visual simultaneous localization and
mapping (VSLAM) [33], and image retrieval [38]. The
descriptors indicate the representation vector of the patch
around the key-points and can be used to generate dense
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correspondences between images.
The discriptors are highly dependent on the effective rep-

resentation, which has been always trained with the Siamese
architecture and contrastive learning loss [12, 29, 39]. The
core idea of contrastive learning is “learn to compare”:
given an anchor key-point, distinguish a similar (or pos-
itive) sample from a set of dissimilar (or negative) sam-
ples, in a projected embedding space. The induced repre-
sentations present two key properties: 1) alignment of fea-
tures from positive pairs, 2) and uniformity of representation
on the hypersphere [51]. Negative samples are thus intro-
duced to keep the uniformity property and avoid model col-
lapse, i.e., preventing the convergence to one constant solu-
tion [13]. Therefore, various methods have been proposed
to mine hard negatives [6, 21, 55]. However, these methods
raise the computational load and memory resources usage
heavily [17]. More Importantly, within the hard negatives,
some samples are labeled as negatives, but actually have
the identical semantics of the anchor (i.e., false negatives).
These false negatives act as inconsistent supervision and
prevent the learning-based models from achieving higher
accuracy[4]. More concretely, the false negatives represent
the instance located on the repetitive texture in the structural
dataset, as shown in Figure 1. It is challenging to recognize
such false negatives from true negatives[39].

The recent active self-supervised learning methods[5, 8,
9, 15] motivate us to rethink the effectiveness of negatives
in descriptors learning. We propose to learn the transfor-
mation predictive representations (TPR) for visual descrip-
tors only with the positives and avoids collapsing solutions.
Furthermore, using none of negatives greatly improves the
training efficiency by reducing the scale of the similarity
matrix from O(n2) to O(n), and reduces the computation
load and memory usage.

To further improve the generalization performance of
descriptors, hard positives (i.e., corresponding pairs with
large-scale transformation) are encouraged as training data
to expose novel patterns. However, recent experiments
have shown that directly contrastive learning on stronger
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Figure 1. Illustrative schematic of different negative samples. Easy negatives (green) are easy to distinguish from the query (blue) and
not sufficient for good performance. Hard negatives (orange) are important for better performance and are still semantically dissimilar
from the query. False negatives (red) are practically impossible to distinguish and semantically identical with the query, which is harmful
to the performance. The right figure visualizes the embedding of different samples in latent space.

transformed images can not learn representations effec-
tively [52]. In addition, current contrastive learning meth-
ods label all positives with different transformation strength
as coarse “1”, which prevent learning refined representa-
tion. We propose to learn transformation predictive repre-
sentation with soft positive labels from (0,1] instead of “1”
to supervise the learning of local descriptors. Furthermore,
we propose a self-supervised curriculum learning module to
generate controllable stronger positives with gradually re-
fined soft supervision as the network iterative training.

Finally, our TPR with soft labels is trained on natural
images in a fully self-supervised paradigm. Different from
previous methods trained on datasets with SfM or cam-
era pose information [20, 29, 39, 49], our training datasets
are generally easy to collect and scale up since there is no
extra annotation requirement to capture dense correspon-
dences. Experiments show that our self-supervised method
outperforms the state-of-the-art on standard image match-
ing benchmarks by noticeable margins and shows excel-
lent generalization capability on multiple downstream tasks
(e.g., visual odometry, and localization).

Our contributions to this work are as follows: i) we pro-
pose to learn transformation-predictive representations for
joint local feature learning, using none of the negative sam-
ple pairs and avoiding collapsing solutions. ii) We adopt
self-supervised generation learning and curriculum learn-
ing to soften the hard positives into continuous soft labels,
which can alleviate the false positives and train the model
with stronger transformation. iii) The overall pipeline is
trained with the self-supervised paradigm, and the training
data are computed from random affine transformation and
augmentation on natural images.

