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Figure 1. High-fidelity talking face generation with LipFormer. Top: Five target face pairs. Middle: LipFormer-generated results, driven
by target face’s own audio. Bottom: LipFormer-generated results, after exchanging the audio of each target pair. It is clear that LipFormer
successfully captures the relationship between voice and mouth shape.

Abstract

Generating a talking face video from the input audio
sequence is a practical yet challenging task. Most existing
methods either fail to capture fine facial details or need
to train a specific model for each identity. We argue that
a codebook pre-learned on high-quality face images can
serve as a useful prior that facilitates high-fidelity and
generalizable talking head synthesis. Thanks to the strong
capability of the codebook in representing face textures,
we simplify the talking face generation task as finding
proper lip-codes to characterize the variation of lips during
portrait talking. To this end, we propose LipFormer, a
Transformer-based framework to model the audio-visual
coherence and predict the lip-codes sequence based on
input audio features. We further introduce an adaptive
face warping module, which helps warp the reference
face to the target pose in the feature space, to alleviate
the difficulty of lip-code prediction under different poses.
By this means, LipFormer can make better use of pre-
learned priors in images and is robust to posture change.
Extensive experiments show that LipFormer can produce

more realistic talking face videos compared to previous
methods and faithfully generalize to unseen identities.

1. Introduction
As an ongoing research topic, talking face generation

aims to build a cross-modal mapping from an audio se-
quence to a face video while maintaining natural speaking
styles and audio-visual coherence. It has received growing
attention in recent years due to its potential in digital
humans, film-making, virtual video conferences, and online
education [3, 10, 37–39, 44, 45, 47, 48, 50, 53].

A high-fidelity and generalizable talking face generation
model relies heavily on high-quality (HQ) video data with
vast identities. However, the existing datasets still suffer
from two limitations: (1) low resolution and qualities, e.g.,
LRW [5] and LRS2 [1], leading to the learned model an
unsatisfying synthesis quality; (2) a limited number of
identities despite the clear videos, e.g., Obama [17, 31]
and privately recorded data [28], which requires training a
specific model for each person and it is hard to generalize
to unseen portraits. These two drawbacks limit their
practical applications, and it is also a challenge to collect
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a mass of such high-quality videos because they should
simultaneously meet the phoneme balance and audio-visual
synchronization demands. In contrast, we notice that there
are many publicly available datasets of high-resolution
face images, e.g., the FFHQ [15] dataset contains 70,000
identities with 1024 × 1024 resolutions. It helps raise a
question: could these image datasets benefit the generation
of a talking portrait?

Fortunately, the answer is a big yes. In this work, we
confirm that a high-quality pre-learned facial codebook can
serve as a strong prior and facilitate talking head synthesis
from the perspectives of visual fidelity and generalizability.
The codebook, which is learned with the objective to
reconstruct 2D faces, is capable of representing diverse
face details, and hence takes most of the responsibilities to
synthesize the appearance of the talking face. That way, the
only thing left is to characterize the variation of lips when
people talk [24, 25].We can therefore reformulate the task
of talking face generation as a simpler problem, namely,
finding proper lip-codes for the input face.

To this end, we propose LipFormer, a Transformer-
based framework for high-fidelity talking face synthesis.
In particular, LipFormer first encodes the target face us-
ing the pre-learned codebook, and then replaces the lip-
region features with a new sequence of lip-codes that are
predicted by aligning with the reference audio. Before lip-
code prediction, we introduce an Adaptive Face Warping
Module, which helps warp the reference face to the target
pose in the feature (i.e., codebook) space, to alleviate
the texture mismatch problem caused by different poses.
Last but not least, LipFormer is trained in an end-to-end
way to make different modules collaborate fully, boosting
the final performance. Experiments on multiple datasets
confirm the superiority of our approach over state-of-the-art
methods [24,51] from the perspectives of both video quality
and generalizability to unseen identities.

2. Related Work
Talking Face Generation. One category of the most
representative methods is reconstruction based methods.
Reconstruction based methods [4, 13, 25, 30, 43, 49, 51]
build upon an encoder-decoder structure, generate talking
face by extracting face and audio features as a fused input
to the decoder model. For example, Wav2Lip [25] takes
a random frame in a face video as the reference input
and uses the current upper-half frame as a pose prior.
Together with a pretrained lip-sync expert, it achieves
results with better synchronous lip motions. Some other
works [49, 51] try to explicitly enforce the disentanglement
between the identity and speech-related information for
improved feature extraction. However, these methods can
only produce low-resolution results lacking fine details. To
address such a limitation, SyncTalkFace [24] introduces

audio-lip memory as vectors to store visual information
corresponding to audio features. However, due to the
information loss caused by the compressed representation
and the lack of more adaptive pose integration, this method
struggles to synthesize high-quality face images.

