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Abstract

In clinical scenarios, multi-specialist consultation could
significantly benefit the diagnosis, especially for intricate
cases. This inspires us to explore a “multi-expert joint
diagnosis” mechanism to upgrade the existing “single ex-
pert” framework commonly seen in the current literature.
To this end, we propose METransformer, a method to real-
ize this idea with a transformer-based backbone. The key
design of our method is the introduction of multiple learn-
able “expert” tokens into both the transformer encoder and
decoder. In the encoder, each expert token interacts with
both vision tokens and other expert tokens to learn to attend
different image regions for image representation. These ex-
pert tokens are encouraged to capture complementary in-
formation by an orthogonal loss that minimizes their over-
lap. In the decoder, each attended expert token guides the
cross-attention between input words and visual tokens, thus
influencing the generated report. A metrics-based expert
voting strategy is further developed to generate the final re-
port. By the multi-experts concept, our model enjoys the
merits of an ensemble-based approach but through a man-
ner that is computationally more efficient and supports more
sophisticated interactions among experts. Experimental re-
sults demonstrate the promising performance of our pro-
posed model on two widely used benchmarks. Last but not
least, the framework-level innovation makes our work ready
to incorporate advances on existing “single-expert” models
to further improve its performance.

1. Introduction

Interpreting radiology images (e.g., chest X-ray) and
writing diagnostic reports are essential operations in clinical
practice and normally require a considerable manual work-

load. Therefore, radiology report generation, which aims
to automatically generate a free-text description based on a
radiograph, is highly desired to ease the burden of radiolo-
gists while maintaining the quality of health care. Recently,
substantial progress has been made towards research on au-
tomated radiology report generation models [4,5,15–17,21,
22,33–35,41,43,44,47]. Most existing studies adopt a con-
ventional encoder-decoder architecture following the image
captioning paradigm [6, 25, 32, 37, 48] and resort to opti-
mizing network structure or introducing external or prior
information to aid report generation. These methods, in this
paper, are collectively referred to as “single-expert” based
diagnostic captioning methods.

However, diagnostic report generation is a very challeng-
ing task as disease anomalies usually only occupy a small
portion of the whole image and could appear at arbitrary lo-
cations. Due to the fine-grained nature of radiology images,
it is hard to focus on the correct image regions throughout
the report generation procedure despite different attentions
developed in recent works [16, 21]. Meanwhile, it is no-
ticed that in clinic scenarios, multi-specialist consultation is
especially beneficial for those intricate diagnostic cases that
challenge a single specialist for a comprehensive and accu-
rate diagnosis. The above observations led us to think, could
we design a model to simulate the multi-specialist consul-
tation scenario? Based on this motivation, we propose a
new diagnostic captioning framework, METransformer, to
mimic the “multi-expert joint diagnosis” process. Built
upon a transformer backbone, METransformer introduces
multiple “expert tokens”, representing multiple experts, into
both the transformer encoder and decoder. Each expert to-
ken learns to attend distinct image regions and interacts with
other expert tokens to capture reliable and complementary
visual information and produce a diagnosis report in paral-
lel. The optimal report is selected through an expert voting
strategy to produce the final report. Our design is based on
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the assumption that it would be easier for multiple experts
than a single one to capture visual patterns of clinical im-
portance, which is verified by our experimental results.

Specifically, we feed both the expert tokens (learnable
embeddings) and the visual tokens (image patches embed-
dings) into the Expert Transformer encoder which is com-
prised of a vision transformer (ViT) encoder and a bilinear
transformer encoder. In ViT encoder, each expert token in-
teracts not only with the visual tokens but also with the other
expert tokens. Further, in the bilinear transformer encoder,
to enable each “expert” to capture fine-grained image in-
formation, we compute higher-order attention between ex-
pert tokens and visual tokens, which has proved to be effec-
tive in fine-grained classification tasks [20]. It is notewor-
thy that the expert tokens in the encoder are encouraged to
learn complementary representations by an orthogonal loss
so that they attend differently to different image regions.
With these carefully learned expert token embeddings, in
the decoder, we take them as a guide to regulate the learn-
ing of word embeddings and visual token embedding in the
report generation process. This results in M different word
and visual token embeddings, thus producing M candidate
reports, where M is the number of experts. We further pro-
pose a metric-based expert voting strategy to generate the
final report from the M candidates.