2. Related Works

Our work focuses on the first step of the image matching
pipeline, i.e., detection and description of key-points. This

section gives a brief review of key-points detection and de-
scription learning together with contrastive representation
learning.

Key-points Learning. Different from early hand-crafted
key-points, e.g., SIFT [27] and SURF [3], the recent effort
has been put into learning key-points through the deep neu-
ral networks. Many existent works focus on single mod-
ule optimization with deep learning, such as interest points
detection [42], shape estimation [58] and descriptor repre-
sentation [45, 47]. However, optimizing one single compo-
nent may not directly enable the improvement of the en-
tire pipeline[44,57]. Recent works tend to build end-to-end
joint learning frameworks for detecting and describing local
features [12, 29, 53]. CNN-based methods simultaneously
optimize both the detector and descriptor by sharing most
parameters with the help of the encoder-decoder pipeline.
Compared with the conventional methods only considering
low-level features like corners, edges, or blobs in shallow
layers, the encoder-decoder pipeline can make full use of
deep CNNs for better representations[11, 25, 39]. To maxi-
mize the similarity of corresponding pairs, current cutting-
edge methods usually take the Siamese structure to train the
model with contrastive learning[54].

Contrastive Learning. Contrastive learning was origi-
nated from metric learning and has been widely adopted to
supervise the description learning [16, 18, 36, 47]. The crit-
ical factor of contrastive learning is to attract the represen-
tation of corresponding local descriptions (positive pairs)
closer and spread the representations of non-corresponding
descriptions (negative pairs) apart. Negative samples are
accordingly introduced to keep the uniformity property in
order to avoid the representation collapse [13]. Due to
expensive manual labeling and the lack of explicit nega-
tive signals in most cases, various negative sampling strate-
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gies were proposed to improve the computation efficiency
and promote the training results [56]. However, the sam-
pling of hard negatives highly depends on the large batch
size [6, 7, 54] and memory bank [17], so as to increase
the computational load and memory resources usage. Re-
cently, some works have been conducted to optimize the
contrastive loss without any negatives and avoid the col-
lapse [5, 9, 15]. But all these works were proposed for
the holistic representation of whole images and cannot be
adapted to the dense prediction tasks. To address this
issue, our method uses an exclusive predictor and stop-
gradient operation to avoid collapsing and encourage en-
coding more transformation-aware representations without
negatives, which is the first work ever training key-points
with only positives.

3. Method
In this section, we elaborate on the proposed Transfor-

mation Predictive Representations (TPR) for learning de-
tection and description of local features. Given a pair of im-
ages (I1, I2), and the correspondences set C between them,
the key-points learning methods predict the dense 3D de-
scription map D and detection heatmap S ∈ [0, 1] jointly.
During the training, the standard Siamese networks are used
to deal with the image pairs (I1, I2) simultaneously and op-
timize the parameters with contrastive loss according to C.
Our approach also follows this pipeline. However, differ-
ent from the previous approaches using negatives and hard
negative sampling for training, TPR is optimized without
any negatives. In this way, our model can reduce the com-
putation complexity and memory usage and improves the
training efficiency.

3.1. Preliminary

The architecture in this work is built upon 1) D2-Net
[12], and 2) Bootstrap Your Own Latent (BYOL) [15].

D2-Net [12] proposes a describe-and-detect strategy to
jointly extract descriptions and detections of local features.
Over the last feature maps y ∈ RH×W×C , D2-Net applies
channel-wise L2-normalization to obtain the dense feature
descriptors, while the feature detections are derived from 1)
the local score and 2) the channel-wise score. Specifically,
for each location (i, j) in yk(k = 1, . . . , C), the final detec-
tion score is computed as:

sij = max
t

[
exp(ykij)∑

(i′,j′)∈N (i,j) exp(yki′j′)
·

ykij
maxt ytij

]
, (1)

where N (i, j) is the neighboring pixels around (i, j), e.g.,
9 neighbours defined by a 3 × 3 kernel. D2-Net adopts the
triplet margin ranking loss to optimize the descriptions, and

is formulated as:

Ltriplet =
∑
c∈C

max(0,M + dcp − dcn), (2)

where M is the margin, C is the set of correspondences,
dcp and dcn represent the distance of positive and selected
negative pairs, respectively. Finally, the detection score is
used as a weighting term in description loss function.

