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Abstract

In this work, we introduce MDL-NAS, a unified frame-
work that integrates multiple vision tasks into a manage-
able supernet and optimizes these tasks collectively un-
der diverse dataset domains. MDL-NAS is storage-efficient
since multiple models with a majority of shared parame-
ters can be deposited into a single one. Technically, MDL-
NAS constructs a coarse-to-fine search space, where the
coarse search space offers various optimal architectures
for different tasks while the fine search space provides fine-
grained parameter sharing to tackle the inherent obstacles
of multi-domain learning. In the fine search space, we sug-
gest two parameter sharing policies, i.e., sequential shar-
ing policy and mask sharing policy. Compared with pre-
vious works, such two sharing policies allow for the par-
tial sharing and non-sharing of parameters at each layer
of the network, hence attaining real fine-grained parameter
sharing. Finally, we present a joint-subnet search algorithm
that finds the optimal architecture and sharing parameters
for each task within total resource constraints, challeng-
ing the traditional practice that downstream vision tasks
are typically equipped with backbone networks designed for
image classification. Experimentally, we demonstrate that
MDL-NAS families fitted with non-hierarchical or hierar-
chical transformers deliver competitive performance for all
tasks compared with state-of-the-art methods while main-
taining efficient storage deployment and computation. We
also demonstrate that MDL-NAS allows incremental learn-
ing and evades catastrophic forgetting when generalizing to
a new task.

1. Introduction
Recently, transformers have become the standard pattern

for natural language processing (NLP) tasks due to their
efficacy in modelling long-range relationships via the self-
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Figure 1. Illustration of differences between multi-domain learn-
ing (MDL) and other learning paradigms. MDL-NAS jointly op-
timizes multiple vision tasks under different dataset domains. L
denotes the layer numbers in the backbone.

attention mechanism [41]. Such success and good prop-
erties of transformers have spawned a slew of subsequent
works that apply them to a wide variety of computer vision
tasks, such as image classification [6,27,32,49], object de-
tection [5, 57], semantic segmentation [55], and video un-
derstanding [56], achieving impressive results. However,
these methods only apply transformer to a specific domain.
After observing the success of transformers, a naive ques-
tion arises: could a transformer simultaneously handle mul-
tiple vision tasks under a variety of dataset domains ?

While a few works have investigated the usage of trans-
formers to handle multiple input modalities (i.e., images
and text), they typically concentrate on a particular task,
such as visual question answering [20, 24], i.e., many-to-
one mapping. Also, some methods [2,26] explore to simul-
taneously performing depth estimation, surface normal esti-
mation, and semantic segmentation on a given input image.
However, these methods are restricted to a single-domain
setting, where all inputs are the same, i,e,, one-to-many
mapping. In addition, there are some works [19, 28] that
employ transformers to solve different tasks under multiple
domains (multi-domain learning), which is more realistic,
i.e., many-to-many mapping, as shown in Fig. 1. Never-
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Figure 2. Adjust baselines that shares all parameters in backbone with task-specific normalization (Spe-norm), task-specific self-attention
(Spe-attn), task-specific feed forward network (Spe-ffn) and all task-specific parameters (All-spe) under the same training recipe.

theless, these methods utilize diverse encoders to manage
different dataset domains, which is inefficient in terms of
storage deployment. In this work, we investigate a unified
network that optimizes multiple vision tasks over multiple
dataset domains to enable all tasks to share as many param-
eters as feasible while maintaining promising performance.
As a preliminary step, we conduct experiments to observe
the performance impact of treating various components of
vision transformers as task-specific parameters.

As depicted in Fig. 2, considering the multihead self-
attention (MHSA) layer or feed-forward network (FFN) or
LayerNorm (LN) throughout the backbone as task-specific
parameters can all achieve a certain performance gain for
classification and detection tasks over a baseline that shares
all parameters. Besides, we observe that the performance
of semantic segmentation is elevated when all parameters
are shared, indicating that closely-related tasks have mu-
tual benefits whereas some tasks have conflicts against each
other under multi-domain learning setting. Consequently,
to use task-shared parameters for learning task-reciprocal
features while using task-specific parameters for mitigating
conflicts, sharing parameters with various proportions in-
side each layer is an immediate thought, which motivates us
to find a method to supply different share ratios for different
layers in the network. Moreover, when optimizing multiple
tasks collectively, we typically equip these tasks with the
backbone designed for image classification, which may be
sub-optimal due to the gap between the image classification
task and other vision tasks.

