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Abstract

Source free domain adaptation (SFDA) aims to transfer
a trained source model to the unlabeled target domain with-
out accessing the source data. However, the SFDA setting
faces a performance bottleneck due to the absence of source
data and target supervised information, as evidenced by
the limited performance gains of the newest SFDA meth-
ods. Active source free domain adaptation (ASFDA) can
break through the problem by exploring and exploiting a
small set of informative samples via active learning. In
this paper, we first find that those satisfying the proper-
ties of neighbor-chaotic, individual-different, and source-
dissimilar are the best points to select. We define them as the
minimum happy (MH) points challenging to explore with ex-
isting methods. We propose minimum happy points learning
(MHPL) to explore and exploit MH points actively. We de-
sign three unique strategies: neighbor environment uncer-
tainty, neighbor diversity relaxation, and one-shot query-
ing, to explore the MH points. Further, to fully exploit MH
points in the learning process, we design a neighbor focal
loss that assigns the weighted neighbor purity to the cross
entropy loss of MH points to make the model focus more on
them. Extensive experiments verify that MHPL remarkably
exceeds the various types of baselines and achieves signifi-
cant performance gains at a small cost of labeling.

1. Introduction
Transferring a trained source model instead of the source

data to the unlabeled target domain, source-free domain
adaptation (SFDA) has drawn much attention recently.
Since it prevents the external leakage of source data, SFDA
meets privacy persevering [19, 47], data security [43], and
data silos [39]. Moreover, it has important potential in
many applications, e.g., object detection [23], object recog-
nition [25], and semantic segmentation [17]. However, the
SFDA setting faces a performance bottleneck due to the ab-

*denotes corresponding author.

sence of source data and target supervised information. The
state-of-the-art A2Net [50] is a very powerful method that
seeks a classifier and exploits classifier design to achieve ad-
versarial domain-level alignment and contrastive category-
level matching, but it only improved the mean accuracy of
the pioneering work (SHOT [25]) from 71.8% to 72.8% on
the challenging Office-Home dataset [45]. Although some
recent studies [20, 52] utilize the transformer or mix-up to
improve the performance further, they have modified the
structure of the source model or changed the source data,
which is not universal in privacy-preserving scenarios.

Active source free domain adaptation (ASFDA) can pro-
duce remarkable performance gains and breakthrough per-
formance bottlenecks when a small set of informative tar-
get samples labeled by experts. Two factors must be con-
sidered to achieve significant performance gains: (1) Ex-
ploring samples that, once labeled, will improve accuracy
significantly; (2) Exploiting limited active labeled target
data well in adaptation. However, these two factors have
not been achieved. For example, ELPT [24] uses predic-
tion uncertainty [27] to explore active samples and applies
cross-entropy loss to exploit these selected samples. While
the prediction uncertainty is error-prone due to the miscali-
brated source model under distribution shift [32], and the
pseudo-label noise of unlabeled samples easily influence
the effect of standard cross-entropy loss on active samples.

In this paper, we first find the best informative sam-
ples for ASFDA are Minimum Happy (MH) points that sat-
isfy the properties of neighbor-chaotic, individual-different,
and source-dissimilar. (1) The property of neighbor-chaotic
refers to the sample’s neighbor labels being very inconsis-
tent, which measures the sample uncertainty through its en-
vironment. The Active Learning (AL) and Active DA meth-
ods, which rely on the miscalibrated model output [32] or
domain discrepancy, can’t identify these uncertain samples
in ASFDA. As shown in Fig. 1, the samples selected by our
method are more likely to fall into red blocks with label-
chaotic environments than BVSB [14]. (2) The property
of individual-different guarantees the diversity of selected
uncertain samples to improve the effectiveness of querying.
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(a) Initial pseudo-labels (b) BVSB [14] (c) CoreSet [36] (d) MHPL

Figure 1. Feature visualization for the source model with 5% actively labeled target data on the Cl→Pr task. Different colors in (a) represent
different classes of pseudo-labels by clustering. Blue blocks include easily-adaptive source-similar samples with label-clean neighbors that
can be learned well by SFDA methods. Red blocks include the hard-adaptive source-dissimilar samples with label-chaotic neighbors. In
(b), (c), and (d), the dark green indicates that the pseudo-label is consistent with the true label, and light blue indicates the opposite. The
red stars indicate the selected samples based on BVSB, CoreSet, and our MHPL.

