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Abstract

Exploring dense matching between the current frame
and past frames for long-range context modeling, memory-
based methods have demonstrated impressive results in
video object segmentation (VOS) recently. Nevertheless,
due to the lack of instance understanding ability, the above
approaches are oftentimes brittle to large appearance vari-
ations or viewpoint changes resulted from the movement of
objects and cameras. In this paper, we argue that instance
understanding matters in VOS, and integrating it with
memory-based matching can enjoy the synergy, which is in-
tuitively sensible from the definition of VOS task, i.e., identi-
fying and segmenting object instances within the video. To-
wards this goal, we present a two-branch network for VOS,
where the query-based instance segmentation (IS) branch
delves into the instance details of the current frame and the
VOS branch performs spatial-temporal matching with the
memory bank. We employ the well-learned object queries
from IS branch to inject instance-specific information into
the query key, with which the instance-augmented match-
ing is further performed. In addition, we introduce a multi-
path fusion block to effectively combine the memory readout
with multi-scale features from the instance segmentation de-
coder, which incorporates high-resolution instance-aware
features to produce final segmentation results. Our method
achieves state-of-the-art performance on DAVIS 2016/2017
val (92.6% and 87.1%), DAVIS 2017 test-dev (82.8%), and
YouTube-VOS 2018/2019 val (86.3% and 86.3%), outper-
forming alternative methods by clear margins.

1. Introduction
Video object segmentation aims to identify and seg-

ment the specific objects in a video sequence, which has
very broad applications, e.g., interactive video editing and
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Figure 1. J&F-time curve of XMem [13], a state-of-the-art
memory-based VOS model and our proposed method. XMem will
suffer from a distinct accuracy degradation when the appearance
of the target object (e.g., pose of the dancing person) changes dra-
matically compared to the reference frame. Comparatively, our
approach is more robust to this challenging case.

autonomous driving. This work focuses on the semi-
supervised setting where the annotation of the first frame
is given. Starting from Space-Time Memory network
(STM) [46], memory-based methods [13–15, 25, 36, 41, 47,
53, 58] have almost dominated this field due to their supe-
rior performance and simplicity. STM [46] and its vari-
ants [25,35,65] typically build a feature memory to store the
past frames as well as corresponding masks, and perform
dense matching between the query frame and the memory
to separate targeted objects from the background.

Despite the prominent success achieved, there exists a
non-negligible limitation for the above approaches, i.e., the
object deformation and large appearance variations result-
ing from the motion of camera and objects will inevitably
give rise to the risk of false matches [13,15,46], thus making
them struggle to generate accurate masks. We visualize the
J&F -time curve of XMem [13], a state-of-the-art memory-
based VOS model, on a representative video from DAVIS
2017 in Figure 1. It can be seen that, when the target ob-
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Figure 2. A conceptual introduction on how humans address
the VOS task. For the current frame of a video stream, humans
first distinguish between different instances and then match them
with the target object(s) in memory.

ject undergoes a distinct pose change compared to the first
reference frame, XMem [13] misidentifies another person
wearing the same color as the foreground and suffers from
drastic performance degradation.

In contrast, humans are capable of avoiding such mis-
takes and achieving consistently accurate matching. This
gap motivates us to reflect on how we humans resolve the
VOS task. Intuitively, given the current frame in a video
sequence, humans typically first distinguish between differ-
ent instances within it by identifying which instance each
pixel belongs to. After that, the instance matching with the
target object(s) in memory is conducted to obtain the final
results (see Figure 2 for a conceptual illustration). In fact,
this intuition is also consistent with the definition of VOS
itself, i.e., identify (matching) and segmenting objects (in-
stance understanding). Moreover, in the absence of instance
understanding, it is theoretically difficult to generate accu-
rate predictions for regions that are invisible in the reference
frame by pure matching.

Inspired by this, we argue that instance understanding is
critical to video object segmentation, which could be incor-
porated with memory-based matching to enjoy the synergy.
More specifically, we aim to derive instance-discriminative
features that are able to distinguish different instances.
Equipped with these features, we then perform semantic
matching with the memory bank to effectively associate the
target object(s) with specific instance(s) in current frame.