To tackle these issues, we introduce MDL-NAS, a uni-
fied framework based on vision transformers, which accom-
modates multiple vision tasks under heterogeneous dataset
domains into a modest supernet and jointly optimizes these
tasks. Specifically, we first construct a coarse search
space comprising embedding dimension, heads number,
query/key/value dimension, and MLP ratios for each trans-
former block to discover different optimal architectures for
diverse tasks. Moreover, such space comprises candidate ar-
chitectures with a wide spectrum of model size, which pro-
vides certain flexibility for final model deployment. Based

on the coarse search space, we design a fine search space
that offers fine-grained parameter sharing for all tasks to
resolve the inherent challenges of multi-domain learning.
In the fine search space, we suggest two parameter sharing
policies, namely sequential sharing policy and mask shar-
ing policy. Sequential sharing policy enables all tasks to
share parameters for each layer in order, which allows to
customize the parameter share ratio. Mask sharing policy
provides maximum flexibility for different tasks to share pa-
rameters with various proportions and channels inside each
layer. Following Autoformer [6], to address the efficiency
issue, we leverage the weight entanglement training strat-
egy to train MDL-NAS, allowing thousands of subnets to
be extremely well-trained.

During the search stage, we propose a joint-subnet
search algorithm that finds the optimal architecture and
sharing parameters for each task under total resource con-
straints. The searched subnets with various architectures
share as many parameters as possible in the backbone, guar-
anteeing excellent performance for each task while keeping
storage-efficient for model deployment.

Experiments show that the searched models with weights
inherited from the supernet outperform several baselines
and are comparable with the state-of-the-art methods that
are trained individually for specific tasks. We also demon-
strate that MDL-NAS allows incremental learning and
evades catastrophic forgetting when generalizing to a new
task. Thus, MDL-NAS is more parameter-efficient and can
scale up more gracefully with the number of tasks increas-
ing, as illustrated in Sec. 4.4.

The key contributions of this work can be summarized
as: (1) We propose MDL-NAS that accepts multiple dataset
domains as input to optimize multiple vision tasks concur-
rently. (2) We construct a coarse-to-fine search space, with
the coarse search space finding optimal architectures for all
tasks and the fine search space coupled with sequential or
mask sharing policy providing fine-grained shared parame-
ters to learn task-reciprocal features and extra task-specific
parameters for learning task-related features. (3) We intro-
duce a subnet search algorithm to jointly search architec-
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tures and share ratios, enabling all tasks to share as many
parameters as feasible while ensuring high performance for
each task. (4) We demonstrate that MDL-NAS allows in-
cremental learning with fewer parameters.

2. Related Work
Transformer in Vision. Currently, numerous computer

vision methods are actively applying the transformer to vi-
sion tasks. With the vision transformer (ViT) [13] as a
starting point, various variants of vision transformers have
lately been proposed to resolve the inherent challenges of
ViT, such as data-efficient training [40], position embed-
ding [11], effective tokenization [16, 54], multi-scale pro-
cessing [10, 48] and hierarchical design [27, 44]. Note
that for hierarchical design, Swin Transformer [27] and
PVT [44] employ a pyramid structure like CNNs that down-
samples the feature maps gradually, which is advantageous
for downstream tasks, e.g., object detection and semantic
segmentation. In this work, we do not propose any variant
of vision transformer but investigate the utilization of both
hierarchical and non-hierarchical vision transformers for si-
multaneously optimizing numerous vision tasks.

Multi-task and multi-domain learning. Multi-task [3,
12, 31, 35] and multi-domain [1, 4, 34, 45] learning have
been enhanced dramatically as deep neural networks have
become the de facto standard in computer vision frame-
works. However, optimally utilizing their benefits remains
a formidable challenges due to the effect of task conflicts
or domain conflicts, i.e., gradient conflicts. Recent works
tackle such conflicts by homogenizing gradients or architec-
ture design. For homogenizing gradients, previous methods
have narrowed the problem down to two types of differences
(i.e., gradient magnitudes and directions) between task gra-
dients and proposed several algorithms [8, 9, 22, 25, 36, 53]
to homogenize these differences. For architecture de-
sign, Cross-Stitch Networks [30] contain one standard feed-
forward network per task, with cross-stitch units to enable
sharing of features among tasks. UberNet [23] proposes an
image pyramid approach to process images across multi-
ple resolutions, where for each resolution, additional task-
specific layers are formed on the top of the shared VGG-
Net [37]. However, these methods require a large number
of network parameters and determine whether parameters
are shared or not subjectively.

Neural architecture search for transformer and
multi-task learning. Recently, researchers have leveraged
supernet-based neural architecture search to find the opti-
mal architecture for transformers. HAT [16] employs su-
pernet for hardware-aware transformer optimization, which
focuses mostly on NLP workloads. AutoFormer [6], Vi-
TAS [38], and S3 [7] follow the central theme of CNN-
based NAS methods [15, 52], leveraging NAS to opti-
mize the ViT architecture, where the searched architectures

achieve better accuracy than the naive vision transformer.
When it comes to multi-task learning, AdaShare [39] adap-
tively decides what layers to share by using an efficient ap-
proach that jointly optimizes the network weights and pol-
icy distribution parameters. MTL-NAS [14] disentangles
multi-task learning into task-specific backbones and general
inter-task feature fusion connections. Compared to previ-
ous works [39,43] (many-to-one or one-to-many mapping),
we seek a unified framework that optimizes multiple main-
stream vision tasks (classification, detection, and segmenta-
tion) under different dataset domains (many-to-many map-
ping), which is more challenge and realistic.

