
Multi-Agent Automated Machine Learning

Zhaozhi Wang123†, Kefan Su1, Jian Zhang4, Huizhu Jia1, Qixiang Ye23, Xiaodong Xie1, Zongqing Lu1‡

1Peking University 2Peng Cheng Lab 3University of Chinese Academy of Sciences 4Huawei

Abstract

In this paper, we propose multi-agent automated ma-
chine learning (MA2ML) with the aim to effectively han-
dle joint optimization of modules in automated machine
learning (AutoML). MA2ML takes each machine learning
module, such as data augmentation (AUG), neural archi-
tecture search (NAS), or hyper-parameters (HPO), as an
agent and the final performance as the reward, to formu-
late a multi-agent reinforcement learning problem. MA2ML
explicitly assigns credit to each agent according to its
marginal contribution to enhance cooperation among mod-
ules, and incorporates off-policy learning to improve search
efficiency. Theoretically, MA2ML guarantees monotonic
improvement of joint optimization. Extensive experiments
show that MA2ML yields the state-of-the-art top-1 accuracy
on ImageNet under constraints of computational cost, e.g.,
79.7%/80.5% with FLOPs fewer than 600M/800M. Exten-
sive ablation studies verify the benefits of credit assignment
and off-policy learning of MA2ML.

1. Introduction
Automated machine learning (AutoML) aims to find

high-performance machine learning (ML) pipelines without
human effort involvement. The main challenge of AutoML
lies in finding optimal solutions in huge search spaces.

In recent years, reinforcement learning (RL) has been
validated to be effective to optimize individual AutoML
modules, such as data augmentation (AUG) [4], neural ar-
chitecture search (NAS) [25, 53, 54], and hyper-parameter
optimization (HPO) [38]. However, when facing the huge
search space (Figure 1 left) and the joint optimization of
these modules, the efficiency and performance challenges
remain.

Through experiments, we observed that among AutoML
modules there exists a cooperative relationship that facilities
the joint optimization of modules. For example, a small net-
work (ResNet-34) with specified data augmentation and op-

†The work was done during his Master program at Peking University.
‡Correspondence to B zongqing.lu@pku.edu.cn

HPO

AUG

HPO

AUG

NAS NAS

𝒌 𝟏 𝒌

𝒑𝒌 𝟏

𝒑𝒌

Huge search space
of ML pipelines

Searched pipeline

Figure 1. Search spaces of machine learning pipelines. Left: sin-
gle agent controls all modules, and the huge search space makes
it ineffective to learn. Mid: each agent controls one module, and
the learning difficulty is reduced by introducing MA2ML. Right:
MA2ML guarantees monotonic improvement of the searched
pipeline, where pk and R(pk) denote the k-th searched pipeline
and its expected performance, respectively.

timized hyper-parameters significantly outperforms a large
one (ResNet-50) with default training settings (76.8% vs.
76.1%). In other words, good AUG and HPO alleviate
the need for NAS to some extent. Accordingly, we pro-
pose multi-agent automated machine learning (MA2ML),
which explores the cooperative relationship towards joint
optimization of ML pipelines. In MA2ML, ML modules
are defined as RL agents (Figure 1 mid), which take ac-
tions to jointly maximize the reward, so that the training ef-
ficiency and test accuracy are significantly improved. Spe-
cially, we introduce credit assignment to differentiate the
contribution of each module, such that all modules can be
simultaneously updated. To handle both continuous (e.g.,
learning rate) and discrete (e.g., architecture) action spaces,
MA2ML employs a multi-agent actor-critic method, where
a centralized Q-function is learned to evaluate the joint ac-
tion. Besides, to further improve search efficiency, MA2ML
adopts off-policy learning to exploit historical samples for
policy updates.

MA2ML is justified theoretically and experimentally.
Theoretically, we prove that MA2ML guarantees mono-
tonic policy improvement (Figure 1 right), i.e., the per-
formance of the searched pipeline monotonically improves
in expectation. This enables MA2ML to fit the joint op-
timization problem and be adaptive to all modules in the
ML pipeline, potentially achieving full automation. Exper-
imentally, we take the combination of individual RL-based
modules to form MA2ML-Lite, and compare their perfor-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11960

mance on ImageNet [31] and CIFAR-10/100 [20] datasets.
To better balance performance and computational cost, we
add constraints of FLOPs in the experiment on ImageNet.
Experiments show that MA2ML substantially outperforms
MA2ML-Lite w.r.t. both accuracy and sample efficiency,
and MA2ML achieves remarkable accuracy compared with
recent methods.