BYOL [15] is a self-supervised image representation
learning approach. BYOL uses two neural networks, re-
ferred to as the online and target networks, both of which
interact and learn from each other. The online network is
trained to predict the target network’s representation of the
same image from an augmented view. The weights of the
target network are updated with a slow-moving average of
the online network. Different from other contrastive learn-
ing methods, BYOL can be trained without any negatives.
It hypothesizes that the combination of 1) the addition of a
predictor to the online network, and 2) the use of a slow-
moving average of the online parameters as the target net-
work encourages encoding more information within the on-
line projection and avoids collapsed solutions.

3.2. Transformation-Predictive Representations

The Siamese-like structure (i.e., the online and target
networks) is used in TPR to learn the representations. From
a given representation of the transformed image, referred to
as target, the TPR trains a new potentially enhanced rep-
resentation of the original image, referred to as online, by
predicting the target representation. The online network is
defined by a set of weights θo and comprises three stages:
an online encoder fo, a projector go, and a predictor q. The
target network also has the encoder ft and projector gt in
the same structure but with a different set of weights θt.
The overall pipeline is described as in Figure 2,

Given the input image I ∈ RH×W×3, a random aug-
mentation t is performed to produce the cropped view V ≜
t (I) ∈ Rh×w×3. And then, the limited cascaded affine
transformation and augmentation T is carried out on the V
to produce the transformed view V ′ ≜ T (V ) ∈ Rh×w×3.

From the augmented view V , the online encoder outputs
a representation z ≜ fo(V ) ∈ Rh×w×c, which is adopted
as the objective encouraged to be transformation-predictive.
Rather than predicting representations produced by the on-
line encoder, the target representation z′ ≜ ft(V

′) ∈
Rh×w×c is computed by using the target encoder ft, whose
parameters θt are an exponential moving average (EMA) of
the online encoder parameters θo. Without gradient descent,
the update algorithm for θt is formulated as:

θt ← τθt + (1− τ) θo, (3)

where τ ∈ [0, 1) is the EMA coefficient.
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Figure 2. Illustration of our proposed transformation-predictive representations learning. Top: traditional contrastive learning descriptors
based on both positives and negatives and supervised under SfM models. Bottom: our proposed transformation predictive representations
learning with only positives and self-supervised loss. In the TPR structure, representations from the online encoder are used in the joint
learning of local features task. The target encoder and projection head are defined as an exponential moving average of their online
counterparts and are not updated via gradient descent.

Next, the representation z and z′ are fed into the online
and target detector to extract the detection score s and s′

with (1). We further use the online and target projection
heads go and gt to map the online and target presentations
to a latent embedding space[6], and also apply an additional
prediction head q to the online projections to predict the
target projections[15]:

ŷ ≜ q (go (z)) ,

y′ ≜ gt
(
z′
)
.

(4)

The target projection head parameters are also given
through an EMA of the online projection head parameters
by using the same update algorithm as the online and target
encoders. Note that the predictor is only applied to online
networks so as to make the Siamese architecture asymmet-
ric between the online and target pipeline.

Next, we compute the transformation predictive loss for
TPR by summing over cosine similarities between the pre-
dicted and target representations. Different from a holistic
representation R1×1×d of the view V and V ′ [15], our en-
coder fo outputs the dense feature maps preserving abun-
dant spatial information with the shape of h × w × c. The
prediction loss is computed on the corresponding location
of the dense feature map, i.e., the positive pairs:

Lc
pred =

(
1−

〈
yc, y

′
c

〉)
=

(
1−

〈
q (go (z))c , gt

(
z′
)
c

〉)
,

(5)

where ⟨·⟩ denotes the cosine similarity, ŷc and y′c is the local
representation with the c-th correspondence.