3. Method
3.1. Preliminary

This section begins with a brief review of the vision
transformer (ViT) and Swin Transformer, which are repre-
sentative examples of non-hierarchical and hierarchical vi-
sion transformers, respectively. ViT and Swin Transformer
are also served as basic architectures of MDL-NAS.

Vision transformer (ViT). Given an input image X ∈
RH×W×C , ViT first reshapes it into a sequence of flattened
2D patches XP ∈ RN×(P 2·C) such that C is the number
of channel, (H , W ) represents the resolution of the image
and (P , P ) is the resolution of each image patch. Thus, the
sequence length N is given by N = HW/P 2. ViT then
leverages a trainable linear projection Wproj to transform
the patches to D dimension vectors, i.e., patch embedding,
where D is called embedding dimension. A learnable
[class] embedding xcls ∈ RD is injected into the front of
the sequence of patch embeddings to serve as the image rep-
resentation and 1D positional embeddings E ∈ R(N+1)×D

are additionally added to the patch embeddings to keep po-
sitional information. Mathematically, the successive repre-
sentation of the input sequence can be expressed as

X0 = [xcls, XPWproj ] + E (1)

where Wproj ∈ R(P 2·C)×D is the linear projection param-
eter. The resultant sequence of embeddings is then fed into
the transformer encoder, which is composed of alternating
transformer blocks. Each transformer block consists of a
multihead attention layer, a feed-forward neural network,
residual connection, and layer normalization.

Multihead Self-Attention (MHSA). In the self-attention
layer, the input sequence X0 ∈ R(N+1)×D is first mapped
into three different vectors: the query vector Q ∈ RN×Dh ,
the key vector K ∈ RN×Dh and value vector V ∈ RN×Dh ,
where N is the number of tokens, D is the embedding di-
mension, Dh is the Q-K-V dimension. Subsequently, the
attention function between different vectors is given by

Attention(Q,K, V ) = softmax(
QKT

√
dh

)V, (2)
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where 1√
dh

is the scaling factor to boost gradient stability
for improved training. Lastly, a fully connected layer is ap-
plied to project the dimension Dh to D.

Multihead self-attention (MHSA) divides the query, key,
and value vectors into different heads number, executes
self-attention in parallel, and then projects their concate-
nated outputs. A residual connection is added to each mul-
tihead self-attention to strengthen the flow of information,
followed by a layer normalization. The output of these op-
erations can be described as:

Out0 = LayerNorm(X0 +MSHA(X0)), (3)

Feed-Forward Network. A feed-forward network is de-
ployed after the multihead self-attention layer. It comprises
two fully-connected layers and a nonlinear activation (e.g.,
GELU) function within them. A MLP ratio is applied be-
tween the two fully-connected layers.

Swin Transformer. Swin Transformer, an advanced
ViT, seeks to incorporate several important visual priors,
such as hierarchy, locality, and translation invariance, into
the standard Transformer encoder, thereby combining the
strengths of both: the basic Transformer unit has strong
modelling capabilities while the visual priors make it ad-
vantageous for a variety of visual tasks. Methodologically,
Swin Transformer handles input images in a hierarchical
manner by employing multihead self-attention within non-
overlapping local windows. It consists of four sequential
stages with progressively diminishing input resolution and
increasing embedding dimension, where each stage has
different number of transformer blocks with the same
embedding dimension. Since the non-overlapping parti-
tion strategy lacks cross-window connectivity, Swin Trans-
former recommends implementing shifted-window oper-
ations between each pair of succeeding window-based
MHSA layers to stimulate cross-window interactions.

3.2. MDL-NAS

In this part, we present the proposed MDL-NAS that
jointly learns numerous vision tasks across dataset domains
with a moderate supernet. Specifically, MDL-NAS in-
troduces a search space with varying granularity degrees,
from coarse to fine. The coarse search space provides dif-
ferent optimal architectures for diverse tasks, whereas the
fine search space provides fine-grained parameter sharing to
tackle the inherent inadequacies of multi-task learning, e.g.,
shared parameter competition among tasks. We assume that
MDL-NAS jointly optimizes K tasks.

Coarse search space Ac. For non-hierarchical vision
transformer (ViT), following AutoFormer [6], we search for
several variable factors in each transformer building block,
including embedding dimension, Q-K-V dimension, heads
number, and MLP ratios, which are all critical for model ca-
pacity and performance. For instance, recent research [29]

has demonstrated that utilizing a vast number of heads is
not mandatory, even though it makes sense for each head
to represent a unique representation subspace. As a result,
we make the number of attention heads adaptable, enabling
each attention module to find its own ideal number. Note
that we fix the ratio dh of the Q-K-V dimension to the num-
ber of heads in each transformer block, making the scaling
factor 1√

dh
in attention calculation invariant to the number

of heads, hence enhancing gradient stability.
Since ViT employs constant widths throughout all of its

blocks, we only need to search a single embedding dimen-
sion across the entirety of the models. For Swin Trans-
former, there are four successive stages with progressively
decreasing input resolution and increasing embedding di-
mension, where each stage includes a different number of
blocks with the same embedding dimension. Therefore,
each stage has two search dimensions: number of blocks
and embedding dimension. Each block in the stage contains
a window-based multihead self-attention (MHSA) module
and a feed-forward network (FFN) module. Following [7],
We do not force the blocks in one stage to be identical.
Thus, each block in the stage has several search dimensions
including heads number, MLP ratio, Q-K-V embedding di-
mension.