In recent years, with the development of generative
adversarial networks [8, 35, 36] and 3D face reconstruc-
tion [7, 11, 40], some works choose to leverage 2D facial
landmarks or 3D face models to bridge the gap between
audio and dynamic facial images. Suwajanakorn et al. [31]
propose a subject-aware framework to synthesize President
Obama with sparse mouth landmarks. Chen et al. [18] and
Das et al. [6] propose to predict full facial landmarks from
input audio and then generate corresponding faces. For the
3D-based methods, based on 3DMM, Thies et al. [32] and
Song et al. [29] first extract facial expression parameters for
3D face mesh reconstruction and then generate face images.
Implicit Representation Approaches. Neural scene rep-
resentation aims to learn the shape and appearance of
scenes. With points in space as inputs, neural networks
are leveraged to estimate the information of 3D geometry
and appearance [9, 20–22]. Based on the recently popular
Neural Radiance Fields (NeRF) [22], several works try
to extend it for talking head synthesis. AD-NeRF [10]
decomposes the neural radiance fields of human portrait
into two branches to model the head and torso deformation
respectively. SSP-NeRF [19] further introduces face seman-
tics as guidance to grasp local dynamics and appearances
and achieves fine-grained results. However, both of them
are subject-aware methods. For each identity, a specific
model needs to be trained with a large dataset. Although
DFRF [26] propose a NeRF-based few-shot talking head
synthesis framework, for each new identity, it still requires
subject-specific training with extra video data. In contrast
to these works, our proposed framework is subject-agnostic.
Once trained, the model can be applied to unseen identities.
Codebook Learning. Unlike the traditional hand-crafted
codebook, VQVAE [33] is the first to design a discrete code-
book learned by a vector-quantized autoencoder model, in
which discrete latents are recalled from the codebook, and
are then sent into the decoder network to get the outputs.
To improve the perceptual quality of the generated results,
VQGAN [23] uses a Transformer module to model the
long-range interactions within learned compositions. Also,
the adversarial loss and perceptual loss are adopted to
ensure that the codebook can capture perceptually important
local structures. There are some works tend to store HQ
face information in a self-learned codebook, and apply it
to face restoration task [42, 52]. Different from them,
we utilize the Transformer module to model fine-grained
coherence between global compositions of faces and long-
range dependencies of audio inputs, and build a cross-modal
mapping from audio to facial images.
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3. Method
Our method can be roughly divided into two stages.

In the first stage, we pre-train a codebook from massive
high-resolution face images, which contain rich and diverse
HQ facial details. In the second stage, the LipFormer
is introduced to model the relationship between the input
audio and the target lip-codes. We will elaborate on the two
stages one by one.

3.1. HQ Codebook

This stage aims to learn the codebooks, so that they can
be retrieved to generate HQ talking face images. Following
VQVAE [33] and VQGAN [23], we first train a quantized
autoencoder based on a face reconstruction task, which
extracts HQ facial priors from plenty of face data and
encodes them into codebooks. Meanwhile, based on the
observation that audio features have a greater impact on
the mouth region, we learn two separate codebooks, one
for upper face encoding CU , and another for bottom face
encoding CB .

As shown in Fig. 2a, given an upper half face TU and
the corresponding bottom half face TB as inputs, the face
encoder extracts the face feature FU and lip feature FB

from them:

FU = Enc(TU ), FB = Enc(TB). (1)

We then obtain their quantized encodings HU and HB

from CU and CB by the nearest neighbor search. Taking
HB for example, each encoding in FB will be replaced
with its nearest neighbor in CB , and we call all the nearest
neighbor index of FB as lip-codes. After that, HU and
HB are concatenated and sent into the decoder to get the
reconstructed result IRec:

IRec = Dec(HU ,HB). (2)

Training Losses: Due to two codebooks, we define the
vector-quantization loss as following:

LVQ = ∥sg[Enc(TU )]−HU∥22 + β ∥sg [HU ]− Enc(TU ))∥22
+ ∥sg[Enc(TB)]−HB∥22 + β ∥sg [HB ]− Enc(TB))∥22 ,

(3)
where sg[·] is the stop-gradient operator and β is a loss
hyper-parameter set to 0.25 in all our experiments. Similar
to [23], we adopt ℓ2 loss (LRec

2 ), perceptual loss (LRec
per ) and

adversarial loss (LRec
adv ) in the final objective:

LRec = LVQ + LRec
2 + 0.1LRec

per + 0.1LRec
adv . (4)

3.2. LipFormer

As stated above, audio has a greater influence on the
bottom face, so we only predict lip-codes for CB , upper face

is taken as input to help the prediction, which can make the
model focus on learning the mapping function from audios
to lip motions, ignoring other trivial parts. An intuitive idea
is to use the upper face and audio to do the prediction, but
the texture details of mouth will be lost. Thus, we introduce
a reference face to guide texture learning.