By utilizing multiple experts, our model, to some extent,
is analogous to ensemble-based approaches, while each ex-
pert token corresponds to an individual model. While it en-
joys the merits of ensemble-based approaches, our model is
designed in a manner that is computationally more efficient
and supports more sophisticated interactions among ex-
perts. Therefore, it can scale up with only a trivial increase
of model parameters and achieves better performance, as
demonstrated in our experimental study.

Our main contributions are summarized as follows.

First, we propose a new diagnostic captioning frame-
work, METransformer, which is conceptually “multi-expert
joint diagnosis” for radiology report generation, by intro-
ducing learnable expert tokens and encouraging them to
learn complementary representations using both linear and
non-linear attentions.

Second, our model enjoys the benefits of an ensemble
approach. Thanks to the carefully designed network struc-
ture and the end-to-end training manner, our model can
achieve better results than common ensemble approaches
while greatly reducing training parameters and improving
training efficiency.

Third, our approach shows promising performance on
two widely used benchmarks IU-Xray and MIMIC-CXR
over multiple state-of-the-art methods. The clinic relevance
of the generated reports is also analyzed.

2. Related Work
Image Captioning. Natural image captioning task aims at
automatically generating a single sentence description for
the given image. A broad collection of methods was pro-
posed in the last few years [1,6,24,25,28,32,37,42,45,48]
and have achieved great success in advancing the state-
of-the-art. Most of them adopt the conventional encoder-
decoder architecture, with convolutional neural networks
(CNNs) as the encoder and recurrent (e.g., LSTM/GRU) or
non-recurrent networks (e.g., Transformer) as the decoder
with a carefully designed attention module [24, 25, 37] to
produce image description. However, compare with image
captioning, radiographic images have fine-grained charac-
teristics and radiology report generation aims to generate a
long paragraph rather than a single sentence, which brings
more challenge to the model’s attention ability.
Medical report generation. Most of the research efforts
in medical report generation can be roughly categorized as
being along two main directions. The first direction lies in
promoting the model’s structure, such as introducing a bet-
ter attention mechanism or improving the structure of the
report decoder. For example, some works [12,35,38,39,43,
46] utilize a hierarchically structured LSTM network to bet-
ter handle the long narrative nature of medical reports. Jing
et al [12] proposed a multi-task hierarchical model with co-
attention by automatically predicting keywords to assist in
generating long paragraphs. Xue et al [38, 39] presented a
different network structure involving a generative sentence
model and a generative paragraph model that uses the gen-
erated sentence to produce the next sentence. In addition,
Wang et al [35] introduced an image-report matching net-
work to bridge the domain gap between image and text for
reducing the difficulty of report generation. To further im-
prove performance, some works [4, 5, 33] employ a trans-
former instead of LSTM as the report decoder, which has
achieved good results. Work [5] proposes to generate ra-
diographic reports with a memory-driven Transformer de-
signed to record key information of the generation process.
The second research direction studies how to leverage med-
ical domain knowledge to guide report generation. Most
recently, many works [16, 21, 22, 40, 41, 47] attempt to in-
tegrate knowledge graphs into medical report generation
pipeline to improve the quality of the generated reports. An-
other group of works [34, 44] utilizes disease tags to facil-
itate report generation. Yang et al [41] present a frame-
work based on both general and specific knowledge, where
the general knowledge is obtained from a pre-constructed
knowledge graph, while the specific knowledge is derived
from retrieving similar reports. The work [34] proposed a
medical concepts generation network to generate semantic
information and integrate it into the report generation pro-
cess. It is worth mentioning that our approach is orthogonal
to the methods mentioned above, for example, the advanced
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memory-enhanced decoder used in [5] can also be applied
to our framework for further performance improvement.

3. Method

As shown in Figure.1, our encoder comprises a vision
transformer (ViT) [9] encoder and an expert bilinear trans-
former encoder. The ViT encoder takes both the expert and
the visual tokens as the input and computes the linear atten-
tion between every two tokens. The encoded tokens are fur-
ther sent into the expert bilinear transformer encoder where
high-order interactions are computed between the expert to-
kens and the visual tokens. The enhanced expert tokens are
then used to regulate the embeddings of visual and word
tokens by an adjust block and sent into the expert decoder
to produce expert-specific reports in parallel, and then an
expert voting strategy is used to generate the final report.

3.1. Multi-expert ViT Encoder

Our ViT encoder adopts vision transformer [9]. In addi-
tion to the common input of visual patches/tokens embed-
ding and position embedding, we further introduce expert
tokens embedding and segment embedding.