Our contributions are summarized as follows:
• We propose MA2ML, which utilizes credit assignment

to differentiate the contributions of ML modules, pro-
viding a systematic solution for the joint optimization
of AutoML modules.

• We prove the monotonic improvement of module poli-
cies, which enables to MA2ML fit the joint optimiza-
tion problem and be adaptive to various modules in the
ML pipeline.

• MA2ML yields the state-of-the-art performance under
constraints of computational cost, e.g., 79.7%/80.5%
on ImageNet, with FLOPs fewer than 600M/800M,
validating the superiority of the joint optimization of
MA2ML.

2. Related work
Single-module Optimization. AutoML has been applied
to different modules in the ML pipeline, such as AUG,
NAS, and HPO. For AUG, AutoAugment [4] is an RL-
based method to search augmentation policies. Fast AA
[21] speeds up the search with less computing cost through
Bayesian optimization. Faster AA [10] is a differentiable
method to optimize augmentation policy, which reduces
computing cost further. PBA [12] also reduces search cost
by population-based training. Adversarial AA [49] uses the
idea of GAN [8] to generate the hard augmentation policy
for the model to improve robustness.

For NAS, there are three main types of methods, evo-
lutionary methods [29, 30, 45], RL-based methods [25,
27, 35, 53, 54], and differentiable gradient-based methods
[3, 11, 22, 44]. Evolutionary methods optimize the search
through selection, recombination, and mutation in the neu-
ral architecture population. RL-based methods regard the
neural architecture as a black box and the final accuracy as
the reward. They typically use RL algorithms to solve the
optimization problem. Differentiable gradient-based meth-
ods design a continuous representation for neural architec-
ture space and make NAS a differentiable problem, which
greatly improves search efficiency, compared with the other
two types.

For HPO, black-box methods [1, 15] have been utilized
for a long time. Meanwhile, some methods like [16,41] use
multi-fidelity ways to accelerate optimization through the
evaluation on proxy tasks. Recently, gradient-based meth-
ods [23, 24, 26, 32] optimize hyper-parameters by calculat-

ing gradient respect to them, which reduces computing cost
substantially.

The above methods for single module optimization leave
other modules of the ML pipeline fixed during search, either
by expert knowledge or empirical setting, which may not be
optimal when combining them. Joint optimization of mul-
tiple modules is a more plausible way to advance the ML
pipeline.

Joint Optimization. Recent studies [5, 6, 19, 46] search
for NAS and HPO jointly through RL or training an accu-
racy predictor, or [17, 40] consider the joint optimization of
AUG and NAS, and obtain convincing results by bi-level
gradient-based optimization. DHA [52] explores the joint
optimization for AUG, NAS, and HPO through one-level
optimization, which is achieved in a differentiable man-
ner by optimizing a compressed lower dimensional feature
space for NAS. However, the alternate optimization of the
gradient-based method may get stuck at the non-stationary
point with limited-order gradient descent.

Unlike existing joint optimization methods for AutoML,
our MA2ML aims to update all modules, as well as guaran-
tee the convergence of joint optimization.

3. The Proposed Method
MA2ML is a general framework for joint optimization

in AutoML and can be applied to any arbitrary combination
of different modules. For ease of presentation, in the fol-
lowing, we use the joint optimization of AUG, NAS, and
HPO for image classification tasks as an example to elabo-
rate MA2ML.

3.1. Action Space

Before formulating the joint optimization as an MARL
problem, we first define an action space for AUG, NAS, and
HPO. In AUG, we adopt the setting in AutoAugment [4].
In NAS, we utilize the search space in NASNet [54] and
FBNetV3 [5] on different datasets to show that MA2ML is
naturally agnostic to search spaces. In HPO, we design a
search space for hyper-parameters, including learning rate,
weight decay, etc.

For each module, we implement a controller to sample
different choices from the action space sequentially. Note
that MA2ML can be easily extended to support more mod-
ules in the ML pipeline, such as loss function search and
mix-precision configuration search, by simply implement-
ing the module by a controller and adding it to the frame-
work.