In this spirit, we present a two-branch network, ISVOS,
for semi-supervised VOS, which contains an instance seg-
mentation (IS) branch to delve into the instance details for
the current frame and a video object segmentation branch
that resorts to external memory for spatial-temporal match-
ing. The IS branch is built upon a query-based instance seg-
mentation model [10] and supervised with instance masks
to learn instance-specific representations. Note that ISVOS
is a generic framework and IS branch can be easily re-
placed with more advanced instance understanding mod-
els. The video object segmentation (VOS) branch, on the
other hand, maintains a memory bank to store the features
of past frames and their predictions. We compare the query
key of the current frame and memory key1 from memory

1In this paper, we follow previous work [15,46] of which are compared

bank for affinity calculation following [13, 15, 46, 53]. Mo-
tivated by recent approaches that use learnable queries serv-
ing as region proposal networks to identify instances in im-
ages [10, 11, 20, 71], we employ object queries from the IS
branch to inject instance-specific information into our query
key, with which the instance-augmented matching is per-
formed. After that, the readout features are produced by ag-
gregating the memory value with the affinity matrix. More-
over, in order to make use of the fine-grained instance de-
tails reserved in high-resolution instance-aware features, we
further combine the multi-scale features from the instance
segmentation decoder with the memory readout through a
carefully designed multi-path fusion block to finally gener-
ate the segmentation masks.

We conduct experiments on the standard DAVIS [49,50]
and YouTube-VOS [67] benchmarks. The results demon-
strate that our ISVOS can achieve state-of-the-art perfor-
mance on both single-object (i.e., 92.6% in terms of J&F
on DAVIS 2016 validation split) and multi-object bench-
marks (i.e., 87.1% and 82.8% on DAVIS 2017 validation
and test-dev split, 86.3% and 86.3% on YouTube-VOS 2018
& 2019 validation split) without post-processing.

2. Related Work

Propagation-based VOS. Propagation-based VOS meth-
ods [16,19,32,45,56,66,69,70] take advantage of temporal
correlations between adjacent frames to iteratively propa-
gate the segmentation masks from the previous frame to the
current frame. Early approaches [3, 26, 48] typically follow
an online learning manner by finetuning models at test-time,
which therefore suffer from limited inference efficiency. To
mitigate this issue, the following studies shift attention to
offline learning by utilizing optical flow [16,56,69] as guid-
ance to deliver temporal information smoothly. Despite the
promising results achieved, these methods are oftentimes
vulnerable to error accumulation brought by occlusion or
drifting.
Matching-based VOS. In order to model the spatial-
temporal context over longer distances, matching-based
models [14, 15, 27, 46] typically calculate the correspon-
dence between the current frame and the reference frame [8,
27, 57, 72] and even a feature memory [13, 25, 36, 41, 52,
53, 65] to identify target objects. In addition, several stud-
ies focus on designing novel memory construction [35, 36]
or matching [58] strategies to improve the inference effi-
ciency of VOS models. However, the widely adopted dense
matching between reference features will inevitably fail on
objects with significant appearance variations or viewpoint
changes. In this paper, we propose to integrate instance

with query key to denote the key features of current frame and memory
bank as query key and memory key, respectively, so as to perform instance-
augmented matching.
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Figure 3. Overview of the proposed method, which consists of an instance segmentation branch and a video object segmentation
branch. We jointly train both branches on instance segmentation and video object segmentation tasks, respectively. The IS branch parts
denoted as the dotted gray lines will be skipped during inference, meaning that our method does not explicitly use the output instance
masks.

understanding into VOS, which is neglected in existing
matching-based methods.
Instance Segmentation. Built upon powerful object de-
tectors, two-stage instance segmentation models [2, 7, 23,
28, 34, 39] predict bounding boxes first and then extract
the instance mask in each region of interest (ROI). These
methods require complicated procedures, e.g., region pro-
posal generation [51] and ROIAlign [23], which motivates
the following work to develop one-stage box-free mod-
els [1, 9, 21, 30, 38, 43, 44, 62, 63]. Recently, the success
of vision transformer [4, 18, 55, 59, 60] inspires a series
of query-based models [10, 11, 20] to reformulate the in-
stance segmentation from a novel “set prediction” perspec-
tive, which achieve state-of-the-art performance on stan-
dard benchmarks [37]. In this work, we build our VOS
model with an auxiliary query-based instance segmentation
model [10] to make the intermediate feature instance-aware
rather than explicitly using the output segmentation mask.
It enables us to perform instance-augmented matching be-
tween the instance-aware features of the current frame and
memory. Note that our approach is generic and can be em-
ployed to improve various memory-based VOS methods.