Visual patches Embedding. Given an image x ∈
RH×W×C , followed [9], we reshape x into a sequence
of flattened 2D patches xp ∈ RN×(P 2Ċ), where (H,W )
is the resolution of the original image, C is the number of
channels, (P, P ) is the resolution of each image patch, and
N = HW/P 2 is the resulting number of patches. We con-
sider xp as visual tokens and N is the input sequence length.

Expert tokens Embedding. In addition to N visual to-
kens, we post-pend M learnable embeddings xe ∈ RM×D

which have the same dimension as the visual token embed-
dings and are called expert tokens. We introduce an Or-
thogonal Loss as in Eqn. 6 to enforce orthogonality among
the expert token embeddings, encouraging different expert
tokens to attend different image regions.

Segment Embedding. We introduce two types of the
segment, “[0]” and “[1]”, to separate the input tokens from
different sources [29], i.e., “[0]” for visual tokens and “[1]”
for expert tokens. A learned segment embedding Eseg is
added to each input token to indicate its segment type.

Position Embedding. A standard 1D learnable position
embedding Epos is added to each input token to indicate its
order in the input sequence.

Model Structure. The expert ViT encoder adopts the
same structure as the standard Transformer [30], which
consists of alternating layers of multi-headed self-attention
(MSA) and Multi-Layer Perceptron blocks (MLP). Layer-
norm(LN) [2] is applied before every block and residual
connections are applied after every block. Mathematically:

z0 = [x1
pE;x2

pE; . . . ;xN
p E;x1

e;x
2
e; . . . ;x

M
e ]

+Epos +Eseg,

ẑl = MSA(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl,

(1)

where E ∈ R(P 2C)×D is a learnable matrix parameter to
map visual tokens to a fixed dimension D. The subscript
l = 1 . . . L and L is the total number of the transformer
layers. Epos ∈ R(N+M)×D is the position embeddings and
Eseg ∈ R(N+M)×D is the segment embeddings.

3.2. Multi-expert Bilinear Attention Encoder

The output of our expert ViT encoder, zL ∈ R(N+M)×D,
combines the visual token embeddings zvL = zL [: N] and
the expert token embeddings zeL = zL [N : (N +M)]. They
have attended to each other using multi-head self-attention,
which is linear attention. Considering the fine-grained na-
ture of medical images and the effectiveness of high-order
attention in fine-grained recognition [20], we further en-
hance both embeddings by expert bilinear attention.

Expert Bilinear Attention. We followed [25] to de-
sign our expert bilinear attention (EBA) module. As shown
in Figure. 1 Left, we take the enhanced expert token em-
beddings zeL as query Q ∈ RM×1×Dq , the enhanced vi-
sual tokens embeddings zvL as key K ∈ R1×N×Dk and
value V ∈ R1×N×Dv , a low-rank bilinear pooling [14]
if first performed to obtain the joint bilinear query-key Bk

and query-value Bv by Bk = σ(WkK) ⊙ σ(Wk
qQ) and

Bv = σ(WvV) ⊙ σ(Wv
qQ), where Wk ∈ RDB×Dk ,

Wv ∈ RDB×Dv , Wk
q ∈ RDB×Dq and Wv

q ∈ RDB×Dv

are learnable parameters, resulting Bk ∈ RM×N×DB ,
Bv ∈ RM×N×DB . σ denotes ReLU unit, and ⊙ repre-
sents Hadamard Product. Afterward, we compute atten-
tion for input tokens both spatial and channel-wisely. 1)
Spatial-wise attention. We use a linear layer to project Bk

into an intermediate representation Bmid = σ(Wk
BBk),

where Wk
B ∈ RDB×Dmid . Then another linear layer is ap-

plied to mapping Bmid ∈ RM×N×Dmid from the dimen-
sion Dmid to 1 and further followed a softmax function to
obtain the spatial-wise attention weight αs ∈ RM×N×1.
2) Channel-wise attention. A squeeze-excitation opera-
tion [10] to Bmid is performed to obtain channel-wise atten-
tion βc = sigmoid(Wc

¯Bmid), where Wc ∈ RDmid×DB is
learnable parameters and ¯Bmid ∈ RM×Dmid is the average
pooling of Bmid. The first layer of EBA is formulated as,

ẑ
e(1)
L = EBA(ẑeL, ẑ

v
L) = βc ⊙ αsBv. (2)