3.2. Joint Optimization

Assuming there are n modules for the AutoML pipeline,
each module is modeled as an agent. For each agent i, it
takes a random state Si as initial input and outputs the se-

11961

Acc

sample a mini-batch of
Centralized Critic

store

TD Error
update

Agent 1

credit assignment

Agent 2 Agent 3

divergence

Data
train & evaluate

ArchitectureAugmentation

update update update

AutoML Training

MA2ML Training

update update update

divergencedivergence

Hyperparameters

Replay
Buffer

Figure 2. The framework of joint optimization with MA2ML. For AutoML training (lower panel), the ML pipeline is formed by the actions
sampled from the policies of agents, then it is deployed for training on the dataset and to obtain the accuracy (reward). After that, the tuple
⟨S,A, R⟩ is stored in the replay buffer. For MA2ML training (upper panel), a mini-batch of ⟨S,A, R⟩ are sampled from the replay buffer
to update the critic, policies, and target policies.

lected action Ai in the action space sampled from its policy
πi, which is denoted as Ai ∼ πθi(·|Si) where the policy is
parameterized by θi. After all actions are determined, we
train the network with the determined pipeline setting on
the image classification task for epochs and evaluate top-1
accuracy on the validation set. We take the top-1 accuracy
as the reward R for all the agents. The objective is to maxi-
mize the expected reward R, represented by J(Θ):

J(Θ) = EπΘ(A|S)[R], (1)

where πΘ(A|S) ≜
∏n

i=1 πθi(Ai|Si) is the joint policy, and
Θ, S and A respectively denote the gather of θi, Si and
action Ai of all agents (we may drop Θ or θ for brevity if
there is no confusion). Consequently, we transform the joint
optimization of the ML pipeline as an MARL problem, then
we can rely on MARL methods to solve the problem.

3.3. MA2ML-Lite

For the MARL problem defined in (1), one method to
solve it is to learn a policy individually for each module
of AUG, NAS, and HPO. In the AutoML training phase,
we sample an action according to the policy of each agent,
and train the model according to the searched ML pipeline
to calculate the reward R (top-1 accuracy). In the MA2ML
training phase, we use the reward R to directly guide the
update of each agent’s policy. REINFORCE [34] which
can handle both discrete and continuous action, is used to
calculate policy gradient, which is formulated as

∇θiJ(Θ) = Eπ(A|S)[∇θi log πθi(Ai|Si)(R− b)], (2)

where b is an exponential moving average of the previous
rewards. The moving average is beneficial for reducing
the variance of gradient estimate. Then, the policy of each
agent i is updated by gradient ascent using (2). Although
J(Θ) depends on the joint policy of all agents, their poli-
cies are not really jointly optimized by (2). In other words,
for the obtained R, it is not able to tell the contribution of
each agent, and thus cannot explicitly update their policies
towards better ones. We term this RL method MA2ML-
Lite, which is the lite version of MA2ML.

3.4. Credit Assignment

As AUG, NAS, and HPO jointly determine the final per-
formance, if we use the reward R to directly feedback to
each agent as MA2ML-Lite does, each agent cannot dis-
tinctly determine whether the performed action is good or
not. This poses a great challenge to the learning of policies.

To solve the challenge, we train a centralized critic to
learn the action-value function (Q-function) and add a coun-
terfactual baseline, inspired by [7]. The counterfactual
baseline marginalizes out an agent’s action, while keep-
ing other agents’ actions fixed. The difference between the
value of taken actions and the counterfactual baseline mea-
sures the marginal contribution of each agent. The differ-
ence is used to update each agent’s policy.

The centralized critic is denoted as Q(S,A) or
Q(S, Ai, A−i), where A−i represents the joint action of all
agents except agent i. The counterfactual baseline denoted
as b(S, A−i) for each agent i is calculated as

b(S, A−i) = EAi∼πθi
[Q(S, Ai, A−i)]. (3)

11962

In AutoML, considering the large action space of different
modules and to reduce the computation cost, we can use
the sampled action Ai as input, while keeping other actions
fixed, to approximate the counterfactual baseline.

3.5. Off-Policy Learning

REINFORCE is an on-policy method, meaning that cur-
rent policy can only be updated using the experiences ob-
tained by itself. Considering it takes much time to train
the model to receive top-1 accuracy, on-policy methods are
very inefficient. Thereby, we incorporate off-policy learn-
ing, such that the current policy can also use historical expe-
riences generated during learning for updates, which helps
a lot in improving search efficiency.

