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Abstract

Existing multi-view representation learning methods typi-
cally follow a specific-to-uniform pipeline, extracting latent
features from each view and then fusing or aligning them
to obtain the unified object representation. However, the
manually pre-specified fusion functions and aligning criteria
could potentially degrade the quality of the derived represen-
tation. To overcome them, we propose a novel uniform-to-
specific multi-view learning framework from a meta-learning
perspective, where the unified representation no longer in-
volves manual manipulation but is automatically derived
from a meta-learner named MetaViewer. Specifically, we
formulated the extraction and fusion of view-specific latent
features as a nested optimization problem and solved it by us-
ing a bi-level optimization scheme. In this way, MetaViewer
automatically fuses view-specific features into a unified one
and learns the optimal fusion scheme by observing recon-
struction processes from the unified to the specific over all
views. Extensive experimental results in downstream classi-
fication and clustering tasks demonstrate the efficiency and
effectiveness of the proposed method.

1. Introduction

Multi-view representation learning aims to learn a uni-
fied representation of the entity from its multiple observable
views for the benefit of downstream tasks [35, 43, 58]. Each
view acquired by different sensors or sources contains both
view-shared consistency information and view-specific in-
formation [8]. The view-specific part further consists of
complementary and redundant components, where the for-
mer can be considered as a supplement to the consistency
information, while the latter is view-private and may be
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Figure 1. (a), (b) and (c) show three multi-view learning frame-
works following the specific-to-uniform pipeline, where the unified
representation is obtained by fusing or concatenating view-specific
features. (d) illustrates our uniform-to-specific manner, where a
meta-learner learns to fusion by observing reconstruction from uni-
fied representation to specific views.

adverse for the unified representation [16]. Therefore, a
high-quality representation is required to retain the consis-
tency and complementary information, as well as filter out
the view-private redundant ones [51].

Given the data containing two views, x1 and x2, prevail-
ing multi-view learning methods typically follow a specific-
to-uniform pipeline and can be roughly characterized as:

H := f(x1;Wf ) ◦ g(x2;Wg), (1)

where f and g are encoding (or embedding [27]) functions
that map the original view data into the corresponding latent
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features with the trainable parameters Wf and Wg. These
latent features are subsequently aggregated into the unified
representation H using the designed aggregation operator
◦. With different aggregation strategies, existing approaches
can be further subdivided into the joint, alignment, and a
combined share-specific (S&S) representation [22, 26].

Fig. 1 (a) - (c) show the above three branches of the
specific-to-uniform framework. Joint representation focuses
on the integration of complementary information by directly
fusing latent features, where the ◦ is represented as fusion
strategies, such as graph-based modules [33], neural net-
works [10], or other elaborate functions [7, 34]. While align-
ment representation seeks alignment between view-specific
features to retain consistency information and specifies ◦ as
the alignment operator, measured by distance [11], correla-
tion [24, 47], or similarity [25, 38, 39]. The aligned features
can be concatenated as the unified representation for down-
stream tasks. As a trade-off strategy, S&S representation ex-
plicitly distinguishes latent features into shared and specific
representations and only aligns the shared part [20, 30, 53].

Despite demonstrating promising results, the specific-to-
uniform framework inherently suffers from potential risks
in the following two aspects: (1) Compared with the data-
oriented fusion rules, manually pre-specified rules are de-
signed to compute the unified representation by concatenat-
ing or fusing latent features, restricting its extensibility in
complex real-world applications. (2) Even if we can find
a well-performing fusion scheme, the sequential training
manner limits the model to constrain the various component
information separately. For example, it is difficult to automat-
ically separate out view-private redundant information from
the feature level [22, 37]. Recent researches have attempted
to address the second issue by decomposing latent features
using matrix factorization [61] or hierarchical feature model-
ing [51], but still cannot avoid manually pre-specified fusion
or even decomposition strategies.