3. Method
Our goal is to integrate the instance understanding for

improved memory-based video object segmentation. To this
end, we propose ISVOS, a two-branch network where the
instance segmentation (IS) branch learns instance-specific
information, and the video object segmentation (VOS)
branch performs instance-augmented matching through
memory reading. Such a design also shares a similar spirit
with a prior study [22] which implies that two layers of
the human cortex are responsible for object recognition and

tracking separately.
More formally, given a video sequence V =

[X1,X2, ...,XT ] and the annotation mask of the first frame,
we process the frames sequentially and maintain a memory
bank to store the past frames and their predictions follow-
ing [15, 46]. For the current frame Xt ∈ R3×H×W , we first
extract Fres4 from ResNet [24] as our backbone features,
which is shared by a pixel decoder to generate per-pixel
embeddings and a Transformer decoder to inject localized
features to learnable object queries in IS branch. While in
the VOS branch, we apply an Enhanced Key Encoder to
project backbone feature Fres4 to query key, which is com-
pared with the memory key to perform semantic matching.
Finally, the memory readout as well as multi-scale features
from both the backbone and pixel decoder are input to the
VOS decoder to produce the final mask prediction. The ar-
chitecture of ISVOS is illustrated in Figure 3. Below, we
first introduce IS and VOS branches in Sec. 3.1 and Sec. 3.2,
respectively, and then elaborate on how to obtain the final
mask prediction in Sec 3.3.

3.1. Instance Segmentation Branch

As described above, existing memory-based VOS mod-
els typically perform dense matching between the features
of the current frame and memory bank without mining the
instance information, which therefore suffers from false
matches when distinct object deformation or appearance
changes happen. To address this issue, we explore acquir-
ing the instance understanding capability from an instance
segmentation (IS) branch, which is built upon an auxiliary
query-based instance segmentation model [10]. Specifi-
cally, our IS branch consists of the following components:
Pixel Decoder takes Fres4 as input and generates per-pixel
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embeddings Fpixel ∈ RCε×H/4×W/4 with alternate convo-
lutional and upsampling layers, where Cε is the embedding
dimension. In addition, we also input the feature pyramid
{Pi}2i=0 produced by the pixel decoder with a resolution
1/32, 1/16, and 1/8 of the original image into both the trans-
former decoder and the VOS decoder, so as to fully take ad-
vantage of high-resolution instance features. For each reso-
lution, we add both a sinusoidal positional embedding and
a learnable scale-level embedding following [10, 76].
Transformer Decoder gathers the local information in fea-
tures obtained by pixel decoder to a set of learnable ob-
ject queries qins ∈ RN×Cd through masked attention [10],
where N is a pre-defined hyper-parameter to indicate the
number of object queries (which is set to 100, empirically),
and Cd is the query feature dimension. The masked atten-
tion can be formulated as:

ql = softmax(Ml−1 + qlk
T
l )vl + ql−1, (1)

where kl and vl are the key and value embeddings projected
from one resolution of {Pi}2i=0 (with i corresponds to l),
respectively. We add an auxiliary loss [10] to every inter-
mediate Transformer decoder layer and Ml−1 is the bina-
rized (threshold = 0.5) mask prediction from the previous
(l − 1)th layer. Note that q0 is initialized with qins and
finally updated to q̃ins as the final object queries.

3.2. Video Object Segmentation Branch

With the instance-specific information from the IS
branch, our VOS branch further performs instance-
augmented matching between the current frame and the
memory bank in the feature space, so as to leverage long-
range context information for mask generation.
Enhanced Key Encoder takes the updated object queries
q̃ins and the backbone feature Fres4 as inputs to gener-
ate the query key of the current frame with Ck-dimension.
Specifically, we follow [15] to first apply a 3 × 3
convolutional layer on top of Fres4 to obtain Qg ∈
RCh×H/16×W/16, Ch denotes the hidden dimension and we
set it to the query feature dimension. Next, we aggregate the
image features in Qg to q̃ins through a deformable attention
layer [76]:

q̃vos = DeformAttn(q̃ins, p,Qg), (2)

where p is a set of 2-d reference points.
After that, we inject instance information in q̃vos to

Qg reversely through a dot product (flattening operation is
omitted for brevity), which is then activated by a sigmoid
function and concatenated with Qg to get Qcat. Finally, we
apply a convolutional projection head on Qcat and further
flatten it to the instance-aware query key Q ∈ RCk×HmWm ,
where Hm = H/16 and Wm = W/16.
Memory Reading first retrieves the memory key K ∈
RCK×THmWm and memory value V ∈ RCv×THmWm

from memory bank, where T is the current memory size,
and Cv denotes the value feature dimension. Then the sim-
ilarity between K and the above query key Q is measured
by calculating the affinity matrix:

Ai,j =
exp(d(Ki, Qj))∑
i(exp(d(Ki, Qj)))

, (3)

where the subscript indexes the spatial location of query and
memory key, and the distance function here we use is L2
distance following [13,15]. Note that we normalize the dis-
tance value by

√
Ck as in [15, 46].