It should be noted that, although the reference mouth
contains similar texture information with the target one,
the poses of the reference mouth and head are usually not
consistent with the target face, since they always change
along with the pronunciation, especially in the talking face
scenario. Directly sending the reference mouth into the
network may lead to texture mismatch. Consequently, we
propose an adaptive face warping module to reduce the pose
biases between the reference and target faces.

Besides, compared with just regressing the lip-codes, we
empirically prove that regressing both the lip-codes and face
image is easier to converge (see Ablation Studies for more
details). So, we connect the face decoder (trained in the first
stage) behind the Transformer network and perform end-
to-end training to further improve the final performance.
Fig. 2b illustrates the pipeline of our LipFormer. It can be
seen that we have 5 core components in total: 1) Audio
Encoder; 2) Face Encoder; 3) Adaptive Face Warping
Module; 4) Transformer Network; 5) Face Decoder. We
will detail them one by one.

Before that, some notations are given below to facilitate
our discussion. We set TU and TB as the upper and bottom
half image of target face (T for the entire target face),
RU and RB as the reference one. CB ∈ Rn∗d has n d-
dimensional latent embeddings. s ∈ {0, . . . , n − 1}h′×w′

is denoted as the lip-codes, where h′ and w′ are the height
and weight of TB in latent space. LipFormer takes TU , RU

and RB as image input, and output the lip-codes prediction
s∗ and the generated talking face results IGen.
Audio Encoder. We first process the audio to mel-
spectrogram of size 16 × 80, denoted as A, then apply a
convolutional network EAud to extract the audio features:

FAud = EAud(A). (5)

FAud will be used as one input of the following Transformer
network.
Face Encoder. Since the pre-trained face encoder (Enc)
and codebooks CU and CB contain plentiful facial informa-
tion, they are fixed in the LipFormer. As shown in Fig. 2b,
TU , RU and RB are inputs into Enc and quantization
process to obtain their corresponding quantized encodings
HTU

, HRU
and HRB

(all ∈ Rh′×w′×d).
Adaptive Face Warping Module. As we claimed before,
RB and TB have similar lip textures, but their poses
are usually different. Feeding HRB

into the Transformer
directly is not a good choice, we need to reduce the pose
biases between HRB

and HTB
. Fortunately, we observe
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Figure 2. Overview of the proposed LipFormer. (a) HQ Codebook Learning (Sec. 3.1). A quantized autoencoder is trained with face
reconstruction task, which outputs two codebooks. (b) LipFormer Training (Sec. 3.2). We fix the face encoder and the codebooks, and
finetune the decoder with other parts end to end. Conditioned on the input audio and a reference face, the Transformer module is introduced
to predict the target lip-codes. Moreover, an adaptive face warping module is designed to address the texture mismatch issue.

that the poses of the upper and bottom half faces are
nearly synchronized, which inspires us to use the pose
displacement of the upper face (i.e., HTU

and HRU
) to

estimate that of the bottom one (i.e., HTB
and HRB

).
Therefore, we design an adaptive face warping module M .
It consists of two parts: a keypoints extractor Fe and an
offsets regressor Fd. Fe maps the quantized encodings into
the keypoint space:

KTU
= Fe(HTU

),KRU
= Fe(HRU

). (6)

KTU
/KRU

∈ Rh′×w′×k can be regarded as k keypoints in
the form of k heatmaps with size h′ × w′. Every heatmap
is activated by the last softmax layer of Fe. The offsets
regressor Fd takes the heatmap displacement KTU

−KRU

as input to regresses offsets between HTB
and HRB

, and
outputs the final offset grids:

GRB
= Fd(KTU

−KRU
), (7)

where GRB
∈ Rh′×w′×2, indicating h′×w′ 2-D coordinate

offsets. As shown in Fig. 3, we can use bilinear sampling to
get the pose-aligned lip encoding ĤRB

∈ Rh′×w′×d. The
experimental results in Sec. 4 has proven the effectiveness
of our proposed adaptive face warping module.
Transformer Module. We adopt a Transformer [34] mod-
ule Tr to model the audio-lip correlations, which requires
three inputs: the extracted audio feature FAud, the warped
reference lip encodings ĤRB

and the learned bottom code-
books CB .

Generally speaking, a Transformer module contains
three blocks: multi-head self-attention (MHSA), norm and

ℎ′
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Figure 3. The diagram of Bilinear Sampling. Assume GRB [0][0]
is surrounded by 4 points: [(1, 1), (1, 2), (2, 1), (2, 2)], then the
4 corresponding embeddings in HRB are input into bilinear
sampling function to get ĤRB [0][0].

residual layer and feed-forward network (FFN). Consider-
ing we have multiple inputs, we replace MHSA with multi-
head cross attention (MHCA). Specifically, in each MHCA
block, we take ĤRB

as queries Q, CB as keys K and
values V :

Qi = ĤRB
Wqi + bqi,

Ki = CBWki + bki,

Vi = CBWvi + bvi.