Bilinear Encoder Layer. Besides EBA, we also use the
“Add & Norm” layer with the residual connection as in a
standard transformer in our bilinear encoder layer. The n-th

11560



Figure 1. An overview of our proposed METransformer, which includes an Expert Transformer Encoder and an Expert Transformer
Decoder. The expert transformer encoder captures fine-grained visual patterns by exploring 1st and 2nd order interactions between input
visual tokens and M expert tokens. The expert transformer decoder produces M diverse candidate reports guided by each expert token
through an Adjust block. Noted that the “Embed” layer includes a linear projection followed by a ReLU activation function.

layer bilinear encoder is expressed as,

ẑ
e(n)
L = EBA(ẑ

e(n−1)
L , ẑ

v(n−1)
L )

ẑ
v(n)
L = LN(Wn

e [ẑ
e(n−1)
L ; ẑ

v(n−1)
L ] + ẑ

v(n−1)
L )

(3)

where n = 1 . . . N and N is the number of bilinear en-
coder layer, LN(·) denotes layer normalization [2], Wn

e ∈
R(Dq+Dv)×Dv is learnable parameters and [; ] denotes con-
catenation. We set ẑe(0)L = zeL and ẑ

v(0)
L = zvL when n=1.

3.3. Multi-expert Bilinear Attention Decoder

The output of the last expert bilinear encoder, expert to-
ken embeddings ẑ

e(N)
L ∈ RN×DB and visual tokens em-

beddings ẑv(N)
L ∈ RM×DB , are sent to the decoder for re-

port generation. The bilinear decoder layer comprises an
EBAmask layer to compute attention of the shifted-right
reports and an EBAcross to compute the cross-modal at-
tention and an adjust block to regulate the word and visual
tokens embeddings by expert token embeddings. For con-
venience, we denote ẑ

e(N)
L and ẑ

v(N)
L as fe and fv .

Adjust block. To incorporate the expert tokens into the
report generation process, we propose an expert adjustment
block that allows each expert token embedding to influence
the embedding of the words and visual tokens, thereby gen-
erating the report associated with that expert token. Since
our expert tokens are trained orthogonally, we can generate
discrepant reports by the different expert tokens. To reg-
ulate visual tokens embeddings fv by expert token embed-

dings fe, the adjust block is calculated as follows,

f̂v = Fadjust(fe, fv) = σ(Wefe)⊙ σ(Wvfv) (4)

where We and Wv are learnable parameters. σ denotes
ReLU unit, and ⊙ represents Hadamard Product.

Bilinear Decoder Layer. We first perform a masked
EBA to word embeddings Er and then followed another
EBA block to compute the cross attention of word embed-
dings and visual tokens embeddings. We also employ resid-
ual connections around each EBA block similar to the en-
coder, followed by layer normalization. Mathematically, the
i-th layer bilinear decoder can be expressed as,

E
(i)
mid = LN(EBAmask(Ê

(i−1)
r ,E(i−1)

r ) +E(i−1)
r )

E(i)
c = LN(EBAcross(E

(i)
mid, f̂v) +E

(i)
mid)

E(i)
r = LN(Wi

d[E
(i−1)
r ;E(i)

c ] +E(i−1)
r ))

(5)

where i = 1 . . . I and I represents the total number of
decoder layer. Ê

(i−1)
r = Fadjust(fe,E

(i−1)
r ) and f̂v =

Fadjust(fe, fv). Wi
d ∈ R(Dr+Dr)×Dr is learnable param-

eters and [; ] denotes concatenation. Specifically, E(0)
r ∈

RT×Dr is the original word embeddings where T is the to-
tal number of words in the reports and Dr = DB is the
dimension of word embedding, and we extend it to M repli-
cates corresponding to M expert tokens to compute paral-
lelly. The final output of the decoder is EI

c ∈ RM×T×Dr ,
which will be further used to predict word probabilities by
a linear projection and the softmax activation function.
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3.4. Objective Function

Orthogonal Loss. To encourage orthogonality among
expert token embeddings, we introduce an orthogonal loss
term to the output of expert bilinear encoder ẑeL,

LOrL(ẑ
e
L) =

1

M

∥∥ℓ(ẑeL)⊤ℓ(ẑeL)− I
∥∥2 (6)

where ℓ(·) denotes L2 normalization and I represents the
identity matrix with dimension M.