With the affinity matrix A, the memory value V could
be aggregated through a weighted summation to obtain the
readout features Fmem ∈ RCv×HmWm . Finally, we pass
Fmem to the VOS decoder for mask generation, which will
be clarified later.
Memory Update is executed once the prediction of the cur-
rent frame is generated during training and at a fixed interval
during inference, which stores the memory key and mem-
ory value of the current frame into the memory bank. We
follow [13, 15] to simply share the key between query and
memory, i.e., the query key will be saved in the memory
bank as a memory key if the current frame should be “mem-
orized”. While for the memory value, we first input the
predicted mask to a lightweight backbone (ResNet18 [24]
is adopted in this paper), the last layer feature of which is
concatenated with Fres4 to obtain Ṽcur following [13, 15].
Next, we further input Ṽcur to two ResBlocks and a CBAM
block [64] sequentially to get the memory value Vcur ∈
RCv×HmWm . In this paper, we describe the forward pro-
cess for a single target object for readability. In the case of
multi-object segmentation, an extra dimension is needed for
V to indicate the number of objects [15].

3.3. Mask Prediction

On top of the IS branch and VOS branch, we apply an
auxiliary instance segmentation decoder and a video ob-
ject segmentation decoder to generate the instance mask
and video object mask predictions, respectively. Note that
the auxiliary instance segmentation decoder along with the
pixel embedding will only be used during training and dis-
carded during inference.
Instance Segmentation Decoder inputs the updated object
queries q̃ins to a linear classifier and a softmax activation
function successively to yield category probabilities. Be-
sides, a Multi-Layer Perceptron (MLP) with 2 hidden lay-
ers transforms q̃ins to the corresponding mask embeddings.
Finally, we obtain each binary mask prediction M̂ins via
a dot product between the mask embedding and per-pixel
embeddings Fpixel.
Video Object Segmentation Decoder fuses the mem-
ory readout Fmem, multi-scale features from backbone
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Method w/ BL30K DAVIS16 validation DAVIS17 validation YT2018 validation
J&F J F J&F J F G Js Fs Ju Fu

STM [46] % 89.3 88.7 89.9 81.8 79.2 84.3 79.4 79.7 84.2 72.8 80.9
HMMN [54] % 90.8 89.6 92.0 84.7 81.9 87.5 82.6 82.1 87.0 76.8 84.6
RPCM [68] % 90.6 87.1 91.1 83.7 81.3 86.0 84.0 83.1 87.7 78.5 86.7
STCN [15] % 91.6 90.8 92.5 85.4 82.2 88.6 83.0 81.9 86.5 77.9 85.7
AOT [73] % 91.1 90.1 92.1 84.9 82.3 87.5 85.5 84.5 89.5 79.6 88.2
RDE [31] % 91.1 89.7 92.5 84.2 80.8 87.5 - - - - -
XMem [13] % 91.5 90.4 92.7 86.2 82.9 89.5 85.7 84.6 89.3 80.2 88.7
DeAOT [74] % 92.3 90.5 94.0 85.2 82.2 88.2 86.0 84.9 89.9 80.4 88.7
Ours % 92.6 91.5 93.7 87.1 83.7 90.5 86.3 85.5 90.2 80.5 88.8

MiVOS [14] ! 91.0 89.6 92.4 84.5 81.7 87.4 82.6 81.1 85.6 77.7 86.2
STCN [15] ! 91.7 90.4 93.0 85.3 82.0 88.6 84.3 83.2 87.9 79.0 87.3
RDE [31] ! 91.6 90.0 93.2 86.1 82.1 90.0 - - - - -
XMem [13] ! 92.0 90.7 93.2 87.7 84.0 91.4 86.1 85.1 89.8 80.3 89.2
Ours ! 92.8 91.8 93.8 88.2 84.5 91.9 86.7 86.1 90.8 81.0 89.0

Table 1. Quantitative comparisons on the DAVIS 2016 val, DAVIS 2017 val, and YouTube-VOS 2018 val split.
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Figure 4. Illustration of the Multi-Path Fusion (MPF) block.

{Bi}2i=0
2 and pixel decoder {Pi}2i=0 with a multi-path fu-

sion (MPF) block to make use of the fine-grained details re-
served in high-resolution instance-aware features. The MPF
block could be formulated as:

Oi = MPF(Oi−1, Bi, Pi), (4)

Oi−1 is output by the previous MPF block, which is ini-
tialized with Fmem. Specifically, we first input Bi and Pi

to 3 × 3 convolutional layers to align their feature dimen-
sions with Oi−1 to obtain B̃i and P̃i, separately. Next, we
concatenate the sum of upsampled Oi−1 and B̃i with the
upsampled P̃i, the result of which is finally input to a resid-
ual block to get Oi. The detailed architecture of the MPF
block is illustrated in Figure 4. Note that the final layer of
the decoder produces a mask with stride = 4, and we bilin-
early upsample it to the original resolution.