(8)

The i-th MHCA computes as:

Ẑi+1 = Softmax (QiKi)Vi +Zi, (9)

where Z0 is ĤRB
itself. Why do we use ĤRB

and CB as
the inputs of MHCA, instead of FAud? Except that they
have the same dimension and are easy to calculate, another
important reason is that ĤRB

is the texture guide signal and
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CB contains rich texture information. Thus using ĤRB
as

the query to compute the weights with CB can make full
use of the pre-trained prior information.

Motivated by [23], we choose conditional layer normal-
ization (CLN) to deal with the audio feature. Concretely,
a simple linear projection layer is utilized to transform
input FAud to the learnable vectors β′ and γ′, replacing
the original parameters β and γ in Layer Normalization
(LN) [2]. The final fused features Zi+1 is calculated as
follows:

Zi+1 = FFN
(
CLN

(
Ẑi+1,FAud

))
. (10)

At the end of Transformer module, the fully connected layer
and softmax layer are equipped to convert ZN (assume we
have N Transformer module layers) to probability matrix
S ∈ Rh′×w′×n.
Face Decoder. Given the matrix S, we use argmax(·) to
obtain the target lip-codes s∗ ∈ Rh′×w′

, and calculate the
loss between s∗ and s. In addition, the face decoder is
added after the Transformer module to regress the target
face simultaneously, as noted above. Note that the face
decoder is trained in the first stage, and finetuned in the
LipFormer.

To get IGen, we exploit s∗ to retrieve CB to con-
struct the target lip encodings H̃TB

, and send it into face
decoder combined with HTU

. However, the argmax(·)
operation (used to calculate s∗) is not differentiable, the
gradient cannot be back propagated from the face decoder
to the Transformer. We therefore introduce Gumbel-
softmax [12] to approximate the argmax(·) operation.

In this way, the whole LipFormer, including all the
above 5 components, can be jointly optimized end-to-end.
In particular, we finetune the face decoder Dec, together
with the audio encoder EAud, the Adaptive Face Warping
Module M and the Transformer module Tr, while keeping
the face encoder Enc and two codebooks (CU and CB)
fixed.
Training Loss. The training loss of LipFormer mainly
includes three parts:
1. The cross-entropy loss LTr to force the predicted lip-
codes s∗ to approach the ground truth s;
2. The ℓ2 loss LGen

2 and perceptual loss LGen
per [14,46] based

on VGG net [27] to match IGen with the target face T ;
3. The GAN loss LGen

adv with architecture of StyleGAN
discriminator [16] for IGen.

The LipFormer is finally trained with a weighted sum of
the above losses as:

LGen = λTrLTr +LGen
2 + λperLGen

per + λadvLGen
adv , (11)

with λTr = 0.5 and λper = λadv = 0.1.

4. Experiments

4.1. Experimental Settings

Datasets. We train LipFormer on two public datasets,
including LRS2 [1] and FFHQ [15]. LRS2 is a frequently-
used talking head generation dataset that contains thousands
of spoken sentences from BBC television. The training
and validation sets contain 45839 and 1082 utterances
respectively. FFHQ is a high-quality face image dataset,
which consists of 70000 examples at 1024×1024 resolution
and contains rich facial details in terms of age, ethnicity
and image background, hence it is suitable to learn the HQ
codebook. To further evaluate our method, we collect new
talking face videos from YouTube, termed YouTubeHQ. It
contains 21560 HQ short video sequences with the audio
track. The average video length is 5 seconds and all in
25 fps. We carefully separate the YouTubeHQ dataset
into training and validation sets with 20000 and 1560 clips
respectively to ensure no identity overlaps. We will release
the dataset when the paper is made public.
Training Details. Following the experimental settings in
previous work [24, 25], the speech audio is first processed
to mel-spectrogram of size 16 × 80. We set the sampling
rate to 16kHz, window size to 800, and hop size to 200.
For the data augmentation, we sequentially align, crop, and
resize the video frames to 512×512 resolution with 25fps.
For the adversarial loss LRec

adv and LGen
adv , we adopt the same

GAN loss as StyleGAN [16]. We apply the Adam optimizer
with β1 = 0.9, β2 = 0.95, and an initial learning rate of
0.0001 for training the overall framework, except for the
Transformer module, whose is 0.00008. For more details
about network settings, please refer to the supplemental
materials.

4.2. Quantitative Results.

Metrics. To quantitatively measure the visual quality,
we figure up the Peak Signal-to-Noise Ratio (PSNR) and
Structure SIMilarity (SSIM) [41] for the generated videos.
Following Wav2Lip [25], Landmark Distance (LMD) [4],
Lip-sync Distance (LSE-D) [25] and Lip-sync Confidence
(LSE-C) [25] are applied to measure the audiovisual syn-
chronization. Following the settings in SyncTalkFace [24],
we use a face detector as in ATVG [18], and evaluate the
cropped generated face with the same region and resize into
the same size for a fair comparison. During the inference
stage, we take the first frame of the videos as the reference
if not specified.