Finally, the detection score is used as a weighting term
to formalize the final hard prediction loss function:

Lhard =
1

|C|
∑
c∈C

scs
′
c∑

n∈C sns
′
n

Lc
pred. (6)

The transformation-predictive representations follow the
predictive nature of the objective and use the exponential
moving average target network similar to [15]. Compared
with the related works on contrastive representation learn-
ing, TPR only uses the positive pairs without negative sam-
ples. As a result, there is no necessary need on large buffer
to emulate large batch sizes of negatives [6, 17] and com-
plex hard negative sampling strategies. Furthermore, train-
ing without negatives can help prevent the inconsistent op-
timization from the false negatives. Finally, although we
do not use the explicit negative samples to prevent collapse
while minimizing Lhard, TPR still can avoid converging to
a minimum of this loss with respect to (θo, θt) (e.g., a col-
lapsed constant representation).

3.3. Learning with Soft Labels

The TPR method uses carefully designed transforma-
tions T to generate the view V ′ from V . Therefore, the
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views are not deformed aggressively so that they can still be
viewed as the same instance, i.e., positives. Stronger defor-
mation could expose the novel patterns of representations
in discriminative contrastive learning. However, directly
adopting stronger transformations (e.g., with larger rotation
angles, more aggressive color jitting, and cutout) may seri-
ously damage the intrinsic semantics of the original image,
which will fail to further improve or even degrade the per-
formance [52]. In this paper, we categorize such positive
pairs generated from over-strong deformation into the false
positives. The false positives are bound to make the training
process degraded in performance because the network can-
not effectively distinguish the true positives from the false
ones when trained with the existing pipeline [39].

To tackle the dilemma, where the strong or weak trans-
formations should not have been used to produce the pos-
itives, we propose the optimal soft labels to stabilize the
training process instead of forcing the labeling coarse hard
“1” for every positive pair. Accordingly, the prediction loss
in (5) is modified as follows.

Lsoft =
1

|C|
∑
c∈C

scs′c∑
n∈C sns′n

(
lc + 1− Lc

pred

)
, (7)

in which lc represents the computed soft label for the pos-
itive pair with c-th correspondence. Therefore, we adopt
self-supervised generation learning and curriculum learning
to “adjust” the inconsistent and incorrect supervision.

Self-supervised generation learning. We train the net-
work for the first generation following the hard positive la-
bel. And then, the network can be assumed to successfully
capture most feature distribution of the training data. We
propose to utilize the previous generation’s similarities to
be served as the soft supervision for training the network
in a new generation. The generated soft supervisions are
gradually refined and sharpened as the network generation
progresses. In this way, the system can fully explore the
potential of the difficult positives with stronger transforma-
tion, and mitigate their label noises with the refined soft
confidence. To stabilize the training process, the soft label
of the positive pair with the correspondence c in the gen-
eration ω = 2, . . . ,Ω follows the exponential decay of the
transformation strength, which is computed as:

lc = e−(1−⟨y
ω−1
c ,y′ω−1

c ⟩)/λ, (8)

where yω−1 and y′
ω−1 are generated from the encoder with

the last generation parameters θω , and Ω is the total number
of generations, and λ is the exponential decay constant.

Curriculum setting for positives generation. The core
of curriculum learning is to gradually improve the transfor-
mation strength. In particular, we introduce the affine adap-
tion and data augmentation to generate the transformation

matrix, which also determines the transformation strength
α. We normalize α within [0, 1] according to the maximum
limitation of adaption and augmentation parameters, e.g.,
rotation and translation values. With the curriculum setting,
α is randomly sampled from a range with gradually relaxed
restrictions of the transformation strength. The soft label of
the current batch follows the exponential decay of the trans-
formation strength, which is computed as:

lc = e−α(1−⟨yω−1
c ,y′ω−1

c ⟩)/λ. (9)

To avoid the over-fitting to the soft labels, we also set a max-
imum operation on the predicted soft loss as max(0, lc+1−
Lc
pred). This setting will help the model avoid divergence

through the false positives during the early training stage,
and encourage the model to explore more robust represen-
tations in the later training stage.