2We follow the previous work [13, 15, 46] to adopt the features with
stride = 4, 8, and 32.

4. Experiments

4.1. Implementation Details

Training. The instance segmentation (IS) branch and video
object segmentation (VOS) branch are jointly trained with
different supervisory signals. We train the IS branch on a
standard instance segmentation dataset COCO [37] with a
resolution of 384 (compatible with VOS branch). While
for the VOS branch, we follow [13, 15, 36, 46, 52] to firstly
pretrain our network on deformed static images [12, 33, 54,
61, 75], and then perform the main training on YouTube-
VOS [67] and DAVIS [50]. Note that we also pretrain on
BL30K [6, 14, 17] optionally to further boost the perfor-
mance following [13, 15], and the models pretrained on ad-
ditional data are denoted with an asterisk (∗).

The IS branch is supervised with a combination of mask
loss and classification loss, where the mask loss consists
of weighted binary cross-entropy loss and dice loss [42].
The VOS branch is supervised with bootstrapped cross en-
tropy loss and dice loss following [73]. The static image
pretraining lasts 150K iterations with a batch size of 56
and a learning rate of 4e-5. While the main training lasts
110K iterations with a batch size 16 and a learning rate 2e-
5. The complete model is optimized with AdamW [29, 40]
with a weight decay of 0.05. We load the COCO-pretrained
Mask2Former [10] to initialize our instance segmentation
branch, and use 0.1× learning rate for these parameters.
The overall learning rate is decayed by a factor of 10 after
the first 80K iterations.
Inference. We follow previous work [13, 15, 46, 52] to
memorize every 5th frame during inference. Specially, we
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Figure 5. Qualitative comparisons between ISVOS and several state-of-the-art memory-based VOS models, including RDE [31],
STCN [15], and XMem [13].

implement the memory as a first-in-first-out (FIFO) queue,
and restrict the maximum memory size to 16 to improve
the inference speed. Note that the first frame and its mask
are always reserved to provide accurate reference informa-
tion. We adopt Top-K filter [13–15] for memory-reading
augmentation, with K set to 20.
Evaluation datasets and metrics. We evaluate the perfor-
mance of ISVOS on standard VOS datasets DAVIS [49, 50]
and YouTube-VOS [67]. DAVIS 2016 [49] is a single-
object VOS benchmark and DAVIS 2017 [50] extends it
to a multi-object version. YouTube-VOS [67] is the large-
scale benchmark for multi-object VOS, which also includes
unseen categories in the validation set to measure the gen-
eralization ability. We report the results on 474 and 507
validation videos in the 2018 and 2019 versions (denoted as
“YT2018” and “YT2019” in the following Tables respec-
tively). We use mean Jaccard J index and mean boundary
F score, along with mean J&F to evaluate segmentation
accuracy. Note that for YouTube-VOS, we report the results
on both seen and unseen categories, along with the averaged
overall score G.

4.2. Comparison with State-of-the-art Methods

The comparison results between ISVOS and existing
state-of-the-art VOS models on DAVIS 2016 validation,
DAVIS 2017 validation, and YouTube-VOS 2018 valida-
tion are listed in Table 1. We can see that without incor-
porating BL30K as additional training data, our method
achieves top-ranked performance on both single-object and
multi-object VOS benchmarks, i.e., 92.6%, 87.1%, 86.3%

Method D17 test-dev YT2019 validation
J&F J F G Js Fs Ju Fu

HMMN [53] 78.6 74.7 82.5 82.5 81.7 86.1 77.3 85.0
STCN [15] 76.1 73.1 80.0 82.7 81.1 85.4 78.2 85.9
RPCM [68] 79.2 75.8 82.6 83.9 82.6 86.9 79.1 87.1
AOT [73] 79.6 75.9 83.3 85.3 83.9 88.8 79.9 88.5
RDE [31] 77.4 73.6 81.2 81.9 81.1 85.5 76.2 84.8
XMem [13] 81.0 77.4 84.5 85.5 84.3 88.6 80.3 88.6
DeAOT [74] 80.7 76.9 84.5 85.9 84.6 89.4 80.8 88.9
Ours 82.8 79.3 86.2 86.1 85.2 89.7 80.7 88.9

MiVOS∗ [14] 78.6 74.9 82.2 82.4 80.6 84.7 78.1 86.4
STCN∗ [15] 77.8 74.3 81.3 84.2 82.6 87.0 79.4 87.7
RDE [31] 78.9 74.9 82.9 83.3 81.9 86.3 78.0 86.9
XMem∗ [13] 81.2 77.6 84.7 85.8 84.8 89.2 80.3 88.8
Ours∗ 84.0 80.1 87.8 86.3 85.2 89.7 81.0 89.1