Fine search space Af . In contrast to previous works that
would only allow different tasks either sharing or monopo-
lizing all parameters in one layer, we investigate to share
part parameters and monopolize others in a single layer,
thereby enabling fine-grained parameter sharing. Thus, we
design a fine search space that provides fine-grained share
ratio in each layer of the transformers, concluding normal-
ization layer and linear layer, etc. Moreover, in the fine
search space, we suggest two sharing policies, namely se-
quential sharing policy and mask sharing policy.

Taking the i-th linear layer as an example, we define
three search spaces for the layer, including input channel
Cin, output channel Cout, and share ratio Λ. Accordingly,
we initialize the weight of the layer as Wi ∈ RCmax

out ×Cmax
in ,

where Cmax
out and Cmax

in are the maximum number of Cout

and Cin respectively. Using a single weight, however, does
not permit different tasks to share different ratios of such
weight in various iterations. All tasks can only share τ ratio
of the weight after training, where τ is the minimum num-
ber of Λ. To tackle this issue, we predefine another weight
for the i-th layer as task-specific parameters W spe

i , and view
Wi as task-shared parameters. Nextly, we illustrate the pro-
posed two policies.

Sequential sharing policy. We predefine an all zeros vec-
tor Mi = [0, 0, ..., 0] ∈ RCmax

out for the i-th layer to judge
whether the channel in the layer is shared or not. For each
batch in supernet training, we sample a number cout from
Cout, cin from Cin, ϵ from Λ. According to sampled cout
and ϵ, we set the first ϵ ·cout component of Mi to 1 to derive
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Figure 3. The illustration of dealing with the coarse and fine search
space in a single layer with sequential sharing policy and mask
sharing policy.

the shared mask as follows

Mi[: ϵ · cout] = 1. (4)

Then, we slice out the task-share weight wshare
i for current

batch by

wshare
i = Wi[: cout, : cin]⊗Mi[: cout], (5)

and slice out the task-specific weight for current batch by

wspe
k,i = W spe

i [: cout, : cin]⊗ (1−Mi)[: cout], (6)

where ⊗ denotes element-wise multiplication, as shown in
Fig. 3; k denotes the task index, k = 1, 2, ...,K.

Finally, we can obtain the current weight as wk,i by

wk,i = wshare
i + wspe

k,i , (7)

where wk,i is used to produce the output for current batch
for task k. Note that we omit the bias term in above process
for simplicity.

Mask sharing policy. The sequential sharing policy can
only enable multiple tasks to share the first partial channels
in a certain layer in order, but must monopolize the remain-
ing channels, sacrificing a certain degree of flexibility. To
compensate, we propose mask sharing policy, a parameter-
adaptive policy that permits diverse tasks to share varying
quantities of parameters and channels in each layer with
maximum flexibility.

For the i-th linear layer, we introduce scoring param-
eters Si = [Sj

i ] for those channels in the layer where
j = 1, 2, ..., Cmax

out , and define the indicator function I(·)
as follows:

I(Sj
i ) =

{
1, if Sj

i ≥ THr

0, otherwise
(8)

where THr is a threshold. When Sj
i ≥ THr, the j-th

channel is transformed to a task-share parameter, and con-
sequently optimize such parameters in the global group.
Then, we can obtain the parameter sharing mask Mi ∈
RCmax

out as follows

Mi = [I(S1
i ), I(S2

i ), ..., I(S
Cmax

out
i )]. (9)

Similarly, by sampling a number cout from Cout, cin
from Cin, and ϵ from Λ, we derive the task-share weight
wshare

i , wspe
k,i and wk,i according Eq. (5), Eq. (6), and

Eq. (7), respectively. It is worth noting that we use ϵ as
the threshold THr for each iteration during training. The
underlying key insight is that each layer’ shared ratio is
roughly bounded as a whole, while the learnable parame-
ter Si is used to judge whether each channel inside each
layer is shared or monopolized for the tasks. Since the gra-
dient of indicator function I(·) in Eq. (8) is zero at almost
all points, we need to modify its gradient during backward
pass, which is detailed in Appendix A.

The above two policies can be applied to all operations in
each transformer block, including multihead self-attention
layer, feed-forward network, and normalization layer. Be-
sides, concluding additional task-specific parameters W spe

i

into each layer does not result in a large increase in memory
cost since only the sliced parameters of Wi and W spe

i are
updated at each iteration and all other parameters are kept
offline. Moreover, in the inference and model deployment
phase, we can slice out the parameters of Wi and corre-
sponding W spe

i for all tasks, and inject weights of all tasks
into one to achieve efficient storage deployment.