Report Generation Loss. We train our model param-
eters θ by minimizing the negative log-likelihood of P(t)
given the image features:

LCE = − 1

M

M∑
m=1

T∑
i=1

logPθ(t
(m)
i |I, t(m)

i−1, · · · , t
(m)
1 ) (7)

where P(t
(m)
i |I, t(m)

i−1, · · · , t
(m)
1 ) represents the probability

predicted by the m-th expert tokens for the i-th word ti
based on the image I and the first (i− 1) words.

Our overall objective function is: Lall = LCE+λLOrL.
The hyper-parameter λ simply balances the two loss terms,
and its value is given in Section 4.

3.5. Expert Voting strategy

For the M diagnostic reports R = [r1, r2, . . . , rM ] pro-
duced by M experts, we design a metric-based expert vot-
ing strategy to select the optimal one, where the “metric”
means the conventional natural language generation (NLG)
metrics, such as BLEU-4 and CIDEr (we use CIDEr in our
paper). The voting score Si for i-th expert’s report can be
calculated by the following equation:

Si =
∑M

j=1,j ̸=iCIDEr(ri, rj) (8)

where CIDEr(, ) denotes the function for computing CIDEr
with ri as candidate and rj as reference. In this way, each
expert’s report can get a vote score, indicating the degree
of consistency of the report with that of other experts.The
diagnostic report with the highest score is the winner of the
voting. As demonstrated in Table. 3, our voting strategy
is more effective than the commonly used ensemble/fusion
methods [25]. The possible reasons are that i) our method
utilizes NLG metrics as reference scores, thereby the voted
results are directly related to the final evaluation metrics; ii)
since we ultimately select a single result with the highest
score, we can produce a more coherent report than fusing
multiple results at the word level.

4. Experiments
4.1. Datasets

In this experiment, two datasets are used for the per-
formance evaluation, i.e., a widely-used benchmark IU-
Xray [8] and the currently largest dataset MIMIC-CXR [13]
for medical report generation.

IU-Xray Indiana University Chest X-ray Collection (IU-
Xray) [8] is the most widely used publicly accessible dataset
in medical report generation tasks. It contains 3,955 fully
de-identified radiology reports, each of which is associated
with frontal and/or lateral chest X-ray images, and 7,470
chest X-ray images in total. Each report is comprised of
several sections: Impression, Findings, Indication, etc. In
this work, we adopt the same data set partitioning as [5] for
a fair comparison, with a train/test/val set by 7:1:2 of the
entire dataset. All evaluations are done on the test set.

MIMIC-CXR The recently released MIMIC-CXR [13]
is the largest public dataset containing both chest radio-
graphs and free-text reports. In total, it consists of 377110
chest x-ray images and 227835 reports from 64588 patients
of the Beth Israel Deaconess Medical Center examined be-
tween 2011 and 2016. In our experiment, we adopt MIMIC-
CXR’s official split following the work [5] for a fair com-
parison, resulting in a total of 222758 samples for training,
and 1808 and 3269 samples for validation and test.

4.2. Experimental Settings

Evaluation Metrics Following the standard evaluation
protocol1, we utilize the most widely used BLEU-4 [26],
METEOR [3], ROUGE-L [19], and CIDEr [31] as the met-
rics to evaluate the quality of the generated diagnostic re-
ports. To measure the accuracy of descriptions for clinical
abnormalities, we follow [4, 5, 22] and further report clin-
ical efficacy metrics. For this purpose, the CheXpert [11]
is applied to labeling the generated reports and the results
are compared with ground truths in 14 different categories
related to thoracic diseases and support devices. We use
precision, recall, and F1 to evaluate model performance for
clinical efficacy metrics.

Implementation Details For IU-Xray, we use image
pairs for report generation as [5]. For both datasets, we use
the ”bert-base-uncased” model’s tokenizer in huggingface
transformer [36] to tokenize all words in the reports. We
utilize a pre-trained vision transformer with a patch size of
32 to initialize our Expert ViT encoder. The number of lay-
ers of the expert bilinear encoder and decoder is set as (2,
4) for MIMIC-CXR and (2,2) for IU-Xray to reduce the po-
tential overfitting on IU-Xray due to its relatively small data
size. The dimensions of the bilinear query-key representa-
tion and the transformed bilinear feature (DB and Dmid)
in the expert bilinear attention block is set as 768 and 384,
respectively. The hyper-parameter λ in Eqn. ?? is set to
2. Our model is trained using Radam optimizer [23] with a
mini-batch size of 16. The learning rate is set to be 0.0001
and the model is trained for a total of 20 epochs. We imple-
ment our model using Pytorch [27] and Pytorch-lightning
library 2 with two NVIDIA GeForce RTX 3090 GPU cards.