To quantitatively evaluate the talking face generation
performance of LipFormer, we compare our method with 4
recent works: ATVG [18], Wav2Lip [25], PC-AVS [51] and
SyncTalkFace [24]. We perform comparisons on 2 datasets,
i.e., LRS2 and our collected YouTubeHQ validation set.
We learn the HQ codebook on both the LRS2 training data
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Ground Truth

ATVG

Wav2Lip

PC-AVS

SyncTalkFace

LipFormer

Figure 4. Comparison with other baseline methods for talking face generation on LRS2. Our method generates results that best match the
ground truth, and with clear details especially in the mouth region.

Table 1. The quantitative results on LRS2 and our collected YouTubeHQ. We compare the proposed LipFormer against several baseline
methods. We adopt PSNR and SSIM to measure image quality, LMD to measure mouth shape coherence, LSE-D and LSE-C to measure
lip-sync quality.

LRS2 YouTubeHQ

Methods PSNR(↑) SSIM(↑) LMD(↓) LSE-D(↓) LSE-C(↑) PSNR(↑) SSIM(↑) LMD(↓)
Ground Truth N/A 1.000 0.000 6.259 8.247 N/A 1.000 0.000

ATVG [18] 30.427 0.735 2.549 8.223 5.584 24.036 0.707 3.146
Wav2Lip [25] 31.274 0.837 1.940 5.995 8.797 25.971 0.758 2.473
PC-AVS [51] 29.887 0.747 1.963 7.301 6.728 25.106 0.714 2.606
SyncTalkFace [24] 32.529 0.876 1.387 6.352 7.925 - - -
LipFormer 33.497 0.891 1.261 6.408 7.874 33.249 0.876 1.357

and FFHQ, and then optimize LipFormer architecture only
using LRS2 training set. Following SyncTalkFace, we com-
pare recent top-performing approaches on the evaluation
set of LRS2. To verify the generalization of our methods,
we evaluate our trained model on the evaluation set of
YouTubeHQ as well. Since SyncTalkFace does not provide
pretrained models, we only compare our methods with the
other three baselines by inferencing with their publicly-
released best models.

Tab. 1 compares the performance of LipFormer with
current state-of-the-art approaches. From the results, we
can find that our method achieves the best results in terms
of PSNR, SSIM and LMD on LRS2. Wav2Lip achieves
the best LSE-D and LSE-C scores, whose reason might be
that it explicitly applies a powerful lip-sync discriminator
during training, which can act directly on lip-sync measure-
ment. Despite this, LipFormer can achieve the best LMD
results, and comparable LSE-D and LSE-C performance

Table 2. The quantitative results on video samples provided by
AD-NeRF [10]. We compare the proposed LipFormer to AD-
NeRF. The best result in each metric is highlighted in bold.

AD-NeRF Video Sample

Methods PSNR↑ SSIM↑ LMD↓ LSE-D↓ LSE-C↑
AD-NeRF [10] 29.714 0.842 1.506 6.603 7.542
LipFormer 33.145 0.870 1.359 6.377 7.902

with ground truth, meaning a good lip-sync of our method.
On the YouTubeHQ dataset, we can observe that LipFormer
shows good robustness, while other methods suffer from an
obvious performance drop in terms of PSNR, SSIM and
LMD. Thus the results can better demonstrate the gener-
alization and effectiveness of our method when processing
HQ videos. For more experimental results, please refer to
the supplemental materials.

We also compare LipFormer to NeRF-based method,
i.e., AD-NeRF [10] on its own portrait video. Since
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our model does not generate the whole portrait, we only
compute the metrics on the same face regions. Results are
shown in Tab. 2, and we can see that our method achieves
better results in all metrics than AD-NeRF, in spite of
the proposed LipFormer is identity agnostic. The results
better prove that our method can generate high-fidelity and
generalizable talking face videos.

4.3. Qualitative Results.

We perform qualitative analysis on LRS2 here. Since
SyncTalkFace does not release the training code and pre-
trained models, we apply the visual examples in the LRS2
dataset provided in their original paper when comparing
with them. The comparison is shown in Fig. 4. We can
observe that other methods generate blurry results lacking
fine facial details, especially in the mouth region. While
our method provides much clearer results with accurate
lip shapes. We also conduct a visual comparison with
NeRF-based methods [10,19]. Since the pre-trained models
of SSP-NeRF are unavailable, we take a video demo of
President Obama from AD-NeRF as the test video, and
compare our results with examples provided by SSP-NeRF.
The visual comparison results are shown in Fig. 5. We
can observe artifacts and blurriness in the generated results
of AD-NeRF. Also, the mouth shapes in column 3 and
column 5 are not exactly coherent with ground truth. On the
other hand, our results achieve higher fidelity. Generally,
our method achieves comparable results to SSP-NeRF. It is
worth noting that our model is identities independent, which
means it does not require extra subject-specific training as
NeRF-based methods.