3.3. Joint-subnet Search Algorithm

In this part, we introduce how to select optimal dedicated
models from supernet for all tasks. Our goal is to find opti-
mal architecture αk of A = {Ac, Af} under resource con-
straints while maximize the overall performance S-Score
for all tasks, that is:

S-Score = max

K∑
k=1

λk · fk(αk),

s.t. αk ∈ A, P share +

K∑
k=1

P spe
k ≤ C

(10)

where k is the task index k = 1, 2, ...K; {αk|k =
1, 2, ...K} have different architecture and share ratios in-
side each layer; fk(αk) is the performance of architecture
αk on task k; λk is the weight coefficient of task k, which is
set to 1 by default, and can be flexibly adjusted according to
different tasks; A is the whole search space of the supernet;
C is the total resource constraint (model size in this work);
P share is the shared parameters across tasks and P spe

k is the
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specific parameters of task k, which are defined as follows:

Pshare =

L∑
i=1

wshare
i , P spe

k =

L∑
i=1

wspe
k,i , (11)

where L is the layer numbers throughout the network.
Specifically, subnets for each task are evaluated and

picked individually according to the manager of the evolu-
tion algorithm. Our objective here is to maximize

∑K
k=1 λk·

fk(αk) while minimizing the total constraints C. At the be-
ginning of the evolution search, we pick N random archi-
tectures as seeds for each task, and the top J architectures
are picked as parents for the next generation, which is gen-
erated through crossover and mutation. For crossover, two
candidates are chosen at random and crossed to produce a
new individual within each generation. For mutation, a can-
didate mutates its depth and each block with a probability of
Pm to produce a new architecture. Thanks to the designed
coarse-to-fine search space, our search algorithm is capa-
ble of finding the ideal architecture for each task to ensure
excellent performance while allowing as many parameters
as possible to be shared among tasks to maximize storage
efficiency.

4. Experiment
4.1. Implementation Details

Searching space. For non-hierarchical vision trans-
former (ViT), we design the seach space that includes: em-
bedding dimension, heads num, Q-K-V dimension, MLP
ratio, and share ratio. For hierarchical vision transformer
(Swin Transformer), we also search the number of blocks
in each stage.

NAS pipeline on MDL-NAS. MDL-NAS consists
of three steps: supernet pre-training on ImageNet,
joint-supernet fine-tuning on multiple dataset domains
(ImageNet-1K, COCO, and ADE20K), and joint-subnet
search with proposed algorithm for all tasks on the trained
supernet.

The detailed search space and the implementation details
of whole NAS pipeline are detailed in Appendix B and Ap-
pendix C, D and E, respectively.

4.2. Main Results

In this part, we compare MDL-NAS against baselines
and the state-of-the-art methods on ImageNet-1K, COCO,
and ADE20K datasets. We denote MDL-NAS that is
built upon non-hierarchical (AutoFormer-B [6]) and hier-
archical vision transformer (Swin-T [27]) as MDL-NAS-B†

and MDL-NAS-T‡, respectively. ”+mask/seq” denotes that
mask/sequential sharing policy is applied. The results are
shown in Tab. 1, Tab. 2, Tab. 3, and Tab. 4. Notably, all
MDL-NAS families inherit weights directly from supernets,
without any retraining or postprocessing.

Method #Params FLOPs Top1 Acc.

ConvNets

ResNet-34 [18] 25.6M 4.1G 79.3
ResNet-152 [18] 60M 11G 80.6
RegNetY-4G [33] 21M 4.0G 80.0
RegNetY-8G [33] 39M 8.0G 81.7

Vision Transformers

DeiT-S [40] 22M 4.7G 79.9
DeiT-B [40] 86M 17.5G 81.8
PVT-S [44] 25M 3.8G 79.8
PVT-L [44] 61M 10G 81.7
T2T-ViT-24 [54] 64M 15G 82.2
Swin-T [27] 29M 4.5G 81.3
AutoFormer-B [6] 54M 11G 82.4
MDL-NAS-B† + mask 50M 10.8G 82.6
MDL-NAS-B† + seq 55M 11.7G 82.9
MDL-NAS-T‡ + mask 27M 5.2G 81.7
MDL-NAS-T‡ + seq 28M 5.3G 81.7

Table 1. Comparison of MDL-NAS and previous methods on the
ImageNet-1K validation set. Performances are measured with a
single 224×224 crop. #Params refers to the number of parameters.
FLOPs is calculated under the input scale of 224×224.