Previous methods [32,36,38] ensure sample diversity across
the global target domain. However, they would select al-
ready well-aligned source-similar samples [32] that are less
informative for target adaptation as they can be learned by
SFDA methods [16, 44]. Fig. 1 illustrates that compared
with CoreSet [36], most samples selected by our method
are diverse in the source-dissimilar regions (red blocks). (3)
The informative samples should be source-dissimilar, as the
source-dissimilar samples are more representative of the tar-
get domain and need to be explored. Most Active DA meth-
ods [6, 40] ensure source-dissimilar samples based on mea-
suring the distribution discrepancy across domains, which
is unavailable in ASFDA due to unseen source data.

Concerning the exploitation of selected samples, most
methods of AL [10, 34, 36], Active DA [6, 32, 40, 51], and
ELPT [24] deem them as ordinary labeled samples and use
standard supervised losses to learn them. However, the
number of selected samples is so tiny in ASFDA that they
occupy a small region of the target domain. With standard
supervised losses, the model cannot be well generalized to
the entire target domain, leading to poor generalization.

We propose the Minimum Happy Points Learning
(MHPL) to explore and exploit the informative MH points.
First, to measure the sample uncertainty, we propose a novel
uncertainty metric, neighbor environment uncertainty, that
is based on the purity and affinity characteristics of neigh-
bor samples. Then, to guarantee the individual difference,
we propose neighbor diversity relaxation based on perform-
ing relaxed selection among neighbors. Furthermore, the
source-dissimilar characteristic of samples is maintained by
our proposed one-shot querying. We select target samples
at once based on the source model, as the source model
without fine-tuning can better describe the distribution dis-
crepancy across domains and the source-dissimilar samples
are more likely to be explored. In addition, the selected
samples are fully exploited by a new-designed neighbor fo-
cal loss, which assigns the weighted neighbor purity to the
cross-entropy loss of MH points to make the model focus
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Figure 2. The comparison of ASFDA baselines (SHOT [25] + *, *
denotes the active strategy), ELPT, and our MHPL with 5% active
labeled target samples on Ar→Cl in the Office-Home.

and learn more about them. As shown in Fig. 2, our MHPL
significantly outperforms the ASFDA baselines, i.e., an ef-
fective SFDA method (SHOT) + AL strategies, and the ex-
isting state-of-the-art ASFDA approach, ELPT [24].

Our contributions can be summarized as follows: (1) We
discover and define the most informative active samples,
Minimum Happy (MH) points for ASFDA; (2) We propose
a novel MHPL framework to explore and exploit the MH
points with the neighbor environment uncertainty, neighbor
diversity relaxation, one-shot querying, and neighbor focal
loss; (3) Extensive experiments verify that MHPL surpasses
state-of-the-art methods.

2. Related Work

Domain Adaptation (DA) aims to transfer the knowl-
edge from amounts of labeled source data to the unlabeled
target domain. Most DA works attempt to align the fea-
ture distributions across domains with moment matching
[28, 30] or adversarial learning [7, 29]. Recently, semi-
supervised DA [13, 15] and few-shot DA [42] have verified
that utilizing a few labeled target data is helpful to perfor-
mance benefits. However, the success of the above methods
depends on the amount of annotated source data, which is
unrealistic and unpractical in privacy-persevering scenarios.
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Source Free Domain Adaptation (SFDA) has been in-
troduced recently to relax the dependence on the source
data. Existing SFDA works have made a great effort based
on two categories of methods: i.e., source model explo-
ration and data generation, while they face the performance
bottleneck with limited performance gains. The works
based on source model exploration, SHOT [25], HCL [12],
NRC [53], and A2Net [50], aim to utilize the potential dis-
tribution information in the given model. However, these
methods cannot achieve strong positive transfer without
more than 1% improvement over the initial SHOT [25] on
Office-Home. Another line of work based on data gener-
ation, MA [22], and CPGA [33], intends to generate the
source or target data to obtain supervised information, cost-
ing amounts of time and resources. But these works also
perform worse as the correct samples or prototypes are dif-
ficult to generate. Hypothesis Transfer Learning (HTL)
[1, 21] aims to transfer knowledge using source hypotheses
and limited randomly labeled target data without the source
data. However, randomly selecting target data to be labeled
by experts would be inefficient. Active source free domain
adaptation (ASFDA) aims to break through the performance
bottleneck with a few actively labeled target data. As the
first ASFDA work, ELPT [24] failed to explore and exploit
informative samples, resulting in poor performance.