The generalization capability is of great importance for
a talking face framework. Ideally, talking face results
generated from the same audio feature should have almost
the same mouth shape, while maintaining their own identity
and facial details. To further validate such a property
of our proposed LipFormer, we conduct a mouth-shape
transferring experiment on our collected video data. We
first train the model with the training data of YouTubeHQ
and FFHQ datasets, then we test it on the validation set
of YouTubeHQ. To be specific, we randomly select several
target frames from different test videos. Then, we extract
audio features of different frames from a driving video and
use these audio features to drive the selected target frames.
The generated results from the same audio features and
different target frames are expected to have similar mouth
shapes. We show the visual results in Fig. 6. As we can see,
the generated results in each column share almost the same
mouth shape as that of the driving frame. Meanwhile, each
generated result maintains its original identity, face pose
and facial texture just as the corresponding target frame.
Similar superior results could also be found in Fig. 1, in
which we exchange the mouth shape of two adjacent face

Ground Truth

AD-NeRF

SSP-NeRF

LipFormer

Figure 5. The comparison of generated frame results on AD-
NeRF [10] sample video. Results of AD-NeRF [10], SSP-
NeRF [19] and our proposed LipFormer are provided. Our method
generates results with higher fidelity and more accurate mouth
shape.

Table 3. Ablation studies of various variants of LipFormer on our
collected YouTubeHQ. PSNR and SSIM are adopted to measure
the performance of each variant.

YouTubeHQ

Variants of LipFormer PSNR(↑) SSIM(↑)
w/o Adaptive Warping 31.980 0.845
w/o FFHQ Pre-training 31.637 0.833
LipFormer 33.249 0.876

frames by exchanging their audio features. These results
demonstrate that LipFormer can produce results with high
fidelity and faithfully generalize to unseen identities.

4.4. Ablation Studies.

According to the analysis above, our proposed Lip-
Former has several key components. First, our method
introduces facial priors from FFHQ datasets in the form of
pre-learned codebooks to enable improved generalization
and visual quality. Second, the adaptive face warping
module is used to warp the reference lip features to the
target pose. At last, the Gumbel-softmax operation adopted
in LipFormer enables an end-to-end training manner. To
comprehensively verify the effectiveness of different com-
ponents in our proposed LipFormer, we compare Lip-
Former with several variants. The full LipFormer model
is trained with both LRS2 and FFHQ datasets. The com-
parison between LipFormer and its variants is conducted on
YouTubeHQ. For all variants listed below, the same training
hyper-parameters are used as the original LipFormer model.
Importance of HQ priors. We first compare variants of
LipFormer trained without and with FFHQ datasets. As
shown in Tab. 3, without the priors in FFHQ datasets, the
learned codebooks, therefore, are short of general facial
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Driving

Target

Figure 6. Visual results of mouth shape transferring experiment
on our collected YouTubeHQ. The audio feature of each driving
video frame is taken to drive each target frame. Each generated
result has a mouth shape corresponding to the driving audio.

features, which results in worse PSNR and SSIM results
on unseen video datasets. For more experimental results,
please refer to the supplemental materials.
Effectiveness of Adaptive Face Warping Module. To
verify the superiority of our designed adaptive face warp-
ing module, we set a variant by removing this module
(i.e., directly feed the quantized encodings HRB

into the
Transformer module as input). As shown in Tab. 3, the
comparison demonstrates the effectiveness of this module.
Moreover, we also visualize the warped lip features ĤRB

to figure out what exactly this module learn. We visualize
the warped lip features by sending them into the trained
decoder Dec. We show some results in Fig. 7, where the
red boxed regions denote the visual results before and after
the adaptive warping. We can observe that the lower half
of the reference faces are all warped to the target pose,
which verifies the effectiveness of our designed adaptive
face warping module. For more experimental results, please
refer to the supplemental materials.
Importance of Gumbel-softmax. The Gumbel-softmax
operator enables an end-to-end training manner of our
framework. To evaluate the effectiveness of such a training
strategy, we set another variant by training the Transformer
module and the decoder separately. LTr is for Transformer,
LGen
2 , LGen

per and LGen
adv are for Decoder. However, in

practice, as shown in Fig. 8, we observe a very limited loss
decrease phenomenon under such training settings. There
will be a big gap between such a Transformer module and

T R T R

Figure 7. Visualizing warped lip features by directly sending them
into the decoder. These visualizations reflect that our proposed
face-warping module is effective in facial texture aligning.