In this work, we provide a new meta-learning perspec-
tive for multi-view representation learning and propose a
novel uniform-to-specific framework to address these poten-
tial risks. Fig. 1 (d) shows the overall schematic. In contrast
to the specific-to-uniform pipeline, the unified representation
no longer involves manual manipulation but is automatically
derived from a meta-learner named MetaViewer. To train the
MetaViewer, we first decouple the learning of view-specific
latent features and unified meta representation. These two
learning processes can then be formulated as a nested opti-
mization problem and eventually solved by a bi-level opti-
mization scheme. In detail, MetaViewer fuses view-specific
features into a unified one at the outer level and learns the op-
timal fusion scheme by observing reconstruction processes
from the unified to the specific over all views at the inner
level. In addition, our uniform-to-specific framework is com-
patible with most existing objective functions and pre-text

tasks to cope with complex real-world scenarios. Extensive
experiments validate that MetaViewer achieves comparable
performance to the state-of-the-art methods in downstream
clustering and classification tasks. The core contributions of
this work are as follows.

1. We provide a new meta-learning perspective and de-
velop a novel uniform-to-specific framework to learn
a unified multi-view representation. To the best of our
knowledge, it could be the first meta-learning-based
work in multi-view representation learning community.

2. We propose MetaViewer, a meta-learner that formu-
lates the modeling of view-specific features and unified
representation as a nested bi-level optimization and
ultimately meta-learns a data-driven optimal fusion.

3. Extensive experiments on multiple benchmarks validate
that our MetaViewer achieves comparable performance
to the existing methods in two downstream tasks.

2. Related Work
2.1. Multi-view representation learning

Representation learning is not a new topic and plays a
critical role in numerous downstream tasks [29, 36, 49]. This
work focuses on multi-view representation in unsupervised
deep learning scope [56]. Related studies can be roughly
summarized into two categories [54]. One is the deep ex-
tension of traditional methods, where representative ones
include deep canonical correlation analysis (DCCA) and its
variants [44,57]. DCCA [2] intends to discover the nonlinear
mapping for two views to a common space in which their
correlations are maximally preserved. These methods benefit
from a sound theoretical foundation, but also usually have
strict restrictions on the number and form of views.

Another alternative is deep multi-view learning [5, 32].
Early deep-based approaches attempted to design effective
architectures for multiple views, such as CNN-based [12,42]
and GAN-based models [18, 52]. Recent works resort to
leveraging mutual or comparative information to derive the
constraint for parameters [3,27,55]. Most of them follow the
pipeline from view-specific features to unified representation.
In contrast, our MetaViewer learns by observing the learning
from the uniform to the specific. The most related work is
AE2-Nets [60], which treats the unified representation as
a set of trainable parameters that are optimized during the
degradation process of each view. The essential difference
is that we learn the data-oriented fusion strategy rather than
optimizing the unified representation itself.

2.2. Meta-learning

Optimization-based meta-learning is a classic application
of bi-level optimization designed to learn task-level knowl-
edge to quickly handle new tasks [19, 21]. A typical work,
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Figure 2. The overall framework of MetaViewer, contains (a) the meta-split of multi-view data and three modules: (b) embedding module,
(c) representation module, and (d) self-supervised module. These modules are trained with a bi-level optimization. Inner-level (dark gray
arrows) learns the view-specific reconstruction on the support set, and outer-level (red arrows) updates the entire model to learn the fusion
scheme and the unified representation H for downstream tasks by validating on the query set.

MAML [13], learns a set of initialization parameters to solve
different tasks with a few steps of updates. Similar meta
paradigm has been used to learn other manually designed
parts, such as the network structure [28], optimizer [62], and
even sample weight [40, 41, 48]. Similarly, we try to meta-
learn the fusion rule of multi-view features for a unified rep-
resentation. There also exist some works that consider both
meta-learning paradigms and multi-view data [14, 31, 45].
However, they are dedicated to exploiting the rich informa-
tion contained in multiple views to improve the performance
of the meta-learner in a few-shot or self-supervised scenario.
Instead, we train a meta-learner to derive high-quality shared
representations from multi-view data. To the best of our
knowledge, this could be the first work to learn multi-view
representation with a meta-learning paradigm.