Active Learning (AL) aims to obtain a satisfactory
model at the cost of a limited annotation budget. Existing
AL methods are mainly based on two categories: (1) Uncer-
tainty, e.g., Entropy [46]; (2) Diversity, e.g., CoreSet [36].
However, neither method is suitable for domain adaptation
[4, 50]. Recently, most Active DA works have introduced
active learning and identified active samples into domain
adaptation. Utilizing a domain discriminator, AADA [40]
and TQS [6] aim to explore the source-dissimilar samples.
EADA [51] determines the active samples based on the dis-
crepancy of free energy across domains. In addition, Clue
[32] identifies active samples that are uncertain with high
entropy and diverse in feature space. Due to domain shift
and unavailable source data, it is impossible to directly ap-
ply the existing AL and Active DA criteria to ASFDA.

3. Minimum Happy Points Learning
Notation. In ASFDA, we can access a source model

hs : Xs → Ys well trained on the source data and an unla-
beled target domain Dt = {xi}nt

i=1 from different distribu-
tions. We denote m = ρnt as the number of selected target
samples for querying, m≪ nt, and ρ as the ratio of active
samples. Further, we denote the small selected labeled tar-
get data by DL

t and the unlabeled target data by DU
t . Our

method is based on a two-part network: a feature extractor
f and a classifier g. The feature is denoted as zi = f(xi).
The goal of ASFDA is to obtain a satisfactory target model
ht = gt(ft(x)) with the active samples and source model.

3.1. Minimum Happy Points

We find the best informative samples for ASFDA are
Minimum Happy points (MH points) that have the char-
acteristics of neighbor-chaotic, individual-different, and
source-dissimilar at the same time.

(1) Neighbor-chaotic samples refer to uncertain ones
with label-chaotic neighbors. Meanwhile, their neighbors
in a noisy environment are heavily uncertain. Annotating
these samples can not only achieve self-correction but also
guide the learning of their confusing neighbors, bringing
significant performance gains. Further, the sample with
chaotic neighbors lies potentially in the boundary of multi-
ple classes, so learning them would promote accurate clas-
sification boundaries. Fig. 1 shows that MHPL explores
more samples (red blocks) with label-chaotic neighbors
than BVSB [14] because BVSB based solely on model un-
certainty can only measure the self-uncertainty of samples.

(2) Individual-different samples refer to diverse ones
dissimilar to each other in selected uncertain samples.
MHPL can maintain local diversity based on uncertain
samples that is better than the global diversity as Coreset
does. Because Coreset would explore already well-aligned
source-similar samples or worthless outliers, while MHPL
does not (see Fig. 1).

(3) Source-dissimilar samples refer to those that are bi-
ased toward the target distribution. Following the covari-
ate shift assumption [5], the target data Dt can be divided
into easily-adaptive source-similar instances Ds

t and hard-
adaptive source-dissimilar instances Dt

t . Selecting samples
from Ds

t would lead to limited performance gains on the tar-
get domain since SFDA methods already learn Ds

t [16, 44].
As shown in Fig. 1, the samples selected by BVSB have
more chances to fall in the regions of source-similar sam-
ples (blue blocks), while the samples selected by our MHPL
are mostly source-dissimilar (red blocks).

3.2. Minimum Happy Points Exploration

As shown in Fig. 3, we propose the neighbor environ-
ment uncertainty, neighbor diversity relaxation, and one-
shot querying to explore the MH points.

Neighbor Environment Uncertainty. Instead of rely-
ing heavily on the self-uncertainty of target samples, the
neighbor environment uncertainty evaluates target sample
uncertainty by measuring the neighbor environments they
are in. Given a target sample x, its neighbor environment
uncertainty NEU(x) is defined by multiplying the neighbor
purity NP(x) and the neighbor affinity NA(x):

NEU(x) = NP(x) ∗ NA(x) . (1)

Note that NP(x) ≥ 0 and 0 ≤ NA(x) ≤ 1. A sample with
a high value of NEU would have noisy and close neighbors,
satisfying the neighbor-chaotic characteristic of MH points.
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Figure 3. The framework of Minimum Happy Points Learning (MHPL). The informative active samples are explored by neighbor environ-
ment uncertainty, neighbor diversity relaxation and one-shot querying, and then are exploited by our neighbor focal loss.

Next, we first define the concept of neighbor and then intro-
duce the neighbor purity and the neighbor affinity, orderly.