100k 200k 300k 400k 500k 600k 700k 800k

Iteration

Lo
ss

Figure 8. Cross-Entropy loss curves of LipFormer with/without
Gumbel-softmax.

the original one. To this end, introducing the Gumbel-
softmax operator is necessary to our framework.

5. Conclusion

In this work, we present LipFormer for high-fidelity and
generalizable talking face generation. To achieve this, we
introduce high-quality facial priors in a form of pre-learned
codebooks and then simplify the talking face generation
task as finding proper lip-codes to characterize the variation
of lips during portrait talking. We propose a Transformer-
based framework, to model the audio-visual coherence
and predict the lip-codes sequence based on input audio
features. To alleviate the difficulty of lip-code prediction
under different poses, we further introduce an Adaptive
Face Warping Module, which helps warp the reference face
to the target pose in the feature space. By this means,
LipFormer can make better use of pre-learned image priors
and is robust to posture change. Extensive experiments
show that our method significantly outperforms state-of-
the-art talking face methods and can faithfully generalize
to unseen identities.
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Brébisson, and Yoshua Bengio. Obamanet: Photo-realistic
Lip-sync from Text. arXiv preprint arXiv:1801.01442, 2017.
1

[18] Chen Lele, K Maddox Ross, Duan Zhiyao, and Xu Chen-
liang. Hierarchical Cross-Modal Talking Face Generation
With Dynamic Pixel-Wise Loss. In IEEE Conf. Comput. Vis.
Pattern Recog., 2019. 2, 5, 6

[19] Xian Liu, Yinghao Xu, Qianyi Wu, Hang Zhou, Wayne Wu,
and Bolei Zhou. Semantic-Aware Implicit Neural Audio-
Driven Video Portrait Generation. In Eur. Conf. Comput.
Vis., 2022. 2, 7

[20] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-
jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel
Duckworth. NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections. In IEEE Conf. Comput.
Vis. Pattern Recog., 2020. 2

[21] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy Net-
works: Learning 3D Reconstruction in Function Space. In
IEEE Conf. Comput. Vis. Pattern Recog., 2018. 2

[22] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View
Synthesis. In Eur. Conf. Comput. Vis., 2020. 2

[23] Björn Ommer, Patrick Esser, Robin Rombach, Patrick Esser,
Robin Rombach, and Björn Ommer. Taming Transformers
for High-Resolution Image Synthesis. In IEEE Conf. Com-
put. Vis. Pattern Recog., 2021. 2, 3, 5

[24] Jin Park, Minsu Kim, Joanna Hong, Jeongsoo Choi, and
Yong Man Ro. SyncTalkFace: Talking Face Generation with
Precise Lip-syncing via Audio-Lip Memory. In Assoc. Adv.
Artif. Intell., 2022. 2, 5, 6

[25] K R Prajwal, Rudrabha Mukhopadhyay, Vinay P. Nambood-
iri, and C. V. Jawahar. A Lip Sync Expert Is All You Need
for Speech to Lip Generation In The Wild. In ACM Int. Conf.
Multimedia, 2020. 2, 5, 6

[26] Shuai Shen, Wanhua Li, Zheng Zhu, Jiwen Lu, and Jie
Zhou. Learning Dynamic Facial Radiance Fields for Few-
Shot Talking Head Synthesis. In Eur. Conf. Comput. Vis.,
2022. 2

[27] Karen Simonyan and Andrew Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. In
Int. Conf. Learn. Represent., 2015. 5

[28] Hyoung-Kyu Song, Sang Hoon Woo, Junhyeok Lee, Seung-
min Yang, Hyunjae Cho, Youseong Lee, Dongho Choi, and
Kang-wook Kim. Talking Face Generation with Multilingual
TTS. In IEEE Conf. Comput. Vis. Pattern Recog., 2022. 1

[29] Linsen Song, Wayne Wu, Chen Qian, Ran He, and
Chen Change Loy. Everybody’s Talkin’: Let Me Talk as
You Want. IEEE Transactions on Information Forensics and
Security, 2021. 2

[30] Yang Song, Jingwen Zhu, Dawei Li, Andy I-Shin Wang,
and Hairong Qi. Talking Face Generation by Conditional
Recurrent Adversarial Network. In Int. Joint Conf. Artif.
Intell., 2019. 2

13852



[31] Supasorn Suwajanakorn, Steven M. Seitz, and Ira
Kemelmacher-Shlizerman. Synthesizing Obama: Learning
Lip Sync from Audio. ACM Trans. Graph., 2017. 1, 2

[32] Justus Thies, Mohamed Elgharib, Ayush Tewari, Christian
Theobalt, and Matthias Nießner. Neural Voice Puppetry:
Audio-driven Facial Reenactment. In Eur. Conf. Comput.
Vis., 2020. 2