3. MetaViewer
Given a set of unlabeled multi-view data, D = {xi ∈

Rdx}Ni=1, where N and superscript i are the number and
index of entity samples, respectively. Each sample xi =
{xi

1, x
i
2, . . . , x

i
v}Vv=1 contains V views, where subscript v is

the index of views. Our goal is to learn a unified, high-quality
representation H for each entity by observing these views
and filtering view-private information as much as possible.
The overall framework of our MetaViewer is shown in Fig.
2, including three main modules and a bi-level optimization
process. The outer-level trains a meta-learner to learn an
optimal fusion function and derive the unified representation
H , and the inner-level reconstructs original views from H
in a few update steps, which explicitly models and separates

view-private information and ensure the quality of the rep-
resentation. In the following subsections, we first introduce
the entire structure of the MetaViewer and then elaborate on
the bi-level optimization process.

3.1. The entire structure

Embedding module aims to transform heterogeneous
views into the latent feature space, where transformed view
embeddings have the same dimension as each other. To this
end, we conduct a view-specific embedding function fv for
each view, where v = 1, 2, . . . , V . Given the v-th view data
xv of the entity x, the corresponding embedding zv ∈ Rd

can be computed by

zv = fv(xv, θfv ), (2)

where fv is typically instantiated as a multi-layer neural
network with learnable parameters θfv .

Representation learning module maps the obtained em-
bedding to the view-specific or unified representation by
constructing a meta-learner m (i.e., MetaViewer). Note that
the two types of representations are both derived from the
same set of parameters, but at different learning stages (see
3.2). The view-specific representation is obtained at the
inner level, where MetaViewer receives the embedding of
the v-th view and outputs the corresponding representation
hv. In contrast, the unified representation H is learned by
MetaViewer from all view embeddings at the outer level
and is ultimately used for downstream tasks. Therefore, the
structure of MetaViewer should be flexible enough to meet
the two requirements above simultaneously. Specifically,
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MetaViewer is implemented as a channel-oriented 1-d con-
volutional layer (C-Conv) with a non-linear function (e.g.,
ReLU [17]), as shown in Fig. 2 (c).

On the one hand, at the outer level, we first concatenate
all view embeddings at the channel level, i.e., the number of
the channel in the concatenated embedding is equal to the
number of views, and then train the MetaViewer to learn the
fusion of cross-view information H ∈ Rdh by

H = m(zcat, ω), (3)

where zcat ∈ Rd×V indicates the concatenated embedding
and ω is the parameter of MetaViewer. On the other hand,
the inner-level initializes and trains MetaViewer to learning
the representation hv ∈ Rdh of the v-th view via

hv = mv(zv, ωv), (4)

where mv denotes the learner with the learnable parameter
ωv for handling the v-th view in the inner level, also known
as the base learner to avoid confusion. It is worth noting that
ωv is initialized by a subset of the MetaViewer parameters.

Self-supervised module provides effectively supervised
information for model training by constructing a series of pre-
text tasks1. These tasks serve as the heads of our framework.
Given the input z, the output s can be formalized as

s = t(z, θt), (5)

where t and θt are the network and its parameters involved
in pre-text tasks, respectively. Taking the reconstruction
head as an example, it achieves the reconstruction object
by re-mapping the representation back to the original view
space. In this case, the s := x̂v indicates the reconstruction
result for input xv, and t(·, θt) := tv(·, θtv ) is a multi-layer
neural network with the opposite structure to the embedding
module. More similar pre-text tasks have been studied in
previous works [55,57], and this is not the focus of this work.

3.2. Training via bi-level optimization

We now have the entire structure, which can be end-to-end
trained following the proposed uniform-to-specific pipeline
to derive the unified multi-view representation. The training
flowchart and step are shown in the top row in Fig. 3, where
the learning of view-private features and unified representa-
tion are formulated as a nested bi-level optimization problem.
Inner-level focus on independent training on a specific view,
which receives a given representation and reconstructs it to
each view. Outer-level updates the meta-learner to find the
optimal fusion rule through observing the training processes
across all views. This pipeline decouples the unified entity

1Constructing pre-text tasks is a classic strategy in self-supervised learn-
ing [1], which emphasizes the use of intrinsic properties within or between
data as ground-truth to provide supervised information.

representations from view-specific features and enables data-
driven fusion. Before the detailed description, we introduce
a split strategy for multi-view data in meta-learning style to
adapt the bi-level training.