To enable off-policy learning for actor-critic methods,
a popular method is maximum-entropy RL, like SAC [9],
which adds an entropy regularization in the objective as

J(Θ) =Eπ(A|S)[Q(S,A)− λ logπ(A|S)]
=Eπ(A|S)[Q(S,A)] + λH(π(·|S)),

(4)

where H(π(·|S)) represents the entropy of π(·|S), and λ
is the coefficient of entropy regularization. However, the
entropy regularization biases the converged policy, i.e., the
converged policy maximizes (4) instead of the original ob-
jective (1).

To eliminate the bias of the converged policy as well as
implement off-policy learning, inspired by [33], we main-
tain a target policy ρi for each agent, in addition to the origi-
nal policy πi, and add the divergence regularization between
πi and ρi in the reward,

J(Θ) =Eπ(A|S)[Q(S,A)− λ log
π(A|S)
ρ(A|S)

]

=Eπ(A|S)[Q(S,A)]− λDKL(π(·|S)∥ρ(·|S)),
(5)

where ρ ≜
∏n

i=1 ρi denotes the joint target policy and
DKL(π(·|S)∥ρ(·|S)) denotes the KL divergence between
two distributions, π(·|S) and ρ(·|S). The divergence regu-
larization is beneficial for exploration and stable policy im-
provement. More importantly, based on divergence policy
iteration [33] we can further derive the theoretical result as
follows.

Theorem 1. By iteratively applying divergence policy it-
eration and taking πk as the joint target policy ρk+1, the
policy sequence of {πk} converges and monotonically im-
proves upon the original optimization problem.

Proof. Let Jinit(π) be the original optimization objective
and Jreg(π,ρ) be the optimization objective with diver-
gence regularization given the fixed target policy ρ. Then

they have the following definitions and relations.

Jinit(π) = Eπ(A|S)[R], (6)

Jreg(π,ρ) = Eπ(A|S)[R− λ log
π(A|S)
ρ(A|S)

], (7)

Jreg(π,ρ) = Jinit(π)− λDKL(π(·|S)||ρ(·|S)). (8)

Iteratively applying divergence policy iteration and tak-
ing πk as the joint target policy ρk+1 can be formulated as

πk+1 = argmax
π

Jreg(π,ρ
k+1) = argmax

π
Jreg(π,π

k).

(9)
Substituting (9) to (8), we have

Jinit(π
k+1) ≥ Jinit(π

k+1)− λDKL(π
k+1(·|S)||πk(·|S))

= Jreg(π
k+1,πk)

≥ Jreg(π
k,πk)

= Jinit(π
k).

(10)
The first inequality is from the non-negativity of the KL-
divergence and the second inequality is from the definition
of πk+1 in (9).

The conclusion Jinit(π
k+1) ≥ Jinit(π

k) (defined by
(10)) means the original objective monotonically improves
though we optimize the objective with divergence regular-
ization.

Moreover, the reward R is bounded, so the original ob-
jective Jinit(π) is bounded. The boundness and monotonic
improvement of the sequence Jinit(πk) guarantees the con-
vergence of the original objective sequence.

Remark 1. Theorem 1 guarantees the monotonic policy
improvement and sub-optimum in the original optimization
objective (1), not just the divergence-regularized objective
as in [33]. This is crucial for AutoML as we can control the
search of MA2ML by λ, without deteriorating the optimal-
ity of the searched ML pipeline. Therefore, Theorem 1 lays
the theoretical foundation of MA2ML.

3.6. Training

In the AutoML training phase, we sample actions A
from π to obtain the ML pipeline and train the model ac-
cording to the pipeline to receive top-1 accuracy as the re-
ward R. After that, we store the experience ⟨S,A, R⟩ in
the replay buffer D.