Table 2. Results on DAVIS 2017 (D17) test-dev and YouTube-
VOS 2019 validation. ∗ denotes BL30K is adopted for pretraining.

in terms of J&F on DAVIS 2016 & 2017, YouTube-VOS
2018 validation split, respectively, even surpassing existing
methods that are pretrained on BL30K. Adopting BL30K as
additional training data can further boost the performance
of ISVOS. We also report the results on DAVIS 2017 test-
dev and YouTube-VOS 2019 validation split in Table 2, and
ISVOS also outperforms all the baseline methods. Even
though our method adopts a simpler memory mechanism
than existing methods like [13,53,68], we still achieve supe-
rior performance. This highlights that introducing instance
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understanding to conduct instance-augmented matching is
super helpful and clearly outperforms the vanilla semantic
matching used in the existing methods [13, 15, 46].

We further visualize the segmentation results of ISVOS
on some representative challenging cases with dramatic
movements (e.g., shooting and motor cross-jump), and
compare with state-of-the-art memory-based VOS models
including STCN [15], RDE [31], and XMem [13] in Fig-
ure 5. We can see that RDE [31] and STCN [15] strug-
gle with occlusions incurred by smoke and confusing ob-
jects, respectively. XMem [13] produces more competitive
results, which however fails to generate sharp boundaries
for the motorcycle rims. Our method, by contrast, gener-
ates more accurate and clear masks for these challenging
cases. This suggests that the instance-aware representations
learned from the instance segmentation branch could facili-
tate our model to derive instance-discriminative features.

4.3. Discussion

Impact of query enhancement and MPF block. The
query enhancement (QE) (Equation 2) is used to inject
instance-specific into the query key, while the multi-path
fusion (MPF) block (Equation 4) is designed to incorpo-
rate high-resolution instance-aware features for fine-grained
detail prediction. To evaluate their effectiveness, we re-
move QE and MPF separately from ISVOS and evalu-
ate the segmentation performance on DAVIS 2017 vali-
dation (DAVIS17 val) and YouTube-VOS 2018 validation
(YT2018 val) split.

Method DAVIS17 val YT2018 val
J&F J F G Js Fs Ju Fu

w/o QE & MPF 85.3 82.0 88.6 83.0 84.0 75.7 88.5 83.8
w/o QE 85.7 82.4 88.9 84.4 85.1 77.4 89.8 85.5
w/o MPF 86.2 83.0 89.5 85.6 85.0 90.4 79.4 87.5
Ours 87.1 83.7 90.5 86.3 85.5 90.2 80.5 88.8

Table 3. Results on DAVIS 2017 validation and YouTube-VOS
validation split w/ and w/o query enhancement (QE) and multi-
path fusion (MPF) block.

The quantitative results are listed in Table 3. We can ob-
serve that without QE, the J&F value decreases by 1.4%
on DAVIS17 val and 1.9% on YT2018 val, while without
MPF, the J&F value decreases by 0.9% and 0.7%, respec-
tively. The performance degradation validates that the use
of the above components effectively improves the perfor-
mance of our model.
Impact of weight initialization and joint training for the
IS branch. The IS branch is built upon a instance seg-
mentation model [10] to acquire instance-specific informa-
tion. In our implementation, we load the weights from
Mask2Former [10] pretrained on COCO [37] and perform

joint training on both IS task and VOS task to prevent catas-
trophic forgetting. To study the effect of weight initializa-
tion and joint training, we conduct experiments under dif-
ferent settings and compare the results in Table 4.

LW JT DAVIS17 val YT2018 val
J&F J F G Js Fs Ju Fu

% % 78.6 75.6 81.5 78.6 79.2 83.5 72.3 79.4
% ! 80.0 76.9 83.1 80.6 80.1 84.5 74.5 83.2
! % 82.0 79.2 84.4 81.3 80.7 85.4 75.5 83.6
! ! 87.1 83.7 90.5 86.3 85.5 90.2 80.5 88.8

Table 4. Results on DAVIS 2017 validation and YouTube-VOS
validation split w/ and w/o loading the weights from pretrained
Mask2Former [10] (LW) and joint training (JT).

0

25

50

75

100
STCN Xmem Ours

First Frame (GT) STCN XMem Ours

fish door deer

Figure 6. J&F metric of STCN [15], XMem [13], and ISVOS on
three videos whose categories do not appear in the COCO dataset.