In the later stage of training, with the increasing diffi-
culty of positive samples, the proportion of false positive
samples, which have different semantics with the online
query, will increase. Such false positives will be harmful to
the generalization performance of the model [52]. To over-
come this problem, we introduce a hyperparameter patience
p of early stop. When the soft prediction loss no longer de-
creases, the value of p will decrease. The training will stop
until p = 0.

3.4. Implementation Details

In this part, the architectural details of TPR are intro-
duced. Note that at the end of the training, everything but
the online encoder fo is discarded. Thus, the online projec-
tion head go, the predictor head q, and the target branch will
not introduce the extra computational costs in deployment.
Encoder, fo, maps the input view V into the dense embed-
dings z. The encoder can be instanced into the CNN version
based on VGG (similar as D2-Net [12]) and DCN (similar
as ASLFeat [29]), and Transformer version based on tiny
Swin Transformer V1[26] with only the first two stages.
Projection head, go, maps the feature embedding into a
128-dim l2 normalization feature vector for the computation
of the prediction loss Lpred. go is implemented as a 3-layer
MLP (hidden layer 256-dim), with BN and ReLU on every
fully-connected layer except the last output layer.
Predictor, q, is only applied to the online networks. The
predictor is an MLP with two layers. The dimension of the
hidden and output layer is 64 and 128, respectively.
Detection and description head, are adopted on the en-
coder to simultaneously output the dense description and
the detection score map following the D2-Net [12]. Only
the locations with higher confidence than 0.7 are selected
as the key points. Moreover, a non-maximum suppression
(NMS) operation (with a kernel of 5) is applied to remove
the key points that are spatially too close.
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4. Experiments

In this section, we first present the details of training
our TPR. And then we show the performance across sev-
eral downstream scenarios, including image matching, vi-
sual odometry, and visual localization. It’s worthy to NOTE
that our methods are not trained on all benchmark datasets,
which is essential to show generalization performance.

4.1. Experimental Setup

Our TPR method is trained on images from Microsoft
COCO dataset[24] and Image Matching Challenge[20], by
dropping all the irrelevant annotations. We compute the cor-
respondences between the transformed natural images with
the random affine adaption and data augmentation by means
of the self-supervised paradigm. For the affine adaption,
we uniformly sample the in-plane rotation, shear, transla-
tion and scale parameters from [-45°, +45°], [-40°,+40°],
[-0.05,+0.05], [0.7,1.4], respectively. For the color jitter,
we also uniformly sample the brightness, contrast, satura-
tion, and hue parameters from [0.6,1.4], [0.6,1.4], [0.6,1.4],
[-0.2,+0.2], respectively. The additional random data aug-
mentation is employed on the transformed views V and V ′,
including the grayscale conversion and Gaussian blur.

We train models using SGD and AdamW optimizer for
CNN and Transformer-based models, respectively. Dur-
ing training, we use a mini-batch size of 16 and an initial
learning rate of 0.00017 with exponential decay of 0.9. The
hyper-parameter of EMA update τ , exponential decay con-
stant λ, and early stop patience p is set to 0.99, 10, and 1,
which are determined with the grid search to reach the opti-
mum. Our method were trained for 50 epochs, which took
30 hours for training with two NVIDIA-A100 GPUs. We
randomly crop the 224× 224 views for training.

Moreover, we evaluate the local features learned by TPR
across several downstream scenarios, including the image
matching on HPatches, visual odometry on KITTI, and vi-
sual localization on Aachen Day-Night dataset.

4.2. Image Matching

We first evaluate the performance of our method in the
image matching tasks, i.e., the most extensive key-points
applications.