Method #Params FLOPs APb APb
50 APb

75 APm APm
50 APm

75

ResNet50 [18] 44M 260G 41.0 61.7 44.9 37.1 58.4 40.1
ResNet101 [18] 63M 336G 42.8 63.2 47.1 38.5 60.1 41.3
Xt101-64×4d [47] 101M 493G 42.8 63.8 47.3 38.4 60.6 41.3

PVT-S [44] 44M 245G 43.0 65.3 46.9 39.9 62.5 42.8
PVT-L [44] 81M 364G 44.5 66.0 48.3 40.7 63.4 43.7
Swin-T [27] 48M 264G 46.0 68.2 50.2 41.6 65.1 44.8
Focal-T [51] 49M 291G 47.2 69.4 51.9 42.7 66.5 45.9
Shuffle-T [21] 48M 268G 46.8 68.9 51.5 42.3 66.0 45.6
AutoFormer-B* [6] 108M 710G 47.3 68.9 51.4 41.6 65.8 44.2
MDL-NAS-B† + mask 116M 754G 48.2 69.7 52.6 42.2 66.3 45.0
MDL-NAS-B† + seq 129M 813G 48.0 69.2 52.9 42.0 65.8 45.0
MDL-NAS-T‡ + mask 60M 309G 44.9 68.2 49.0 41.1 64.9 44.1
MDL-NAS-T‡ + seq 58M 299G 46.4 68.9 51.0 41.9 65.8 44.9

Table 2. COCO detection and segmentation with the Mask R-
CNN. The performances are reported on the COCO val split under
3× schedules. The FLOPs (G) are measured at resolution 800 ×
1280, and all models are pre-trained on the ImageNet-1K. In the
table, * means our implementation that uses the searched back-
bone of Autoformer for object detection.

ImageNet-1K classification. As reported in Tab. 1,
MDL-NAS model families largely outperform ordinary
CNN models like ResNets [18] and RegNets [33], illus-
trating the visual representation potential of pure trans-
former models. Evidently, our MDL-NAS delivers su-
perior results when compared to contemporary models of
state-of-the-art transformers. For example, MDL-NAS-B†

with mask/sequential sharing policy achieves a top-1 ac-
curacy of 82.6/82.9, surpassing DeiT-B [40] and baseline
Autoformer-B [6] 0.8/1.1 and 0.2/0.5 units with compara-
ble FLOPs and parameters. MDL-NAS-T‡ also yields bet-
ter performance compared with its baseline Swin-T [27].
Specifically, MDL-NAS-T‡ with mask/sequential sharing
policy outperforms Swin-T by 0.4/0.4 unit with compara-
ble FLOPs and parameters. Through the above analysis,
MDL-NAS is capable of image classification.
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Backbone #Params FLOPs mIoUss mIoUms

ResNet50 [18] 67M 951G 42.1 42.8
ResNet101 [18] 86M 1029G 43.8 44.9

DeiT-S [40] 52M 1099G 43.2 43.9
DeiT-B [40] 121M 2772G 44.1 45.7
S3-T [7] 60M 954G 44.9 46.3
S3-S [7] 81M 1071G 48.0 49.3
Swin-T [27] 60M 945G 44.5 45.8
Twins-S [10] 54M 901G 46.2 47.1
Focal-T [50] 62M 998G 45.8 47.0
AutoFormer-B* [6] 112M 1603G 46.7 47.9
MDL-NAS-B† + mask 127M 1710G 50.1 50.7
MDL-NAS-B† + seq 130M 1725G 50.8 51.3
MDL-NAS-T‡ + mask 68M 993G 47.3 48.4
MDL-NAS-T‡ + seq 59M 971G 46.5 47.8

Table 3. ADE20K semantic segmentation. FLOPs (G) is calcu-
lated under the input scale of 512×2048.

COCO object detection and instance segmentation.
We evaluate MDL-NAS on the COCO object detection task,
where Mask RCNN [17] is applied as the basic detection
framework. We report evaluation results for object detec-
tion and instance segmentation in terms of APb, APb

50,
APb

75, APm, APm
50, and APm

75 metrics, where “b” and “m”
indicate bounding box and mask metrics, respectively. APb

and APm are set as the primary evaluation metrics. The
comparisons between MDL-NAS and its competitors are
displayed in Tab. 2. MDL-NAS achieves better perfor-
mance compared with its baselines with comparable FLOPs
and parameters. Specifically, regarding the bounding box
metric APb, MDL-NAS-B† with mask/sequential sharing
policy exceeds ResNext101-64×4d [47] and the baseline
Autoformer by 5.4/5.2 and 0.9/0.7 units respectively. In
terms of the mask metric APm, we also observe similar im-
provements as using mask metrics. Compared with modern
methods [21,44], MDL-NAS-B† includes additional param-
eters due to cross-window propagation blocks, leading the
parameters to be larger. In this work, instead of exploring
the efficient architecture design such as Swin Transformer
for sociable downstream vision tasks, we seek MDL-NAS
for multiple vision tasks where they share most parame-
ters of the backbone network, thereby promoting efficient
storage deployment since multiple models can be deposited
into a single one. When equipped with hierarchical vision
transformer, MDL-NAS-T‡ with sequential sharing policy
outperforms the typical hierarchical architecture PVT-L and
Swin-T by 1.9 and 0.4 units in APb, and 1.2 and 0.3 units in
APm. Thus, MDL-NAS is also capable of object detection.