In the MA2ML training phase, we sample a mini-batch B
of experiences from the replay buffer D. We first update the
centralized critic, parametrized by ϕ, by gradient descent of
the loss function LQ as

LQ = E[(Qϕ(S,A)−R)2],

ϕ = ϕ− ηϕ∇ϕLQ,
(11)

11963

Algorithm 1 MA2ML

1: initialize the critic ϕ, and the policy θi and target policy
θ̄i for each agent i

2: for iter = 1 to max iter do
3: receive initial state Si for each agent i
4: sample Ai ∼ πθi(·|Si) for each agent i
5: determine the pipeline setting according to A
6: train the pipeline for a number of epochs on dataset
7: obtain the top-1 accuracy on the validation set as R
8: store ⟨S,A, R⟩ in the replay buffer D
9: sample a mini-batch B from D

10: update the critic ϕ by (11)
11: update each agent’s policy θi by (13)
12: update each agent’s target policy θi by (14)
13: end for
14: choose top-k pipelines in terms of top-1 accuracy
15: retrain the pipelines till convergence
16: obtain the highest accuracy on the test set

where ηϕ denotes the learning rate of ϕ. Then, we update
the policy and the target policy for each agent. The counter-
factual baseline with divergence regularization is modified
as

b(S, A−i) = EAi∼πi [Q(S, Ai, A−i)− λ log π(A|S)
ρ(A|S)].

(12)
The gradient for the policy of each agent is calculated and
the policy is updated by gradient ascent as

∇θiLπθi
= E[∇θi log πθi(Ai|Si)(Q(S,A)

− λ log
πθi(Ai|Si)

ρi(Ai|Si)
− EAi∼πi

[Q(S,A)]

+ λDKL(πi(·|Si)∥ρi(·|Si)))],

θi = θi + ηθ∇θiLπθi
,

(13)
where ηθ is the learning rate of the policy. The target policy
of each agent is parameterized by θ̄i, and is updated as

θ̄i = (1− τ)θ̄i + τθi, (14)

where τ is an empirically determined parameter.
For completeness, the framework of MA2ML is depicted

in Figure 2 and the learning algorithm of MA2ML is sum-
marized in Algorithm 1.

4. Experiments
Image classification experiments of MA2ML and

MA2ML-Lite are performed on ImageNet while ablation
studies are carried on CIFAR-10/1001.

1Detailed experiment settings, results, and the search cost are available
in the supplementary material.

400 500 600 700 800 900 1000
FLOPs (M)

74.5

76.5

78.5

80.5

to
p-

1
ac

cu
ra

cy
 (%

) 79.3
79.7

80.1
80.5 80.7

81.1

MA2ML
MA2ML-Lite
EfficientNet
L2NAS
RegNet
NASNet

Figure 3. Comparison of MA2ML with other AutoML methods
on ImageNet.

4.1. ImageNet

Setting. Considering the large search cost, we adopt the
setting in FBNetV3 [5], i.e., randomly sampling 200 classes
from the entire dataset as the training set and taking out 10K
images from it to form a validation set. The sub-set with 200
classes is termed ImageNet-200.

The action space mentioned in Section 3.1 is employed
for the experiment on ImageNet. For AUG, each pipeline is
configured with an augmentation policy, which consists of
25 sub-policies. Each sub-policy contains two augmenta-
tion operations, which are determined by three dimensions
including operation type, probability, and magnitude. Op-
eration type has 15 options, probability ranges from 0.0 to
1.0 with step 0.1, and magnitude consists of 10 levels.

For NAS and HPO, we use the search space in FBNetV3.
We search for input resolution, kernel size, expansion, num-
ber of channels per layer, and depth as architecture config-
uration, which is based on the inverted residual block [13].
For HPO, we search for the optimizer type, initial learn-
ing rate, weight decay, mixup ratio [47], drop out ratio,
stochastic depth drop ratio [14], and whether to use expo-
nential moving average (EMA) [18]. Overall, AUG, NAS,
and HPO contain 10160, 1017, 107 candidates, respectively.

To better balance the performance and computational
cost of the searched AutoML pipeline, constraints of FLOPs
are added. We adopt the multi-objective reward function

R = Acc(m)×
[

FLOPs(m)
FLOPs constraint

]w
in [36], where Acc(m)

and FLOPs(m) respectively denote top-1 accuracy and
floating point operations of the model, FLOPs constraint
represents the constraint of FLOPs, and w is used to ad-
just the tradeoff between accuracy and FLOPs. We set
w = −0.07 and FLOPs constraint = 600M/900M for
two trials using MA2ML. Besides, the MA2ML-Lite runs
FLOPs constraint = 600M and compared with MA2ML2.

We generate 24 ML pipelines for each batch, and train

2We also test MA2ML and MA2ML-Lite without constraints of FLOPs
on ImageNet and the results are reported in the supplementary material.