Based on the feature space F = {z1, z2, .., znt
} of target

data and the cosine similarity measurement [25], we define
the samples that are close to x in the feature space as the
neighbors of x:

SN (x) = {N1, ..., Nq}, and SY
N (x) = {YN1 , ..., YNq} ,

(2)
where q denotes the number of neighbors, SN represents the
neighbor sample space of x, and SY

N represents the neighbor
pseudo-label space of x. The pseudo-labels of samples are
obtained by deep clustering [25]. YNq

denotes the pseudo-
label of the neighbor sample Nq .

Intuitively, if the neighbor labels of a sample are not con-
sistent and the distance between the sample and its neigh-
bors is very close in the feature space, the sample that seems
to violate the clustering assumption [55] would have great
uncertainty. Based on this intuitive insight, we design the
neighbor purity and neighbor affinity as follows.

Neighbor purity describes the chaotic degree of neigh-
bor labels around a sample. For calculating the neighbor
purity NP(x), we first establish the neighbor class probabil-
ity distribution space Sp

N (x):

Sp
N (x) = {p1, ..., pk} , (3)

where pk represents the proportion of samples labeled as
class k in q neighbors. Take samples a and b in Fig. 3 as ex-
amples, Sp

N (a) = {0.3, 0.4, 0.3}, Sp
N (b) = {0.2, 0.1, 0.7}.

Then the neighbor purity of sample x is measured by the
neighbor entropy:

NP(x) = −
∑K

k=1
pklogpk, s.t. pk ∈ Sp

N (x) . (4)

The sample with a high value of NP has label-noisy neigh-
bors, and such a sample is more likely to be identified and
selected as an uncertain one.

Neighbor affinity describes how close a sample is to its
neighbors. To measure the degree of affinity, we first define
the neighbor similarity space Ss

N for each sample by

Ss
N (x) = {SN1

, ..., SNq
} , (5)

where SN1 represents the cosine similarity between x and
its neighbor N1. Further, the neighbor affinity is measured
by the average similarity between x and its neighbors:

NA(x) =
SN1 + ...+ SNq

q
, s.t. SNq

∈ Ss
N (x) . (6)

The lower the neighbor affinity, the further the sample to
its neighbors. Utilizing NA, the samples selected are less
likely to be outliers. Meanwhile, the sample has noisy and
close neighbors with considerable uncertainty. Taking Fig.
3 as an example, the sample a is more likely to be selected
as a neighbor-chaotic MH point.

The advantages of NEU are two-fold. Firstly, previ-
ous SFDA works [53, 54] have proved that the target sam-
ples’ deep features extracted by the source model can still
form clean clusters under domain shift to a certain extent.
Fig. 1 shows the visualization of target features and further
verifies this phenomenon. Different from SFDA methods
[53, 54] that encourage neighbor label consistency, NEU
measures the sample uncertainty from the neighbor label in-
consistency, which would be better than the strategies that
rely solely on the miscalibrated uncertainty of model pre-
dictions. Secondly, NEU has the advantages of ensemble
learning [55] and lets numerous neighbor crowds calibrate
the individual uncertainty and improve the fault tolerance of
target sample selection.

Neighbor Diversity Relaxation. In contrast to existing
methods [32,38] that maintain sample diversity globally and
may select the source-similar and uninformative samples,
neighbor diversity relaxation (NDR) guarantees individual
differences in neighbor-chaotic samples locally. In partic-
ular, NDR performs neighbor relaxation on candidate sam-
ples with high neighbor environment uncertainty. The main
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Algorithm 1 Neighbor Diversity Relaxation.
Require: DL

t =∅, Dt, m, and o;
1: Sort the samples in Dt in reverse order by the value of

NEU, and let i = 0;
2: while length(DL

t ) ≤m do
3: Select the candidate sample xi and obtain its nearest

neighbor set SN (xi)
o,

4: if SN (xi)
o ∩ DL

t = ∅ then DL
t ← xi,

5: else Skip the selection of sample xi,
6: end while

procedure of NDR is shown in algorithm 1. For a candi-
date sample xi with a high NEU(xi), we first evaluate its
nearest set of neighbors SN (xi)

o (o denotes the number of
neighbors) before putting it in DL

t . If any neighbor in the
SN (xi)

o has been put in the DL
t , then xi has no chance

of being selected for expert annotation. Thus, redundant
samples with similar features would have few chances to be
chosen, ensuring diversity in neighbor-chaotic samples.