ADE20K Semantic Segmentation. We also evalu-
ate MDL-NAS on ADE20K semantic segmentation task
using UperNet [46]. We report mIoU of MDA-NAS
in single scale testing (ss) and multi-scale testing (ms).
In Tab. 3, MDL-NAS achieves better mIoU performance
than previous networks. Specifically, MDL-NAS-B† with
mask/sequential sharing policy outperforms Autoformer-B
by 3.4/4.1 and 2.8/3.4 units in mIoUss and mIoUms respec-
tively. MDL-NAS-B† with mask/sequential sharing policy

Top-1 Acc. APb mIoUss #Params (t) S-Score

Autoformer-B [6] 82.4 47.3 46.7 274M 176.4
MDL-NAS-B† + mask 82.6 48.2 50.1 235M 180.9
MDL-NAS-B† + seq 82.9 48.0 50.8 256M 181.7
Swin-T [27] 81.3 46.0 44.5 137M 171.8
MDL-NAS-T‡ + mask 81.7 44.9 47.3 103M 173.9
MDL-NAS-T‡ + seq 81.7 46.4 46.5 115M 174.6

Table 4. The overall performance of MDL-NAS. #Params (t) de-
notes the total parameters for model deployment.

also achieves better performance compared with S3-S [7],
demonstrating that MDA-NAS that jointly optimizes mul-
tiple vision tasks provides more benefits on semantic seg-
mentation as the gains. Thus, MDL-NAS is also capable of
semantic segmentation.

Overall performance. In this part, we compare the
overall performance of MDL-NAS under these three tasks
with the baselines and state-of-the-art systems, along with
the total parameters for jointly optimizing these tasks. As
shown in Tab. 4, MDL-NAS-B† with mask/sequential shar-
ing policy surpasses the baseline AutoFormer 4.5/5.3 units
in S-Score metric with much fewer parameters. MDL-
NAS-T‡ with mask/sequential sharing policy also outper-
forms the baseline Swin-T 2.1/2.8 units in S-Score with
34/22M fewer parameters, further illustrating the superior-
ity of MDL-NAS.

4.3. Ablation Study

In this section, we ablate important design elements in
MDL-NAS for the above three vision tasks. In all ablation
experiments, we finetune the supernet for these tasks with
1× training schedule in object detection for saving time.

The effect of coarse search space. To validate the effi-
cacy of coarse search space, we undertake two experiments
as follows: (1) after the supernet pre-training, we conduct
evolutionary search to search the optimal backbone network
for image classification and use the searched backbone to
jointly optimize above three vision tasks, resulting in MDL-
NAS-B/T-AB1 models. (2) after the supernet pre-training,
we finetune the supernet to jointly optimize these vision
tasks and use joint-subnet search algorithm to find optimal
architectures as MDL-NAS-B/T-AB2 for all tasks. Noting
that in (2), we consider two alternatives: search for the same
architecture MDL-NAS-B/T-AB2(S) and different architec-
tures MDL-NAS-B/T-AB2(D) for all tasks. The fine search
space is not applied in this part and all tasks share all param-
eters in the backbone. From Tab. 5, MDL-NAS-B-AB2†

(S/D) surpass MDL-NAS-B-AB1† 0.9/1.2 units in terms of
S-Score with similar parameters, illustrating that the coarse
search space can offer optimal backbone networks for all
tasks rather than using the backbone designed for image
classification. The same phenomenon can be observed in
MDL-NAS-T. Moreover, compared with MDL-NAS-B/T-
AB2† (S), MDL-NAS-B/T-AB2† (D) achieve better perfor-
mance, illustrating that equipping different tasks with di-
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Top-1 Acc. APb mIoUss #Params (s) S-Score

MDL-NAS-B-AB1† 82.9 43.9 49.6 55M 176.4
MDL-NAS-B-AB2†(S) 82.9 44.6 49.8 53M 177.3
MDL-NAS-B-AB2†(D) 82.8 45.0 49.8 55M 177.6
MDL-NAS-T-AB1‡ 81.8 40.2 47.2 28M 169.2
MDL-NAS-T-AB2‡(S) 81.6 41.0 47.8 27M 170.4
MDL-NAS-T-AB2‡(D) 81.6 41.3 47.8 27M 170.7

Table 5. The efficacy of coarse search space. #Params (s) denotes
the parameters of the shared backbone.

Top-1 Acc. APb mIoUss #Params (a) S-Score

baseline1† 82.9 43.9 49.6 55M 176.4
baseline2† 83.2 45.6 48.9 165M 177.7
MDL-NAS-B-AB3†(S) + mask 83.0 46.9 49.9 117M 179.8
MDL-NAS-B-AB3†(D) + mask 83.0 47.0 50.0 117M 180.0
MDL-NAS-B-AB3†(S) + seq 83.0 46.5 49.7 100M 179.2
MDL-NAS-B-AB3†(D) + seq 82.9 46.6 49.8 101M 179.3
baseline1‡ 81.8 40.2 47.2 28M 169.2
baseline2‡ 82.1 43.5 43.9 84M 169.5
MDL-NAS-AB3-T‡(S)+mask 82.0 43.7 47.2 45M 172.9
MDL-NAS-AB3-T‡(D)+mask 82.1 43.8 47.3 47M 173.1
MDL-NAS-AB3-T‡(S)+seq 82.2 44.3 46.6 53M 173.1
MDL-NAS-AB3-T‡(D)+seq 82.1 44.3 46.8 53M 173.2