Meta-split of multi-view data. Consider a batch multi-
view entity samples {Dbatch

v }Vv=1 from set D. We randomly
and proportionally divide it into two disjoint subsets, marked
as support set S = {Sv}Vv=1 and query set Q = {Qv}Vv=1,
respectively. As shown in 2 (a), support set is used in inner-
level for leaning view-specific information, so the sample
attributes in it could be ignored. In contrast, query set retains
both view and sample attributes for outer-level optimization.

Inner-level optimization. Without loss of generality,
take the inner-level update after the o-th outer-level opti-
mization as an example. Let ωo be the lasted parameters
of the MetaViewer, and θov = {θofv , θ

o
tv} denotes the lasted

parameters in embedding and self-supervised modules for
brevity. We first initial base learner from meta-learner, i.e.,
ω0
v = ωo, and make a copy of θov for θ̃v. Note that the

copy means gradients with respect to the θov will not be back-
propagated to θ̃v and vice versa. Thus, ω0

v and θ̃v form the
initial states of parameters in the inner-level optimization.
Suppose Lin

v is the loss function of the inner-level with re-
spect to the v-th view, the corresponding update goal is

ω∗
v(ω

o) = argminLin
v

(
ωv(ω

o), ϕ̃v;Sv

)
. (6)

Consider a gradient descent strategy (e.g., SGD [4]), we can
further write the update process of ωv:

ωi
v = ωi−1

v − β
∂Lin

v

∂ωi−1
v

, . . . , ω0
v = ωo, (7)

where β and i denote the learning rate and iterative step of
inner-level optimization, respectively.

Outer-level optimization. After several inner-level up-
dates, we obtain a set of optimal view-specific parameters
for the support set. Outer-level then updates the meta-learner,
embedding, and self-supervised modules by training on the
query set. With the loss function Lout, the outer-level opti-
mization goal is

ω∗, {θ∗v}Vv=1 = argminLout
(
{ω∗

v(ω), ϕv}Vv=1;Q
)
. (8)

By alternately optimizing Eq. 6 and Eq. 8, we end up with
the optimal meta-parameters ω∗ and a set of view-specific
parameters {θ∗v}Vv=1. Given a test sample xtest, the cor-
responding unified representation is derived by feeding it
sequentially into the embedding module and the meta-learner.
The overall framework of MetaViewer is shown in Alg. 1.

3.3. Specific-to-uniform versus uniform-to-specific

We discuss the difference between specific-to-uniform
and our uniform-to-specific pipeline through three aspects
shown in Fig. 3, including the overall flowchart, update steps,
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Algorithm 1 The framework of our MetaViewer.
Require: Training dataset D, meta parameters ω, base pa-
rameters {ωv}Vv=1, view-specific parameters {θv}Vv=1, the
number of views V , the iteration step in inner-level optimiza-
tion T .

1: Initialize ω, {θv}Vv=1;
2: while not done do
3: # Outer-level
4: Sample and meta-split a batch set from D:
5: {Dbatch

v }Vv=1 = {Sv}Vv=1 + {Qv}Vv=1.
6: for t = 1, . . . , T do
7: for v = 1, . . . , V do
8: # Inner-level
9: Initialize ωv = ω, θ̃v = θv;

10: Optimize ωv(ω) and θ̃v via Eq. 6.
11: end for
12: end for
13: Optimize ω and {ϕv}Vv=1 via Eq. 8.
14: end while

and key gradients. For clarity, we here slightly confuse the
notation and let θv and Lin

v correspond to the view-specific
parameters and loss functions in specific-to-uniform pipeline,
respectively. Similarly, ω and Lout denote the view-shared
parameters and loss functions, respectively. Let us start by
reviewing two branches in specific-to-uniform framework.

One-level methods is a classical branch in specific-to-
uniform framework, where parameters {θv}Vv=1 and ω are
simultaneously optimized by combining the functions Lin

v

and Lout.
Multi-level methods also follow the specific-to-uniform

framework, the difference is that they hierarchically learn
specific and shared features to avoid interference. That is,
parameters θv are updated at the low level by minimizing
the Lin

v , and parameters ω are updated at the high level by
minimizing the Lout, respectively.