1https://github.com/tylin/coco-caption
2https://github.com/Lightning-AI/lightning
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Dataset Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr
Show-Tell [32] 0.243 0.130 0.108 0.078 0.307 0.157 0.197
Att2in [28] 0.248 0.134 0.116 0.091 0.309 0.162 0.215
AdaAtt [24] 0.284 0.207 0.150 0.126 0.311 0.165 0.268
Transformer [30] 0.372 0.251 0.147 0.136 0.317 0.168 0.310
M2transformer [6] 0.402 0.284 0.168 0.143 0.328 0.170 0.332
R2Gen† [5] 0.470 0.304 0.219 0.165 0.371 0.187 -
R2GenCMN† [4] 0.475 0.309 0.222 0.170 0.375 0.191 -

IU-Xray MSAT [34] 0.481 0.316 0.226 0.171 0.372 0.190 0.394
Ours(METransformer) 0.483 0.322 0.228 0.172 0.380 0.192 0.435

Results below are not strictly comparable due to different data partition. For reference only.
CoAtt† [12] 0.455 0.288 0.205 0.154 0.369 - 0.277
HGRG-Agent† [17] 0.438 0.298 0.208 0.151 0.322 - 0.343
KERP† [15] 0.482 0.325 0.226 0.162 0.339 - 0.280
PPKED† [21] 0.483 0.315 0.224 0.168 0.376 0.187 0.351
GSK† [41] 0.496 0.327 0.238 0.178 0.381 - 0.382

Show-Tell [32] 0.308 0.190 0.125 0.088 0.256 0.122 0.096
Att2in [28] 0.314 0.198 0.133 0.095 0.264 0.122 0.106
AdaAtt [24] 0.314 0.198 0.132 0.094 0.267 0.128 0.131
Transformer [30] 0.316 0.199 0.140 0.092 0.267 0.129 0.134
M2Transformer [6] 0.332 0.210 0.142 0.101 0.264 0.134 0.142
R2Gen† [5] 0.353 0.218 0.145 0.103 0.277 0.142 -

MIMIC-CXR R2GenCMN† [4] 0.353 0.218 0.148 0.106 0.278 0.142 -
PPKED† [21] 0.36 0.224 0.149 0.106 0.284 0.149 0.237
GSK† [41] 0.363 0.228 0.156 0.115 0.284 - 0.203
MSAT† [34] 0.373 0.235 0.162 0.120 0.282 0.143 0.299
Ours(METransformer) 0.386 0.250 0.169 0.124 0.291 0.152 0.362

Table 1. Comparison on IU-Xray (upper part) and MIMIC-CXR datasets (lower part). † indicates the results are quoted from the published
literature: the results of CoAtt [12] and HGRG-Agent [17] on IU-Xray are quoted from [15] while the other results are quoted from their
respective papers. For the methods without †, their results are obtained by re-running the publicly released codebase [18] on these two
datasets using the same training-test partition as our method.

Methods Precision Recall F1
Show-Tell [32] 0.249 0.203 0.204

Att2in [37] 0.268 0.186 0.181
AdaAtt [24] 0.322 0.239 0.249

Transformer [30] 0.331 0.224 0.228
R2Gen [5] 0.333 0.273 0.276

R2GenCMN [4] 0.334 0.275 0.278
Ours(METransformer) 0.364 0.309 0.311

Table 2. Comparison of clinical efficacy metrics on the test set
of the MIMIC-CXR dataset for measuring the accuracy of the de-
scription of clinical abnormalities.

4.3. Main Results

Two types of metrics are used in our evaluation: the con-
ventional natural language generation (NLG) metrics and
the clinical efficacy (CE) metrics. The results are reported
in Table 1 and Table. 2 3, respectively.