The drastic performance drop in the first row indicates
that instance-aware representations are critical to the gen-
eration of accurate masks. Performing joint training from
scratch brings about minor improvements, but it is dif-
ficult for the VOS branch to learn useful instance infor-
mation from IS branch in the beginning. Initializing the
weights from Mask2Former [10] improves the performance
more significantly, which, however, would gradually lose
the instance segmentation capability without joint train-
ing. In contrast, the combined weight initialization from
Mask2Former and joint training achieve the best results. We
would also like to point out that while we use Mask2Former
for initialization, the IS branch can be easily replaced with
any query-based instance segmentation model.

In addition, considering that VOS is essentially a
category-agnostic task but the IS branch is trained on a close
set, we further show the performance of ISVOS on objects
that do not appear in COCO, e.g., fish, door, and deer3, and
compare with STCN and XMem in Figure 6. The quan-
titative comparison is also displayed. We can see that our
method still performs well on these objects and generates

3These objects correspond to the f78b3f5f34, 4d6cd98941, and
f6ed698261 video in YouTube-VOS 2018 val.
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more accurate masks than existing methods. This indicates
that joint training allows our method to develop generaliz-
able instance differentiation capability even if the IS branch
is trained on a close-set instance segmentation dataset.

Trade-off between memory size and segmentation per-
formance. As mentioned in Sec. 4.1, we implement
the memory bank as a first-in-first-out (FIFO) queue with
a maximum size. To further investigate the behavior
of ISVOS, we dynamically adjust the maximum mem-
ory size and observe the trend of performance variation
(i.e., J&F) on DAVIS 2016 & 2017 validation split. We
also re-implement the memory bank of several existing
memory-based models (including STM [46], STCN [15],
and XMem [13]) as FIFO queues, and compare their results
with ISVOS in Figure 7.
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Figure 7. Tradeoffs between the maximum memory size and
J&F on DAVIS 2016 (left) and 2017 (right) validation split.

We can see that increasing the memory size always im-
proves the segmentation performance for all these methods,
since more contextual information is used. It is notewor-
thy that, our method achieves competitive results by re-
lying on a smaller memory size, e.g., when the memory
size is set to 2, the J&F value is only 0.3 away from
the highest point for ISVOS, but 1.6 for XMem on DAVIS
2017 validation split. This demonstrates the superiority
of instance-augmented matching compared with vanilla se-
mantic matching.

Multi-scale Inference Multi-scale evaluation is a com-
monly used trick in segmentation tasks [5, 13, 15] to boost
the performance by merging the results of inputs under dif-
ferent data augmentations. Here we follow XMem [13] to
apply image scaling and vertical mirroring and simply aver-
age the output probabilities to obtain the final masks.

The results in Table 5 imply that multi-scale inference
improves the performance of ISVOS by 0.3% and 1.7% in
terms of J&F on DAVIS 2016 / 2017 validation split, and
ISVOS still outperforms existing methods.

Visualization of Readout Features. We visualize the read-
out features (i.e., Fmem in Sec. 3.2) of several memory-
based VOS models and ISVOS in Figure 8 to further com-
pare the vanilla semantic matching without instance under-
standing and instance-augmented matching. The high res-
olution feature P2 from the pixel-decoder (Sec. 3.1) is also
displayed. We can see that with the enhanced query key, the

Method MS D16 val D17 val
J&F J F J&F J F

CFBI [72] ! 90.7 89.6 91.7 83.3 80.5 86.0
XMem [13] ! 92.7 92.0 93.5 88.2 85.4 91.0
Ours % 92.6 91.5 93.7 87.1 83.7 90.5
Ours ! 92.9 92.2 93.6 88.6 85.8 91.4
Ours∗ % 92.8 91.8 93.8 88.2 84.5 91.9
Ours∗ ! 93.4 92.5 94.2 89.8 86.7 93.0

Table 5. Results on DAVIS 2017 validation and YouTube-VOS
validation split with different training data. D: DAVIS 2017, Y:
YouTube 2019, S: static images, B: BL30K. ‡ denotes pretraining
on the combined DAVIS and YouTube-VOS data.

instance information in our readout features is more clear
and distinguishable. In addition, the abundant details in
high-resolution instance-aware features also help ISVOS to
produce sharp boundaries.

Query Frame STCN Pix-dec FeatureXMem Ours

Figure 8. Visualization of the query frame, memory readout fea-
tures of STCN [15], XMem [13], our method, and the instance-
aware features of the highest resolution P2 from the pixel-decoder.