Bi-level MetaViewer further decouples view-private in-
formation, except for view-specific and view-sharing com-
ponents. Consider the simplest case, where the base learner
updates only one step on each view in the inner loop, i.e.,
ω∗
v = ω − β∇ωLin

v (ω). Thus, the final optimization of ω in
the outer level in Eq. 8 can be rewritten as

min
ω

∑
v

Lout(ω∗
v) =

∑
v

Lout
(
ω − β∇ωLin

v (ω)
)
. (9)

Intuitively, the optimal ω is expected to be close enough
to each view that the view-specific representation can be
produced after once updating. In other words, our uniform-
to-specific framework requires explicit modeling the gap
caused by view-private information when mapping from a
unified representation to a particular view, which is achieved
by inner-level optimization in MetaViewer.

Low-Level

High-Level

(a) Flowcharts (b) Steps (c) Gradients

uniform-to-specific

Inner-Level

Outer-level

specific-to-uniformone-level methods

two-/multi-level methods

our bi-level MetaViewer

Figure 3. Comparison of two frameworks in terms of flowchart,
update steps, and key gradients. The top row is our bi-level
MetaViewer with uniform-to-specific framework, where red and
black arrows indicate the flow at outer-level and inner-level, respec-
tively. The bottom two rows show two main branches in uniform-
to-specific framework, i.e., one-level methods [47] and two- or
multi-level methods [51].

3.4. The instances of the objective function

Our uniform-to-specific framework emphasizes learning
from the training process in the inner loop. In unsuper-
vised multi-view learning, this process typically refers to
the reconstruction on views, thus the Lin

v is specified as the
reconstruction loss [27, 60]

Lin
v = Lrec

v (Sv, S
rec
v ) = ∥Sv − Srec

v ∥2F . (10)

While parameters updated at the outer level can be con-
strained by richer self-supervised feedbacks, as maintained
in Sec. 3.1. Here we provide two instances of the outer-
level loss function to demonstrate how MetaViewer can be
extended with different learning objectives.

MVer-R adopts the same reconstruction loss as the inner-
level, and Lout =

∑
v Lrec

v (Qv, Q
rec
v ), which is the purest

implementation of MetaViewer.
MVer-C additionally utilizes a contrastive objective,

where the similarities of views belonging to the same entity
(i.e., positive pairs) should be maximized and those of dif-
ferent entities (i.e., negative pairs) should be minimized, i.e.,
Lout =

∑
v

(
Lrec
v +

∑
v′,v′ ̸=v Lcon

v,v′

)
. Following previous

work [18, 51, 55], the contrastive loss Lcon
v,v′ is formed as

Lcon
v,v′ = − 1

NQ

NQ∑
i=1

log
ed(q

i
v,q

i
v′ )/τ∑NQ

j=1,j ̸=i e
d(qiv,q

j
v)/τ +

∑NQ

j=1 e
d(qiv,q

j

v′ )/τ
,

(11)
where qiv is the v-th view of the i-th query sample and d
is the similarity metric (e.g., cosine similarity [6]). The
NQ and τ denote the number of query set samples and the
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Datasets #Views #Classes #Samples (train, val, test) View Dimensions

Handwirtten 2 10 2000 (1200, 400, 400) 240; 216
RGB-D 2 50 500 (300, 100, 100) 12288; 4096
Animal 2 50 10158 (6074, 2011, 2073) 4096; 4096

Fashion-MV 3 10 10000 (6000, 2000, 2000) 784; 784; 784
Caltech101-20 6 20 2386 (1425, 469, 492) 48; 40; 254; 1984; 512; 928

Table 1. The attributes for all datasets used in our experiments.

Methods Handwritten RGB-D Animal Fashion-MV Caltech101-20
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Baseline 43.55 52.19 25.68 48.30 80.97 04.95 45.79 66.22 33.87 50.91 45.98 32.09 36.63 48.96 23.54
DCCA [2] (2013) 57.25 69.80 52.15 51.00 82.99 52.02 60.34 68.51 46.10 70.70 80.42 61.80 38.62 50.88 22.73

DCCAE [47] (2015) 63.00 75.04 59.29 48.00 81.58 48.34 65.17 66.82 48.83 71.05 81.12 62.34 36.59 52.24 25.25
MIB [8] (2020) 63.25 67.58 52.16 50.00 81.13 51.27 60.89 61.98 52.49 57.20 73.83 47.62 35.98 47.00 22.18