Datasets. The experiments are taken on HPatches [2]
datasets, which include 116 sequences of 6 images with
known homography. The datasets are split into two cate-
gories according to the illumination and viewpoint changes.
The first image in one sequence is taken as reference, and
the subsequent images are used to form the pairs with in-
creasing difficulty. By following the previous methods[39],
eight high-resolution sequences are excluded.

Method MMA@3 AUC@2 AUC@5

SIFT [27] 50.1 39.49 49.57
HardNet [32] 62.1 42.61 56.85
LF-Net [35] 53.2 38.74 48.69

SuperPoint [11] 65.7 44.08 59.04
DELF [34] 50.7 44.73 49.70

ContextDesc [28] 63.2 47.23 58.25
Key.Net [22] 72.1 40.87 56.04

R2D2 [39] 72.1 43.35 64.17
DISK [49] 77.2 52.33 69.80

ALIKE [59] 70.5 51.65 69.04
SSL+CAPS [30] 69.0 48.72 62.19

LLF [46] 74.0 52.14 66.81
MTLDesc [50] 78.7 55.02 71.42

PoSFeat [23] 75.34 50.16 69.23

D2-Net [12] (orig.) 40.3 19.49 37.78
D2-Net [12] (our impl.) 44.5 22.35 43.17

Ours(VGG) 49.6 ↑ 9.3 24.46 ↑ 4.97 47.69 ↑ 9.91

ASLFeat [29] (orig.) 72.2 50.10 66.93
ASLFeat [29] (our impl.) 74.4 51.83 69.24

Ours(DCN) 75.5 ↑ 3.2 52.33 ↑ 2.23 70.15 ↑ 3.22

Ours(TR) 79.8 57.18 73.00

Table 1. Quantitive results (§4.2) on HPatches.

Evaluation protocols. For a fair comparison, we match
the features extracted by each method using the nearest
neighbor matcher, accepting only mutual nearest neighbors.
A correct match is accordingly considered if its estimated
reprojection error is below a given matching threshold. We
vary the threshold from 1 pixel to 10 pixels and record
the mean matching accuracy (MMA) [31] over all pairs,
which represents the ratio of correct matches and possible
matches. And then the area is computed under curve (AUC)
at 2px and 5px based on the MMA. We report the average
scores for overall image pairs.

Comparisons with other methods. We compare our
model with the previous state-of-the-art methods on the
HPatches dataset. Unless otherwise specified, we present
the results either reported on original papers or derived
from authors’ public implementations with default param-
eters. Table. 1 lists different methods’ results on HPatches
in terms of the MMA area under the overall curve (AUC)
up to 2px and 5px. Especially in the low-threshold area,
Ours (TR) shows considerable improvements over previ-
ous sota methods. For a fair comparison, we show both the
performance from the original paper (orig.) and our im-
plementation (our impl.). It is observed that TPR gains a
+6.69% (44.71% v.s. 38.02%) and +2.45% (79.81% v.s.
77.36%) MMA promotion than the leading DISK [49] at
1px and 3px threshold in 128-dimension, respectively. To
prove the effectiveness of our training pipeline, we also con-
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Neg Sample +SSGL +CL MMA@3 Mem/GB

w/

Random 63.1 112
Hardest 73.4 140
Bank 78.2 ↑ 15.1 158

Mixing 77.9 147

w/o
Random 70.1 79
Random ✓ 77.4 ↑ 7.2 79
Random ✓ ✓ 79.8 ↑ 9.6 79

Table 2. Ablation experiments of the proposed TPR, where
Neg, Sample, MMA@3, SSGL, CL and Mem represent whether
training w/ Negative samples, Sampling strategy, self-supervised
generation learning, curriculum learning, mean matching accuracy
at 3px threshold, and GPU Memory usage (GB), respectively.

duct experiments based on the D2-Net [12] backbone i.e.,
Ours (VGG) and ASLFeat [29] backbone, i.e., Ours (DCN).
Under the same networks, our retrained model gains +9.3%
and +3.2% improvements on MMA@3, respectively. The
t-SNE visualization of descriptions from D2-Net (orig.) and
Ours (VGG) is shown in Figure. 3. More importantly, our
method is trained in the self-supervised paradigm, requir-
ing no extra annotations, and is not finetuned on the down-
stream datasets.