Specifically, we compare METransformer with 5 state-
of-the-art (SOTA) image captioning methods, including
Show-tell [32], AdaAtt [24], Att2in [1], Transformer [7]

3It is noted that clinical efficacy metrics only apply to MIMIC-CXR
because the labeling schema of CheXpert is designed for MIMIC-CXR.

and M2transformer [6]. For these methods, we use a
publicly released codebase [18] and re-run them on both
datasets with the same experimental setting as ours. More-
over, eight SOTA medical report generation models are in-
volved in the comparison, including CoAtt [12], HGRN-
Agent [17], R2Gen [5], R2GenCMN [4], PPKED [21],
GSK [41] and MSAT [34]. It is noteworthy that except
R2Gen [5] and R2GenCMN [4], these methods do not
have their source code released. CoAtt [12] and HGRN-
Agent [17] only report results on IU-Xray in their original
paper. For the others, we cite the results from their re-
spective papers. Please note that since IU-Xray does not
provide an official training-test partition, the cited perfor-
mances of these methods on IU-Xray (except R2Gen [5]
and R2GenCMN [4] that use the same partition as ours)
are not strictly comparable, and they are provided here only
for reference. Differently, on MIMIC-CXR, since all these
models follow the MIMIC-CXR official training-test parti-
tion, their cited performances are comparable.

As shown in Table 1, on both datasets, our METrans-
former consistently outperforms those “single-expert”
based models, including attention-based baselines
(Att2in [37], AdaAtt [24]), memory-augmented meth-
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# Models IU-Xray MIMIC-CXR
BLEU 4 ROUGE METEOR CIDEr AVG. ∆ BLEU 4 ROUGE METEOR CIDEr AVG. ∆

1 BASELINE 0.161 0.357 0.183 0.337 - 0.109 0.277 0.143 0.275 -
2 +BE 0.163 0.360 0.185 0.346 +1.5% 0.111 0.279 0.144 0.287 +1.9%
3 +BE+ETs 0.168 0.372 0.188 0.402 +7.6% 0.117 0.284 0.147 0.334 +8.5%
4 +BE+ETs+OrL 0.170 0.377 0.190 0.426 +10.4% 0.121 0.287 0.150 0.352 +11.9%
5 +BE+ETs+OrL+EV 0.172 0.380 0.192 0.435 +11.8% 0.124 0.291 0.152 0.362 +14.2%

Table 3. Ablation studies. The “BASELINE” uses ViT encoder and bilinear-attention decoder with the traditional cross entropy-loss. Here
“BE”, “ETs”, “OrL”, “EV” stand for ”Bilinear-attention Encoder”, ”Expert Tokens”, ”Orthogonal Loss”, and ”Expert Voting”. The average
improvement over all NLG metrics compared to baseline is also presented in the “AVG. ∆” column.

Models Params Training Time BLEU 4 ROUGE METEOR CIDEr
METransformer(num expert=1) 152M 0.48h 0.163 0.362 0.183 0.346
Stochastic Model Averaging 152M x 7=1064M 0.48h x 7=3.36h 0.168 0.373 0.187 0.389
Random Initialization 152M x 7=1064M 0.48h x 7=3.36h 0.170 0.376 0.189 0.408
Multiple Decoder 483.3M 1.85h 0.166 0.368 0.186 0.378
METransformer(num expert=7) 152.007M 0.55h 0.172 0.380 0.192 0.435

Table 4. Comparison with the ensemble models on the IU-Xray dataset.

ods (R2Gen [5], R2GenCMN [4]) and models introducing
external information (PPKED [21], MSAT [34]). On
MIMIC-CXR, METransformer is the best performer across
all metrics. Especially, our CIDEr score is up to 0.362,
which is to date the best performance and makes a sig-
nificant improvement over the second best score of 0.299
of MSAT [34]. These improvements demonstrate the ad-
vantage of our framework which is conceptually ”multiple
expert co-diagnosis”. Ours METransformer also surpasses
these methods on IU-Xray over most metrics, while it
is again worth mentioning that the cited performances
on IU-Xray may not be strictly comparable as obscure
training-test partitions were used by different methods.

4.4. Ablation Study

Contribution of each component. We conduct an abla-
tion study to single out the contributions of each model
component, as presented in Table 3. We build a baseline
by using ViT transformer encoder and bilinear-attention de-
coder to verify the performance improvements brought by
multiple expert tokens, orthogonal loss, and our metric-
based expert voting strategy. In Table 3, there are four
components: “BE”, “ETs”, “OrL”, and “EV”, represent-
ing Bilinear-attention Encoder, Expert Tokens, Orthogonal
Loss, and Expert Voting, respectively. The symbol “+” in-
dicates the inclusion of the following component based on
the “BASELINE” model. It can be observed that each com-
ponent of METransformer has a positive effect on perfor-
mance. By comparing #3 and #1 in Table. 3, it can be
found that extending the expert tokens and enhancing them
with bilinear-attention encoder can increase the overall per-
formance by 7.6% on IU-Xray and 8.5% on MIMIC-CXR.
Training with the orthogonal loss on expert tokens can fur-
ther enhance model performance (by comparing #4 and #3).
For experiments #3 and #4 where multiple expert tokens