WTNNM [15] (2020) 75.69 77.62 61.51 52.54 81.95 52.46 71.92 71.43 61.06 83.33 86.30 77.99 39.74 55.58 26.92
TLRR [23] (2021) 78.60 77.99 66.40 52.87 82.38 53.37 69.79 73.01 61.23 79.54 84.01 78.54 40.18 52.38 27.60

MFLVC [51] (2022) 64.00 64.53 48.85 53.00 83.31 54.07 74.10 76.08 64.28 83.20 88.75 78.93 36.59 58.36 26.87
DCP [27] (2022) 66.25 70.56 56.10 52.00 82.04 52.64 72.77 74.02 65.48 62.60 68.38 54.30 36.79 44.37 23.50

MVer-R (ours) 75.00 78.53 67.21 53.00 82.41 53.04 76.49 78.25 65.28 80.80 88.13 75.05 41.87 58.52 29.19
MVer-C (ours) 86.25 78.96 72.25 57.00 84.97 57.07 75.92 78.01 66.07 85.40 88.76 80.07 45.12 60.86 35.00

Table 2. Clustering results of all methods on six datasets. Bold and underline denote the best and second-best results, respectively.

temperature parameter, respectively. Note that, the derived
meta representation can also be used in contrastive learning
as an additional novel view.

4. Experiments

In this section, we present extensive experimental results
to validate the quality of the unified representation derived
from our MetaViewer. The remainder of the experiments
are organized as follows: Subsection 4.1 lists datasets, com-
pared methods, and implementation details. Subsection 4.2
compares the performance of our method with classical and
state-of-the-art methods on two common downstream sce-
narios, clustering and classification tasks. Comparisons with
manually designed fusion and ablation studies are shown in
Subsections 4.3 and 4.4, respectively.

4.1. Experimental Setup

Datasets. To comprehensively evaluate the effectiveness
of our MetaViewer, we conduct five multi-view benchmarks
in experiments. All datasets are scaled to [0, 1] and split into
training, validation, and test sets in the ratio of 6: 2 : 2, as
shown in Tab. 1. Handwritten contains 2, 000 handwritten
digital images from 0 to 9, where two types of descriptors,
i.e., 240-D pixel average in 2×3 windows and 216-D profile
correlations, are selected as two views [60]. RGB-D dataset
contains visual and depth images of 300 distinct objects
across 50 categories [46, 63]. Two views are obtained by
flattening the 64× 64× 3 color images and 64× 64 depth

images. Animal consists of 10158 images from 50 classes
with two views. Unlike other datasets, these two views are
features extracted by deep networks [59]. Fashion-MV is
an image dataset that contains 10 categories with a total
of 30, 000 fashion products. It has three views and each of
which consists of 10,000 gray images sampled from the same
category [50]. Caltech101-20 is a subset of the Caltech101
image set [9], which consists of 2, 386 images of 20 subjects.
Six features are used, including Gabor, Wavelet Moments,
CENTRIST, HOG, GIST, and LBP.

Compared methods. We compare the performance of
MetaViewer with seven representative multi-view learning
methods, including two classical methods (DCCA [2] and
DCCAE [47]) and five state-of-the-art methods (WTNNM
[15], TLRR [23], MIB [8], MFLVC [51] and DCP [27]).
Among them, DCCA and DCCAE are the deep extensions
of traditional correlation strategies. WTNNM and TLRR are
representative tensor-based methods. MIB is a typical gen-
erative method with mutual information constraints. DCP
learns unified representation in both unsupervised and su-
pervised scenarios, and we report the unsupervised version
for a fair comparison. In particular, MFLVC also notices
the view-private redundant information and designs a multi-
level feature network for clustering tasks. In addition, we
also compare the model without MetaViewer as a baseline,
where the unified representation is obtained by concatenating
view-specific features output by the embedding module.