One-shot Querying. In order to explore source-
dissimilar samples, we perform one-shot querying, select-
ing samples at once according to the raw source model.
The reasons are two-fold. For one thing, without the source
data, we can measure the domain discrepancy by observ-
ing how the target data behaves on the source model, as
the source model without fine-tuning can better describe the
distribution discrepancy across domains. The samples that
can be easily classified by the source model are commonly
source-similar instances, which mainly occur in label-clean
clusters [41, 53]. Otherwise, the samples with label-chaotic
neighbors are severely misclassified and source-dissimilar
instances, which can be effectively explored by our pro-
posed criterion. For another, as the training model is gradu-
ally biased toward the target domain, it is difficult to deter-
mine if the samples are source-similar or source-dissimilar.

3.3. Minimum Happy Points Exploitation

Neighbor Focal Loss is designed to make the model fo-
cus more on informative MH points to ensure the general-
ization of the target domain. NF loss is inspired by, but not
the same as focal loss [26]. For one side, focal loss aims
to alleviate the overfitting problem of cross-entropy loss for
imbalanced object detection datasets, while NF loss is pro-
posed to exploit the MH points thoroughly. For another, fo-
cal loss assigns the weights from the miscalibrated model’s
beliefs to hard samples, while NF loss assigns the neighbor
purity and a larger weight α to the MH points:

LNF (ht;DL
t ) = −Ex∈DL

t

∑K

k=1
αNP(x)lklog(δk(ht(x))) ,

(7)
where δk(b) = exp(bk)∑

i exp(bi)
denotes the k-th element in the

softmax output of a K-dimensional vector b, and lk is ‘1’

Algorithm 2 Minimum Happy Points Learning.
Require: source model hs, target data Dt, labeled target set
DL

t = ∅, maximum number of epochs E, trade-off parame-
ters α, β, m;

1: Initialize the target model ht with hs and obtain
pseudo-labels of target data based clustering;

2: ∀x ∈ Dt, compute NP(x) and NA(x) to serve as
NEU(x) with Eq. (1 - 6);

3: DL
t ← select m samples with NEU and algorithm 1;

4: Let epoch = 1, iter num = 0;
5: while epoch ≤ E do
6: Obtain pseudo-labels of DU

t from deep clustering;
7: while iter num < nb do
8: Calculate neighbor focal loss, entropy loss and KL

divergence with Eq. (7 - 10);
9: Update model ht with Eq. (11).

10: end while
11: end while

for the correct class and ‘0’ for the rest.
Meanwhile, the NF loss assigns a smaller weight β to the

rest target samples DU
t . NF loss uses their pseudo-labels

from clustering and makes the model not tilt toward them
during training:

LNF (ht;DU
t ) = −Ex∈DU

t

∑K

k=1
βlklog(δk(ht(x))) .

(8)
In summary, NF loss is defined as:

LNF (ht;Dt) = LNF (ht;DL
t ) + LNF (ht;DU

t ) . (9)

For one thing, NF loss utilizes all the target data and pre-
vents learning active samples from being influenced by
samples with wrong pseudo-labels, ensuring the target do-
main’s generalization. For another, assigning neighbor pu-
rity could penalize the mistakes on MH points that are more
important than ordinary samples for generalization.

Entropy loss and KL divergence are introduced to guar-
antee the unambiguous and balanced classes [3, 11], which
has been widely used in clustering [8, 18], and several DA
works [12, 25, 37, 41, 48, 49]:

Lent(ht;Dt) = −Ex∈Dt

∑K

k=1
δk(ht(x))log(δk(ht(x))) ,

Ldiv(ht;Dt) = −Ex∈Dt

∑K

k=1
KL(p̂k||qk),

(10)
where q{k=1,...,K} = 1

K , p̂k = 1
nt

∑
δ(ht(x))

(k) is the
mean prediction of the k-th target data.

Overall, the final objective can be stated as

L = LNF (ht;Dt) + Lent(ht;Dt) + Ldiv(ht;Dt) .
(11)

To conclude, the workflow of MHPL is illustrated in Al-
gorithm 2.
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Table 1. Accuracy (%) on Office-Home (ResNet50) under different settings with 5% labeled target samples (”SF” in tables denotes source
data free, i.e., adaptation without source data).