4.3. Ablation Study

We further study the efficacy of our core ideas and es-
sential model designs over HPatches. We train each model
from scratch for 50 epochs to perform extensive abla-
tion experiments while keeping other hyper-parameters un-
changed.

Ablation on different negative sampling strategies. We
adopt the standard Siamese networks with transformer
blocks as the “baseline” model. The baseline model is
first trained with both positive and negative pairs, accord-
ing to the triplet loss in (2). We also evaluate different neg-
ative sampling strategies including random negative sam-
pling (Random) [10], in-batch hard negative mining (Hard-
est) [6], hard negative mining with Memory Bank (Bank)
[17], and hard negative mixing (Mixing) [21]. And then we
train the model using our TPR method with only positives
and evaluate the efficacy of the curriculum learning and
self-supervised generation learning. As demonstrated in Ta-
ble 2, our TPR successfully gets convergent with only pos-
itives and avoids the collapsing solution, which proves the
effectiveness of our designed components in the Siamese
networks. Furthermore, the soft labels effectively alleviate
the inconsistent optimization from pseudo positives, espe-
cially on the training datasets with stronger transformation
and augmentation.

Ablation on key components. We also conduct the ab-
lation experiments to evaluate the effectiveness of our core

Figure 3. t-SNE visualization of description from different
training methods. Left: D2-Net [12] (orig.), Right: Ours(VGG).

components including training w/o negative samples, self-
supervised generation learning (SSGL), and curriculum
learning module (CL). The results are also shown in Ta-
ble 2, which proves the self-supervised curriculum learning
with soft labels will improve the contrastive learning per-
formance with only positives.

4.4. Visual Odometry

Visual Odometry (VO) is the task to estimate a robot’s
position and orientation from visual measurements. The
goal of the system is to estimate the 6-DoF pose of the cam-
era at every frame. In this experiment, we evaluate the vi-
sual odometry performance with the learned key-points.

Datasets. We adopt the KITTI Odometry Datasets [14]
to evaluate the downstream localization performance of our
method. We only use the grayscale monocular images with
a high resolution of 376 × 1226 as input. To output multi-
scale key-points, a three-layer image pyramid is constructed
with the scale factor of 1.2. It is worth noting that in KITTI,
there contains many moving objects and changing camera
exposure time, which is challenging for accurate and robust
key-points matching.

Evaluation protocols. We take the ORB-SLAM [33] as
the benchmark pipeline. We further disable both the local
mapping and loop closure thread so as to keep the front-end
visual odometry only. To evaluate the key-points fairly, all
components in the pipeline are the same except the front-
end used key-points. KITTI provides the ground-truth 6-
DoF camera poses for sequences 00-10. Since the key-
points are adopted in the monocular VO pipeline, we align
their poses with ground-truth to recover the scale of 6-DoF
poses. Besides, we use the standard evaluation method,
i.e., translational root-mean-square error (RMSE) drift (/m),
provided along with KITTI dataset. To evaluate the effi-
ciency of the learning-based key-points, we also report the
mean running frames per second for the methods.

Results. We report the results of different key-points on
different KITTI sequences in Table 3. TPR outperforms the
sota learning methods DISK [49] on all sequences even un-
der complex traffic conditions. As for the inference time,
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Method FPS
RMSE/m ↓

00 01 02 04 05 06 07 08 09 10 Avg.