Implementation details. For a fair comparison, all meth-
ods are trained from scratch, and all deep-network-based
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Methods Handwritten RGB-D Animal Fashion-MV Caltech101-20
ACC Prec. F-score ACC Prec. F-score ACC Prec. F-score ACC Prec. F-score ACC Prec. F-score

Baseline 87.00 87.32 87.04 14.00 06.45 07.70 71.78 65.02 63.10 87.50 87.63 87.54 75.41 51.95 46.21
DCCA [2] (2013) 88.25 89.20 88.05 30.00 21.10 22.04 62.84 61.61 60.65 84.90 85.22 83.54 71.54 45.27 39.81

DCCAE [47] (2015) 90.00 90.48 89.92 24.00 16.00 16.91 66.82 62.53 62.83 85.35 85.97 83.84 71.54 60.57 43.25
MIB [8] (2020) 79.00 83.90 78.52 33.00 28.50 27.37 59.32 63.78 62.13 86.80 86.80 86.55 72.72 61.64 52.47

WTNNM [15] (2020) 96.77 96.20 96.36 45.00 47.18 43.90 69.90 67.40 65.48 94.50 94.50 94.58 83.27 80.49 74.78
TLRR [23] (2021) 97.00 97.05 97.17 49.00 53.32 47.66 71.90 69.52 68.35 96.35 96.28 96.40 85.55 77.30 75.24

MFLVC [51] (2022) 94.00 94.20 94.01 44.00 46.09 41.81 75.62 72.17 70.81 96.50 96.52 96.49 85.37 71.83 69.07
DCP [27] (2022) 97.25 97.30 97.24 37.00 28.87 30.78 77.95 73.43 70.01 89.25 82.06 82.90 92.48 89.41 84.58

MVer-R (ours) 97.00 97.08 97.00 51.00 53.65 48.73 77.69 73.91 71.22 96.85 96.37 96.48 92.28 89.46 84.21
MVer-C (ours) 97.75 97.90 97.75 56.00 55.20 52.78 78.03 74.56 71.55 97.70 96.78 97.07 92.16 90.68 85.72

Table 3. Classification results of all methods on six datasets. Bold and underline denote the best and second-best results, respectively.

methods share the same embedding backbone, following
the previous work [51]. For two-view-based methods, such
as DCCA, DCCAE, and MIB, we report the results of the
two best-performing views. The final unified representa-
tion H in alignment-based methods is a concatenation of
the processed features, and the representation dimension is
specified as dh = 256. The results on clustering and classifi-
cation tasks are obtained by subsequent K-means and SVM
classifier, respectively. For MetaViewer, we train 2, 000
epochs for all benchmarks, and set the batch size is 32 for
RGBD and 128 for others. The learning rates in outer- and
inner-level are set to 10−4 and 10−3, respectively. We use
a single convolutional layer with 32 kernels of size 5 as the
meta-learner, and we set the proportion of support set and
the update step in the inner level to 0.2 and 2, respectively.
All experiments have been verified using the PyTorch li-
brary on a single RTX3090. Code is available at https:
//github.com/xxLifeLover/MetaViewer.

4.2. Performance on downstream tasks

Clustering results. Tab. 2 lists the results of the clus-
tering task, where the performance is measured by three
standard evaluation metrics, i.e., Accuracy (ACC), Normal-
ized Mutual Information (NMI), and Adjusted Rand Index
(ARI). A higher value of these metrics indicates better clus-
tering performance. It can be observed that (1) our MVer-C
variant significantly outperforms other compared methods
on all benchmarks; (2) the second-best results appear be-
tween MVer-R and MFLVC, both of which explicitly sep-
arate the view-private information; (3) a larger number of
categories and views is the main reason for the degradation
of clustering performance, and our Metaviewer improves
most significantly in such a scenario (e.g., Fashion-MV and
Caltech101-20).

Classification results. Tab. 3 lists the results of the
classification task, where three common metrics are used,
including Accuracy, Precision, and F-score. A higher value
indicates better classification performance. Similar to the
clustering results, two variants of MetaViewer significantly

Strategies Rules ACC↑ NMI↑ ARI↑ MSE↓
Sum zx + zy 69.25 71.89 59.02 1.84
Max max(zx, zy) 80.75 73.93 63.75 -

Concat. cat[zx, zy] 78.75 72.02 61.52 1.77
Linear l(zx, zy, θl) 85.00 77.40 69.71 4.74

C-Conv m(zx, zy, ω) 69.75 65.21 51.33 2.37
MetaViewer meta-learning 86.25 78.96 72.25 2.45

Table 4. Clustering resulting on the Handwritten dataset.