Categories Method SF Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg

None Source-only ✓ 45.5 68.4 75.2 53.4 63.7 65.6 52.4 41.0 73.6 65.9 46.3 78.2 60.8

SFDA

CPGA [33] ✓ 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
SHOT [25] ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
NRC [53] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2

A2Net [50] ✓ 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8

Active DA

AADA [40] × 56.6 78.1 79.0 58.5 72.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3
TQS [6] × 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.3 72.5

Clue [32] × 58.0 79.3 80.9 68.8 77.5 76.7 66.3 57.9 81.4 75.6 60.8 86.3 72.5
EADA [51] × 63.6 84.4 83.5 70.7 83.7 80.5 73.0 63.5 85.2 79.4 65.4 88.6 76.7

ASFDA

Base ✓ 57.2 78.5 81.5 68.5 79.1 78.6 67.5 56.3 82.2 73.7 58.5 83.6 72.1
Random ✓ 63.8 81.4 83.9 71.3 82.2 81.4 68.8 62.4 83.3 76.1 63.8 85.8 75.2

CTC ✓ 60.8 78.7 82.2 69.3 79.2 79.8 68.6 59.4 82.2 74.6 61.7 84.4 73.4
CoreSet [36] ✓ 61.8 81.8 83.3 71.1 82.9 81.6 70.7 60.5 84.7 76.1 61.7 86.1 75.2
BADGE [2] ✓ 62.4 82.7 83.9 71.5 83.0 81.8 71.2 62.7 84.6 76.2 62.9 87.8 75.9
Entropy [46] ✓ 65.0 84.0 85.9 71.8 83.8 82.6 70.7 63.8 85.1 77.8 64.1 88.1 76.9
BVSB [14] ✓ 64.8 84.4 85.5 72.0 83.2 83.4 70.4 63.9 85.0 77.5 65.0 88.1 76.9

LC [10] ✓ 65.0 84.0 85.4 72.1 83.0 82.8 71.0 64.9 85.1 78.0 64.8 87.9 77.0
ELPT [24] ✓ 65.3 84.1 84.9 72.9 84.4 82.8 69.8 63.3 86.1 76.2 65.6 89.1 77.0

MHPL ✓ 69.0 85.7 86.4 72.6 87.4 84.2 73.3 67.4 86.4 80.1 69.6 89.8 79.3

4. Experiments
Benchmarks. We adopt three benchmark datasets.

Office-31 [35] is a small-scale DA dataset with 31 classes
and 3 domains: Amazon, Dslr, and Webcom. Office-Home
[45] is a more challenging DA dataset with 65 classes and
4 domains: Artistic images, Clip Art images, Product im-
ages, and Real-world images. VisDA-2017 [31] is a large
simulation-to-real dataset with 12 classes, its source domain
consists of 152 thousand images and its target domain has
55 thousand real images.

Baselines. We construct four types of methods as base-
lines. (i) Source free domain adaptation: SHOT [25], MA
[22], HCL [12], CPGA [33], NRC [53], and A2Net [50].
(ii) Active learning: (1) Random: random samples. (2) En-
tropy [46]: samples with highest entropy. (3) BVSB [14]:
samples with the smallest difference between top-2 class
probabilities. (4) LC (least confidence) [10]: samples with
smallest probability. (5) CoreSet [36]: samples selected
by a set-cover problem. (6) CTC: samples that are clos-
est to clustering centers. (7) BADGE [2]: construct diverse
batches by running KMeans++, incorporating model uncer-
tainty and diversity. (iii) Active DA: AADA [40], TQS [6],
CLUE [32], and EADA [51]. (iv) ASFDA: ELPT [24].

Implementation. We report the main results upon the
backbone of ResNet-50 [9] for Office-Home and Office-31,
as well as ResNet-101 for VisDA-2017. We adopt the same
network architecture as SHOT [25]. We conduct SGD with
momentum 0.9 and batch size of 64 for all datasets. The
learning rate is set to 1e-2 for Office-31 and Office-Home,
and 1e-3 for VisDA-2017. For the number of neighbors q,
we set nine for Office-31, twenty for Office-Home, and five
for VisDA-2017. Further, we set α = 3, β = 0.3, and o =
5 for all datasets. More implementation details, full results
on other backbones, and sensitivity analysis on the hyper-

parameters are added in the supplementary materials.

4.1. Main Results

Results on object recognition. Our method MHPL
significantly outperforms existing SFDA methods, success-
fully breaking through the performance bottleneck of SFDA
with limited annotations. Firstly, MHPL achieves state-
of-the-art in the ASFDA setting. As shown in Table 1,
MHPL surpasses on average by 6.5% over the state-of-the-
art SFDA method A2Net on Office-Home with only 5% of
labeled target data. Especially in challenging tasks, MHPL
achieves significant improvements, e.g., the accuracy of
MHPL is 10.6% and 11.2% higher than that of A2Net on
tasks Ar→Cl and Pr→Cl, respectively. As shown in Ta-
ble 2, the accuracy of MHPL also remarkably outperforms
all SFDA baselines on VisDA-2017 and Office-31. Sec-
ondly, MHPL can better explore and exploit MH points and
maximize the performance gains compared to existing ac-
tive strategies, and ELPT [24]. As shown in Tables 1, 2,
MHPL outperforms all ASFDA baselines on most challeng-
ing tasks. Finally, as shown in Tables 1, 2, 3, it is fascinat-
ing that MHPL can outperform all active domain adapta-
tion methods without accessing the source data. In light of
this phenomenon, instead of focusing on the source-similar
samples that can be easily learned, exploring the distribu-
tion of source-dissimilar MH points in the target domain
might be more effective, thus further enhancing the gener-
alization performance of the target model.