Figure 2. Bleu 4 and CIDEr scores by using different numbers of
expert tokens on IU-Xray and MIMIC-CXR dataset.

are used, the final prediction result is obtained by averaging
the probability of words predicted by the multiple experts.
Comparing #5 and #4 shows that our voting strategy is more
effective than the averaging method above.
Impact of expert tokens. To show the impacts of the expert
tokens, we train METransformer with different numbers of
expert tokens, i.e., num expert ∈ {1, 3, 5, 7, 9} and the re-
sults on IU-Xray and MIMIC-CXR are shown in Figure. 2.
We observe the following. First, increasing the expert to-
kens can significantly improve the overall performance of
the model. This validates the effectiveness of our motiva-
tion that by focusing on different image regions with mul-
tiple experts, the model can learn more diversified informa-
tion and thus produce more accurate and diverse diagnostic
reports. Second, when the number of expert tokens exceeds
a threshold, increasing num expert is not able to continue
promising a better outcome, for example, when num expert
is increased from 7 to 9, the CIDEr score on the IU-Xray
dataset decreases. A possible explanation is that our model
forces each expert token to focus on a different image region
(via orthogonal loss), which may cause some experts to at-
tend to irrelevant image regions when there are too many
experts, thus may negatively affect the generation process.
Comparison with ensemble models. By using multiple
experts, our model is conceptually analogous to an ensem-
ble model. We thus compare with three ensemble models
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Figure 3. An example of the generated reports and their attention-mapping visualization of three key medical terms from BASELINE and
ours METransformer. For better illustration, different colors in the generated reports highlight different medical information.

Figure 4. Attention visualization of expert tokens on the image.

in Table. 4. “Random Initialization” trains randomly ini-
tialized METransformer(num expert=1) model for 7 times,
corresponding to random-seed based ensemble. “Multiple
Decoder” trains the model with the encoder of METrans-
former(num expert=1) and 7 randomly initialized ME-
Transformer’s decoders, corresponding to late fusion. We
also compare with a stochastic model averaging ensemble
method. All methods ensemble the results using our pro-
posed Expert Voting strategy. As observed, our METrans-
former(num expert=7) performs significantly better with
much fewer trainable parameters. We attribute this to the
sophisticated interaction between expert tokens through our
compact design. Compared with using a single expert to-
ken, our method using 7 expert tokens only incurs 0.007M
(0.05‰) extra parameters, demonstrating its scaling ability.

4.5. Qualitative analysis.

Visualisation of expert tokens. To gain insight, we visual-
ize the image regions mostly attended by each learned ex-
pert token in Figure. 4 via exploring the attention α̂s be-
tween the learned expert token embeddings ẑeL and the vi-

sual token embeddings ẑvL: α̂s = Softmax(ẑeL(ẑ
v
L)

T ) Us-
ing Softmax(·), only the mostly attended image regions are
shown. As observed, each expert token attends to a distinct
and critical image region. For example, the image region
attended by expert Token 2 is known as the angle of the rib
diaphragm which can provide valuable clinic information.
Qualitative results. We show the generated results of
METransformer compared with the Baseline method (“#1”
in Table. 3) in Figure. 3. On the left, we visualize the
image-text attention mapping from the last layer of the ex-
pert transformer decoder with three key generated medical
terms. As observed, METransformer better aligns the lo-
cations with the related text. On the right, we present the
corresponding generated reports and the ground truth. For
better illustration, we differently color sentences containing
different medical information. It is observed that METrans-
former is able to generate descriptions better aligned with
that written by radiologists. For example, METransformer
can diagnose anomalies in the heart part, while the Base-
line model fails. This is consistent with the fact that our
model can better attend to the heart part of the image (see
the attented area of “heart” on the left side of the figure).

5. Conclusions
We present an effective approach for radiology report

generation from a new perspective orthogonal to existing
research efforts in this field. Our approach follows the con-
cept of multi-specialist consultation to improve the quality
of generated reports by introducing multiple learnable ex-
pert tokens into a transformer-base framework. Despite its
promising performance and properties demonstrated in the
experiment, our METransformer is still limited in being a
basic framework that could be further enhanced by integrat-
ing medical domain knowledge, as seen in “single-expert”
based methods, which will be explored in our future work.
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