ORB [40] 20.6 59.46 610.35 72.68 19.26 238.60 83.46 72.72 66.06 119.21 63.52 140.53
SuperPoint [11] 6.5 162.78 123.34 13.52 1.06 6.36 2.05 12.15 8.66 8.20 5.10 34.32

D2-Net [12] 8.8 10.44 183.04 105.33 2.29 14.58 2.25 10.72 24.27 29.62 9.61 39.22
R2D2 [39] 7.8 49.62 515.96 60.14 3.90 123.05 62.44 53.84 62.54 73.30 43.32 104.81

SOSNet [48] 6.3 171.67 309.83 10.36 0.47 14.68 4.07 15.35 10.75 3.24 7.67 54.81
DISK [49] 6.5 32.77 149.98 18.67 0.45 5.97 4.38 12.88 32.85 4.33 4.81 26.71

Ours (TR) 6.2 7.07 164.39 9.72 0.23 3.46 2.12 9.99 7.42 3.10 3.72 21.12

Table 3. Visual odometry localization performance based on different key-points in KITTI datasets.

Accuracy @ Thresholds (%) ↑
Method Feat

0.25m,2° 0.5m,5° 5m,10°

RootSIFT [1] 11K 53.4 62.3 72.3
SuperPoint [11] 7K 68.1 85.9 94.8

D2-Net [12] 14K 67.0 86.4 97.4
R2D2 [39] 10K 70.7 85.3 96.9

ASLFeat [29] 10K 71.2 85.9 96.9
DISK [49] 10K 72.8 86.4 97.4

MTLDesc [50] 7K 74.3 86.9 96.9
Ours (TR) 10K 74.3 89.0 98.4

Table 4. Performance on Aachen Day-Night Localization datasets.

our method is slower than the hand-crafted ORB [40]. How-
ever, our approach adds no additional overhead compared to
existing neural network-based methods. We also report the
trajectory visualization in the Supplementary Materials.

4.5. Visual Localization

To further verify the effectiveness of our method con-
fronted with complex tasks, we evaluate it on the task of vi-
sual localization, which aims at estimating the camera pose
within a given scene using an image sequence. The task
was proposed in [41] to evaluate the performance of local
features in the context of long-term localization without the
need for a specific localization pipeline. All methods are
compared on the official evaluation server in a fair manner.

Datasets. We resort to the Aachen Day-Night dataset [41]
to demonstrate the effect on visual localization tasks, which
contains images from the old inner city of Aachen, Ger-
many. The key challenge in the dataset lies in matching
images with extreme day-night changes for 98 queries.

Evaluation protocols. The evaluation is conducted by
using The Visual Localization Benchmark, which takes a
pre-defined visual localization pipeline based on COM-
LAP [43]. The successful localized images are counted
within three error tolerances (0.25m, 2°) / (0.5m, 5°) / (5m,
10°), representing the maximum position error in meters
and degrees.

Results. We compare our model with the typical joint de-
tector and descriptor learning methods. Here, all methods
are evaluated with the built-in matching strategy (Nearest
Neighbors Search) for a fair comparison. As shown in Ta-
ble 4, TPR with transformer blocks performs surprisingly
well even under challenging illumination changes, about
the estimated pose, which demonstrates the effectiveness of
self-supervised learning with only positives on the natural
dataset.

4.6. Limitations

While our approach does not require any additional
annotation, e.g., Structure-from-Motion models or optical
flow, to produce the corresponding real image pairs. It still
needs to receive pairs through homography adaption or im-
age augmentation. Furthermore, despite getting better per-
formance without using negative samples, TPR local fea-
tures still fail in classical challenging cases such as untex-
tured areas, especially in the absence of matching priors.

5. Conclusion

In this paper, we propose to learn the transformation-
predictive representations for the joint detection and de-
scription of local features. The model is trained by us-
ing none of the negatives and avoids the collapsing solu-
tion, which greatly improves the training efficiency. Self-
supervised generation learning and curriculum learning are
designed to soften the hard positives into continuous soft la-
bels, which can train the model with stronger augmentation.
We solve the label noise from false positives and negatives
and further improve the performance of local features in the
self-supervised paradigm. Experiments show that TPR sig-
nificantly outperforms state-of-the-art methods.
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