Table 6. The effect of fine search space. #Params (a) means that
the total parameters of all tasks in the backbone network.

verse architectures is more preferable.
The effect of fine search space. To validate the effec-

tiveness of the fine search space and proposed sharing poli-
cies, we apply the same macro architecture configuration
with MDL-NAS-B/T-AB1 and conduct subsequent experi-
ments: (1) all tasks share all backbone parameters as base-
line1; (2) each task monopolizes backbone parameters as
baseline2; (3) we apply mask/sequential sharing policy on
baseline1 and use joint-subnet search algorithm to search
fine-grained share ratios for each task, where the final model
is called MDL-NAS-B/T-AB3. We also consider that each
task uses the same or different share ratios in each layer
as MDL-NAS-B/T-AB3(S/D). As shown in Tab. 6, MDL-
NAS-B/T-AB3(S/D) with mask or sequential sharing de-
liver better performance than baseline1 and baseline2 by a
large margin with an appropriate model size, demonstrating
the efficacy of fine search space and sharing policies.

4.4. Incremental Learning of MDL-NAS

When a new task or dataset are assigned to MDL-NAS,
only the task-specific parameters are required to accommo-
date the new task or dataset, while all task-shared parame-
ters are frozen. Therefore, MDL-NAS is established to al-
low incremental learning. In this part, we first evaluate the
efficacy of MDL-NAS-B/T on CUB-200-2011 dataset [42]
after MDL-NAS-B/T has been trained on classification, de-
tection, and segmentation tasks. Next, we further assess the
performance of MDL-NAS-B on the pose estimation task.

Tune to new dataset. After MDL-NAS-B/T has been
jointly trained on the three aforementioned tasks, we em-
ploy the trained classification model as a pretrain weight to
finetune the CUB-200-2011 dataset. For MDL-NAS-B/T
with mask sharing policy, we consider to freeze the score
parameters in Eq. (8) as MDL-NAS-B/T(S) or vary the

Input Size #Params (e) Top-1 Acc.

Swin-T [27] 384×384 29.0M 80.0
Autoformer-B [6] 384×384 60.6M 80.7
MDL-NAS-B†(S) + mask 384×384 40.1M 86.8
MDL-NAS-B†(D) + mask 384×384 38.9M 86.9
MDL-NAS-B† + seq 384×384 36.1M 86.6
MDL-NAS-T‡(S) + mask 384×384 7.6M 85.4
MDL-NAS-T‡(D) + mask 384×384 14.2M 86.6
MDL-NAS-T‡ + seq 384×384 11.9M 86.6

Table 7. Incremental learning experiments on CUB-200-2001
dataset. #Params (e) means that additional parameters size that
each method needs when generalizing to a new task.

Input Size #Params (e) AP AP50 AP 75 APM APL

Autoformer-B [6] 256×192 64.4M 70.6 89.3 79.2 67.7 76.8
MDL-NAS-B†(S) + mask 256×192 39.5M 73.5 92.5 81.6 70.3 78.0
MDL-NAS-B†(D) + mask 256×192 43.7M 73.6 92.5 81.6 70.7 78.1
MDL-NAS-B† + seq 256×192 39.9M 74.0 92.5 82.6 71.5 78.2

Table 8. Incremental learning experiments on the pose estimation
task.

score parameters as MDL-NAS-B/T(D) during finetuning.
As shown in Tab. 7, MDL-NAS-B†(S/D) with mask shar-
ing policy outperforms the baseline Autoformer by 6.1/6.2
units in Top1 Accuracy with 20.5/21.7M fewer parameters.
MDL-NAS-B† also surpasses Autoformer by a large mar-
gin. For MDL-NAS-T, we also observe similar improve-
ments as MDL-NAS-B, demonstrating that MDL-NAS can
support a new dataset with fewer task-specific parameters.

Tune to new task. For pose estimation task, we also
consider MDL-NAS-B(S/D) with mask sharing policy dur-
ing fitting the new task. MDL-NAS-B†(S/D) with mask
sharing policy achieves 73.5/73.6AP, which surpasses Aut-
oformer 2.9/3.0 units with 24.9/21.7M fewer parameters,
further demonstrating the superiority of our MDL-NAS,
as shown in Tab. 8. MDL-NAS-B† with sequential shar-
ing policy also outperforms AutoFormer by 3.4 units with
24.5M fewer parameters.

Based on the above analysis, MDL-NAS can be fit to
a new dataset or task with a few task-specific parameters
while keeping the same performances for other tasks. Train-
ing recipe and other details are given in Appendix F and J.

5. Conclusion

In this work, we introduce MDL-NAS, a unified frame-
work that optimizes multiple vision tasks collectively.
MDL-NAS achieves high performance for all vision tasks
and keeps storage efficient for model deployment through
a coarse-to-fine searching space design and a joint-subnet
search algorithm. We also demonstrate that MDL-NAS can
generalize to a new dataset or a new vision task with small
task-specific parameters while maintaining the same perfor-
mance for other vision tasks.
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