5. Conclusion
This paper proposes to incorporate instance understand-

ing into memory-based matching for improved video object
segmentation. To achieve this goal, a two-branch network
ISVOS is introduced, where the instance segmentation (IS)
branch derives instance-aware representations of the cur-
rent frame and the video object segmentation (VOS) branch
maintains a memory bank for spatial-temporal matching.
We enhance the query key with the well-learned object
queries from IS branch to inject the instance-specific in-
formation, with which the instance-augmented matching
with the memory bank is performed. Furthermore, we fuse
the memory readout with multi-scale features from the in-
stance segmentation decoder through a carefully-designed
multi-path fusion block. Extensive experiments conducted
on both single-object and multi-object benchmarks demon-
strate the effectiveness of the proposed method.

In addition to working towards superior segmentation
performance, another line of work [36,65,66] also explores
the efficient memory storage to improve the inference effi-
ciency of memory-based methods. Therefore, ISVOS can
be combined with these approaches to develop both accu-
rate and efficient VOS models.
Acknowledgement This project was supported by NSFC
under Grant No. 62032006 and No. 62102092.
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data-efficient image transformers & distillation through at-
tention. In ICMLR, 2021. 3

[56] Yi-Hsuan Tsai, Ming-Hsuan Yang, and Michael J Black.
Video segmentation via object flow. In CVPR, 2016. 2

[57] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig
Adam, Bastian Leibe, and Liang-Chieh Chen. Feelvos: Fast
end-to-end embedding learning for video object segmenta-
tion. In CVPR, 2019. 2

[58] Haochen Wang, Xiaolong Jiang, Haibing Ren, Yao Hu, and
Song Bai. Swiftnet: Real-time video object segmentation. In
CVPR, 2021. 1, 2

[59] Junke Wang, Dongdong Chen, Zuxuan Wu, Chong Luo, Lu-
owei Zhou, Yucheng Zhao, Yujia Xie, Ce Liu, Yu-Gang
Jiang, and Lu Yuan. Omnivl: One foundation model for
image-language and video-language tasks. In NeurIPS,
2022. 3

[60] Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Ab-
hinav Shrivastava, Ser-Nam Lim, and Yu-Gang Jiang. Ob-
jectformer for image manipulation detection and localiza-
tion. In CVPR, 2022. 3

[61] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,
Dong Wang, Baocai Yin, and Xiang Ruan. Learning to de-
tect salient objects with image-level supervision. In CVPR,
2017. 5

[62] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and
Lei Li. Solo: Segmenting objects by locations. In ECCV,
2020. 3

[63] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmentation.
In NeurIPS, 2020. 3

[64] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
ECCV, 2018. 4

[65] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping
Zhang, and Wenxiu Sun. Efficient regional memory network
for video object segmentation. In CVPR, 2021. 1, 2, 8

[66] Kai Xu and Angela Yao. Accelerating video object segmen-
tation with compressed video. In CVPR, 2022. 2, 8

[67] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen
Liang, Jianchao Yang, and Thomas Huang. Youtube-vos: A
large-scale video object segmentation benchmark. In ECCV,
2018. 2, 5, 6

[68] Xiaohao Xu, Jinglu Wang, Xiao Li, and Yan Lu. Reliable
propagation-correction modulation for video object segmen-
tation. In AAAI, 2022. 5, 6

[69] Yu-Syuan Xu, Tsu-Jui Fu, Hsuan-Kung Yang, and Chun-Yi
Lee. Dynamic video segmentation network. In CVPR, 2018.
2

2277



[70] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang,
and Aggelos K Katsaggelos. Efficient video object segmen-
tation via network modulation. In CVPR, 2018. 2

[71] Shusheng Yang, Yuxin Fang, Xinggang Wang, Yu Li, Ying
Shan, Bin Feng, and Wenyu Liu. Tracking instances as
queries. arXiv preprint arXiv:2106.11963, 2021. 2

[72] Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative
video object segmentation by foreground-background inte-
gration. In ECCV, 2020. 2, 8

[73] Zongxin Yang, Yunchao Wei, and Yi Yang. Associating ob-
jects with transformers for video object segmentation. In
NeurIPS, 2021. 5, 6

[74] Zongxin Yang and Yi Yang. Decoupling features in hi-
erarchical propagation for video object segmentation. In
NeurIPS, 2022. 5, 6

[75] Yi Zeng, Pingping Zhang, Jianming Zhang, Zhe Lin, and
Huchuan Lu. Towards high-resolution salient object detec-
tion. In ICCV, 2019. 5

[76] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable {detr}: Deformable transform-
ers for end-to-end object detection. In ICLR, 2021. 4

2278


	. Introduction
	. Related Work
	. Method
	. Instance Segmentation Branch
	. Video Object Segmentation Branch
	. Mask Prediction

	. Experiments
	. Implementation Details
	. Comparison with State-of-the-art Methods
	. Discussion

	. Conclusion