4.2. Analysis

Comparison of MH points and LC points. To further
analyze the effectiveness of MH points, we compare the
performance gains when fine-tuning the target model with
MH points and LC points selected using the state-of-the-
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Table 2. Accuracy (%) on VisDA-2017 (ResNet-101) and Office-31 (ResNet-50) with 5% labeled target samples (”SF” in tables denotes
source data free, i.e., adaptation without source data).

Categories Method SF VisD A-2017 A→D A→W D→A D→W W→A W→D Avg

None Source-only ✓ 50.0 79.3 76.6 60.5 96.6 63.8 98.8 79.3

SFDA

SHOT [25] ✓ 82.4 94.0 90.1 74.7 98.4 74.3 99.9 88.6
CPGA [33] ✓ 86.0 94.4 94.1 76.0 98.4 76.6 99.8 89.9
HCL [12] ✓ 83.5 90.8 91.3 72.7 98.2 72.7 100.0 87.6
NRC [53] ✓ 85.9 96.0 90.8 75.3 99.0 75.0 100.0 89.4

A2Net [50] ✓ 84.3 94.5 94.0 76.7 99.2 76.1 100.0 90.1

Active DA

AADA [40] × - 89.2 87.3 78.2 99.5 78.7 100.0 88.8
TQS [6] × - 92.8 92.2 80.6 100.0 80.4 100.0 91.1
Clue [32] × - 92.0 87.3 79.0 99.2 79.6 99.8 89.5

EADA [51] × - 97.7 96.6 82.1 100.0 82.8 100.0 93.2

ASFDA

Base ✓ 83.3 93.8 91.5 76.0 99.0 74.7 100.0 89.2
Random ✓ 85.1 94.0 94.7 77.7 98.9 77.6 100.0 90.5

CTC ✓ 84.0 93.8 90.8 77.3 99.0 76.2 100.0 89.5
CoreSet [36] ✓ 85.9 93.4 92.5 78.4 99.1 78.2 100.0 90.3
BADGE [2] ✓ 86.0 94.2 93.5 79.2 99.1 79.2 100.0 90.9
Entropy [46] ✓ 86.7 95.6 95.4 80.3 99.1 80.1 100.0 91.8
BVSB [14] ✓ 86.5 96.4 95.7 79.2 99.1 80.5 100.0 91.9

LC [10] ✓ 86.7 95.6 95.4 80.0 99.1 80.6 100.0 91.8
ELPT [24] ✓ 89.2 98.0 97.2 81.2 99.4 80.7 100.0 92.8

MHPL ✓ 91.3 97.8 96.7 82.5 99.3 82.6 100.0 93.2

Table 3. Accuracy (%) on VisDA-2017 (ResNet-50) with 5% labeled target samples.

Method AADA [40] TQS [6] Clue [32] EADA [51] MHPL

Acc (%) 80.8 ± 0.4 83.1 ± 0.4 85.2 ± 0.4 88.3 ± 0.1 89.6 ± 0.1

art LC [10] in several challenging tasks on Office-Home.
As shown in Table 4, identifying 5% of active samples and
labeling them greatly improves the source models with dif-
ferent networks. Furthermore, MH points selected by our
method provide more information than LC points and guar-
antee better generalization to the target domain.

Table 4. Accuracy (%) on challenging tasks under different net-
works with 5% labeled target samples on Office-home.