View 1 View 2Single Sum Meta Single Sum Meta

Figure 4. Class activate maps on RGB-D samples for different
fusion strategies, including single views, Sum, and our MetaViewer.
View 1 and view 2 are the RGB and depth view, respectively.

outperform the comparison methods. It is worth noting that
(1) DCP learns unified representation and therefore achieves
the second-best result instead of MFLVC. (2) The number
of categories is the main factor affecting the classification
performance, and our method obtains the most significant
improvement in the RGB-D dataset with up to 50 classes.

4.3. Comparison with manually designed fusion.

As mentioned in 3.3, MetaViewer essentially learns an
optimal fusion rule that preserves as much consistency and
complementary information as possible while filtering out
view-private information. To verify this, we compare it with
commonly used fusion strategies [26], including sum, max-
ima, concatenation, linear layer and C-Conv. The former
three are the specified fusion rules without trainable param-
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Figure 5. Effect of meta-learner architectures with different depth,
width, and kernel size on classification accuracy.

Figure 6. Effect of (a) different meta-division ratios and (b) the
number of inner-loop iterations on classification accuracy.

eters, and the remaining two are the trainable fusion layer
trained via the specific-to-uniform manner. Tab. 4 lists the
clustering results and an additional MSE score on the Hand-
written dataset with the same embedding and reconstruction
network. We can observe that (1) trainable fusion layers
outperform the hand-designed rules, and our MetaViewer
yields the best performance; (2) the MSE scores listed in
the last column indicate that the quality of the unified repre-
sentation cannot be measured and guaranteed only with the
reconstruction constraint, due to the view-private redundant
information mixed in view-specific latent features.

To further explore the fusion preferences learned by
MetaViewer, we visualize the class activation map for the
RGB-D samples in Fig. 4. MetaViewer balances informa-
tion from all views instead of just the salient one (view 1),
ensuring a high-quality unified multi-view representation.

4.4. Ablation Studies

Meta-learner structures. We implement the meta-
learner as a channel-level convolution structure in this work.
Albeit simple, this layer can be considered as a universal
approximator for almost any continuous function [40], and
thus can fit a wide range of conventional fusion functions.
To investigate the effect of network depth, width, and convo-
lution kernel size on the performance of the representation,
we alternately fix the 32 kernels and the 1×3 kernel size and
show the classification results on Handwritten data in Fig.
5. It is clear that (1) the meta-learner works well with just a

shallow structure, as shown in Fig. 5 (a), instead of gradu-
ally overfitting to the training data as the network deepens
or widens, and (2) our MetaViewer is stable and insensitive
to the hyper-parameters within reasonable ranges.

Meta-split ratios. Fig. 6 (a) shows the impact of the
meta-split mentioned in Sec. 3.2 on the classification perfor-
mance, where the proportion of support set is set from 0.1
to 0.9 in steps of 0.1, and the rest is query set. In addition
to the single view, we also compare the sum and concat.
fusion as baselines. MetaViewer consistently surpasses all
baselines over the experimental proportion. In addition, fu-
sion baselines are more dependent on the better-performing
view at lower proportions, instead becoming unstable as the
available query sample decreases.

Inner-level update steps. Another hyper-parameter is the
number of iteration steps in inner-level optimization. More
iterations mean a larger gap from the learned meta represen-
tation to the specific view space, i.e., coarser modeling of
view-private information. Fig. 6 (b) shows the classifica-
tion results with various steps, where n steps mean that the
inner-level optimization is updated n times throughout the
training. MetaViewer achieves the best results when using 1
steps, and remains stable within 15 steps.

5. Conclusion

This work introduced a novel meta-learning perspective
for multi-view learning, and proposed a meta-learner, namely
MetaViewer, to derive a high-quality unified representation
for downstream tasks. In contrast to the prevailing specific-
to-uniform pipeline, MetaViewer observes the reconstruction
process from unified representation to specific views and es-
sentially learns an optimal data-driven fusion that separates
and filters out meaningless view-private information. The
proposed framework is compatible with most excellent ob-
jective functions and pre-text tasks to cope with complex
real-world scenarios. Extensive experimental results on clus-
tering and classification tasks demonstrate the performance
of meta-learned unified representation. In addition, we be-
lieve that our bi-level training pipeline is also promising for
handling incomplete views, and leave it to future work.
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