[33] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural Discrete Representation Learning. In
Adv. Neural Inform. Process. Syst., 2017. 2, 3

[34] Ashish Vaswani, Google Brain, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan Gomez, and Łukasz
Kaiser. Attention Is All You Need. In Adv. Neural Inform.
Process. Syst., 2022. 4

[35] Jiayu Wang, Wengang Zhou, Guo-Jun Qi, Zhongqian Fu,
Qi Tian, and Houqiang Li. Transformation GAN for
Unsupervised Image Synthesis and Representation Learning.
In IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2

[36] Jiayu Wang, Wengang Zhou, Jinhui Tang, Zhongqian Fu, Qi
Tian, and Houqiang Li. Unregularized Auto-Encoder with
Generative Adversarial Networks for Image Generation. In
ACM Int. Conf. Multimedia, 2018. 2

[37] Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang,
Wayne Wu, Chen Qian, Ran He, Yu Qiao, and Chen Change
Loy. MEAD: A Large-Scale Audio-Visual Dataset for
Emotional Talking-Face Generation. In Eur. Conf. Comput.
Vis., 2020. 1

[38] Suzhen Wang, Lincheng Li, Yu Ding, Changjie Fan, and
Xin Yu. Audio2head: Audio-driven One-shot Talking-head
Generation with Natural Head Motion. In Int. Joint Conf.
Artif. Intell., 2021. 1

[39] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-
Shot Free-View Neural Talking-Head Synthesis for Video
Conferencing. In IEEE Conf. Comput. Vis. Pattern Recog.,
2020. 1

[40] Xueying Wang, Yudong Guo, Bailin Deng, and Juyong
Zhang. Lightweight Photometric Stereo for Facial Details
Recovery. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.
2

[41] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image Quality Assessment: From Error Visi-
bility to Structural Similarity. IEEE Trans. Image Process.,
2004. 5

[42] Zhouxia Wang, Jiawei Zhang, Runjian Chen, Wenping
Wang, and Ping Luo. RestoreFormer: High-Quality Blind
Face Restoration From Undegraded Key-Value Pairs. In
IEEE Conf. Comput. Vis. Pattern Recog., 2022. 2

[43] Olivia Wiles, A. Sophia Koepke, and Andrew Zisserman.
X2Face: A Network for Controlling Face Generation Using
Images, Audio, and Pose Codes. In Eur. Conf. Comput. Vis.,
2018. 2

[44] Fei Yin, Yong Zhang, Xiaodong Cun, Mingdeng Cao, Yanbo
Fan, Xuan Wang, Qingyan Bai, Baoyuan Wu, Jue Wang, and
Yujiu Yang. StyleHEAT: One-shot High-resolution Editable
Talking Face Generation via Pre-trained StyleGAN. In Eur.
Conf. Comput. Vis., 2022. 1

[45] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and
Victor Lempitsky. Few-Shot Adversarial Learning of Re-
alistic Neural Talking Head Models. In Int. Conf. Comput.
Vis., 2019. 1

[46] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The Unreasonable Effectiveness
of Deep Features as a Perceptual Metric. In IEEE Conf.
Comput. Vis. Pattern Recog., 2018. 5

[47] Xi Zhang, Xiaolin Wu, Xinliang Zhai, Xianye Ben, and
Chengjie Tu. DAVD-Net: Deep Audio-Aided Video De-
compression of Talking Heads. In IEEE Conf. Comput. Vis.
Pattern Recog., 2020. 1

[48] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie
Fan. Flow-Guided One-Shot Talking Face Generation With
a High-Resolution Audio-Visual Dataset. In IEEE Conf.
Comput. Vis. Pattern Recog., 2021. 1

[49] Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang
Wang. Talking Face Generation by Adversarially Disen-
tangled Audio-Visual Representation. In Assoc. Adv. Artif.
Intell., 2019. 2

[50] Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy,
Xiaogang Wang, and Ziwei Liu. Pose-controllable talking
face generation by implicitly modularized audio-visual rep-
resentation. In IEEE Conf. Comput. Vis. Pattern Recog.,
2021. 1

[51] Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy,
Xiaogang Wang, Ziwei Liu, Hong Kong, and Sensetime
Research. Pose-Controllable Talking Face Generation by
Implicitly Modularized Audio-Visual Representation. In
IEEE Conf. Comput. Vis. Pattern Recog., 2022. 2, 5, 6

[52] Shangchen Zhou, Kelvin C.K. Chan, Chongyi Li, and
Chen Change Loy. Towards Robust Blind Face Restoration
with Codebook Lookup Transformer. In Adv. Neural Inform.
Process. Syst., 2022. 2

[53] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria,
Evangelos Kalogerakis, and Dingzeyu Li. MakeltTalk:
Seaker-aware Talking-head Animation. ACM Trans. Graph.,
2020. 1

13853