Networks active samples Ar→Cl Cl→Ar Cl→Pr Pr→Cl Avg

VGG16
Source-only 35.2 48.0 60.5 35.4 44.8
LC points 46.2 62.1 75.7 48.4 58.1
MH Points 49.6 63.0 78.0 50.4 60.3

ResNet50
Source-only 45.5 53.4 63.7 46.3 52.2
LC points 58.7 69.0 80.7 60.9 67.3
MH Points 60.3 69.9 83.8 61.9 69.0

Ablation analysis. To investigate the efficacy of key
components of our criterion for selecting minimum happy
points, we firstly conduct an ablation study with the follow-
ing variants on Ar→Cl in various sample selection ratios
from 1% to 10%: (i) MHPL w/o NEU (all sample uncer-
tainties are randomly assigned); (ii) MHPL w/o NDR; (iii)
MHPL w/o OSQ (one-shot querying, the samples are se-
lected in the fifth epoch of model training). As shown in
Fig. 4(a), the entire method outperforms other variants in
various selection ratios, indicating the necessity of each key
component. Especially when the ratio of active samples is
larger, the performance improvement of their combination
is more obvious. Next, we analyze each of them in detail.
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Figure 4. Ablation study on key components of MHPL and NEU
at different selection ratios.

• Neighbor environment uncertainty (NEU). We con-
duct an ablation study to verify the effectiveness of
neighbor purity and neighbor affinity in NEU. As
shown in Fig. 4(b), MHPL with NEU performs bet-
ter than its individual parts in various selection ratios.

• Neighbor diversity relaxation (NDR). As shown in
Fig. 5, the samples selected with NDR have more di-
versity among the high overlapping regions.

• One-shot querying (OSQ). To verify the effective-
ness of one-shot querying, we compare the effect with
samples selected at different epochs of model train-
ing. As shown in Fig. 6(a), the abscissa indicates the
epoch of model training for sample selection, where
epoch zero represents the source model. It is observed
that the samples selected by the source model obtain
larger model performance gains on Ar→Cl. Addition-
ally, when sample selection is made on larger epochs,
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(a) Ar→Cl without NDR (b) Ar→Cl

Figure 5. T-SNE visualization of representations with and without
NDR in Ar→Cl on Office-Home.
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Figure 6. Ablation study on OSQ and random selection.

the model performance is significantly degraded, as
the trained model cannot correctly reflect the distribu-
tion discrepancy, resulting in difficulty exploring the
source-dissimilar samples.

Effect of MH points. Given that MHPL is based on
strong information maximization loss [25] and new pro-
posed neighbor focal loss, we conduct a necessary exper-
iment: replace the MH points with randomly selected sam-
ples of equal amount in all objective Eq. (9 - 11) on Ar→Cl.
As shown in Fig. 6(b), the model gains brought from MH
points are always much higher than random samples.

Effect on learning neighbors. In addition, we evalu-
ate the role of selected samples in learning their neighbors’
pseudo-labels using MHPL and state-of-the-art LC [10].
Fig. 7 shows the accuracy of the selected sample’s ini-
tial neighbors before (dark color) and after training (light
color). After training, the accuracy of initial neighbors im-
proves more significantly than it did before training, demon-
strating that selected samples have better guidance on their
confusing neighbors. The lighter the color, the better the
performance. It is obvious that MHPL is better at explor-
ing neighbors than LC in all tasks, especially in challenging
tasks Ar→Cl, Pr→Cl, and Re→Cl.

Ablation on loss functions. To demonstrate the effect
of loss functions in Eq. (11), we perform ablation studies
on Ar→Cl at various sample selection ratios. As shown
in Fig. 8(a), the effect of NF loss increases as more active
samples are chosen. Meanwhile, entropy loss and KL diver-
gence also promote model learning. After removing NF loss
(yellow), the accuracy of different selection ratios remains
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Figure 7. Mean accuracy of initial neighbors before and after train-
ing on Office-Home.
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Figure 8. Ablation studies on loss functions.

the same because the selected samples do not participate in
training, and the model is always trained using entropy loss
and KL divergence. To verify the versatility of NF loss, we
integrate it into other sample selection strategies. For in-
stance, we assign the weight, αNP, to the samples selected
by entropy [10], and the value of NP is calculated by en-
tropy [46]. As shown in Fig. 8(b), the accuracy with αNP
(green) is always better than entropy with standard cross-
entropy loss (blue) on Ar→Cl, while their results are still
lower than our MHPL (red).

5. Conclusion
This paper investigates the active source free domain

adaptation (ASFDA), which can break through the perfor-
mance bottleneck of SFDA with the minimum cost of data
annotation in privacy-preserving scenarios. We first find
that the samples that satisfy the properties of neighbor-
chaotic, individual-different, and source-dissimilar are the
most informative samples and define them as the minimum
happy (MH) points, but the existing methods are difficult
to explore and exploit them. We then design the minimum
happy points learning to explore and exploit the MH points
well and improve the model performance effectively.
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