11964

Table 1. Top-1 accuracy (%) and FLOPs of state-of-the-art AutoML methods on ImageNet, where NARS denotes neural architecture-recipe
search. All compared models have computational cost close to 600M FLOPs for a fair comparison.

Model Acc (%) FLOPs (M) Method Search Modules

DARTS [22] 73.3 574 gradient NAS
NASNet [54] 74.0 564 RL NAS
MiLeNAS [11] 75.3 584 gradient NAS
RMI-NAS [50] 75.3 657 Random Forest NAS
RegNetY [28] 75.5 600 pop. param.∗ NAS
ROME [39] 75.5 556 gradient NAS
AmoebaNet-C [29] 75.7 570 evolution NAS
PC-DARTS [43] 75.8 597 gradient NAS
BaLeNAS [48] 75.8 597 gradient NAS
ISTA-NAS [44] 76.0 638 gradient NAS
Shapley-NAS [42] 76.1 582 gradient NAS
DAAS [40] 76.6 698 gradient AUG+NAS
DHA [52] 77.4 - gradient AUG+NAS+HPO
MIGO-NAS [51] 78.3 595 MIGO NAS
OFA† [2] 79.0 595 gradient NAS
EfficientNet-B1 [37] 79.1 700 RL NAS
FBNetV3‡ [5] 79.2 550 NARS NAS+HPO
L2NAS [25] 79.3 618 RL NAS

MA2ML-A 79.3 490 MARL AUG+NAS+HPO
MA2ML-B 79.7 596 MARL AUG+NAS+HPO
∗Population parameterization. †Results are given in [25] without distillation.
‡Results are reproduced according to 600M FLOPs constraint without distillation.

Table 2. Comparison of MA2ML-A/B/C with MA2ML-Lite-
A/B/C on ImageNet.

Model A/B/C

Acc (%) FLOPs (M)

MA2ML-Lite 78.6 / 79.1 / 79.5 498 / 597 / 697
MA2ML 79.3 / 79.7 / 80.1 490 / 596 / 694

each model for 100 epochs on ImageNet-200 to receive top-
1 accuracy. For one trial, 1992 pipelines are searched on
ImageNet-200 in total. After the search, 20 pipelines of the
highest accuracy are retrained under the given constraint on
the entire ImageNet dataset for 400 epochs. The pipeline
of the highest accuracy is selected as the search result. For
the search results obtained by MA2ML and MA2ML-Lite
with FLOPs constraint = 600M, we retrain those with
FLOPs fewer than 500M/600M/700M and pick the best as
MA2ML-A/B/C and MA2ML-Lite-A/B/C. For the search
results obtained with FLOPs constraint = 900M, we re-
train those with FLOPs fewer than 800M/900M/1G and
pick the best as MA2ML-D/E/F.

Performance. On ImageNet, MA2ML-A/B/C/D/E/F
achieves 79.3%, 79.7%, 80.1%, 80.5%, 80.7%, and 81.1%

top-1 accuracy. Figure 3 gives the accuracy under dif-
ferent FLOPs of MA2ML and other methods. Since we
do not use distillation in our experiments, results achieved
by implementing distillation are not drawn here. The
curve of MA2ML is plotted with the results of MA2ML-
A/B/C/D/E/F, which is the highest among all the compared
methods with a large margin. Figure 3 also indicates that
MA2ML can always perform better with larger constraints
of computation cost.

In Table 1, we compared MA2ML-A, MA2ML-B, and
other methods with similar FLOPs. MA2ML-A outper-
forms all listed AutoML methods with only 490M FLOPs
(L2NAS has the same performance but with much larger
FLOPs), and MA2ML-B with 596M FLOPs obtains the
performance with large improvement compared with the re-
sults of other methods close to 600M FLOPs.

In Table 2, MA2ML-Lite-A/B/C achieves 78.6%, 79.1%
and 79.5%. The comparison shows that MA2ML outper-
forms MA2ML-Lite by 0.6%, which is attributed to credit
assignment and off-policy learning of MA2ML.

Figure 4 presents the average reward curves of top-20
pipelines and the scatter plot of average reward in each
batch of MA2ML and MA2MLs-Lite on ImageNet-200
(FLOPs constraint = 600M). The curves illustrate that
the superiority of MA2ML at the early stage is not signif-

11965

0 20 40 60 80
batch

86

87

88

89

re
w

ar
d

MA2ML
MA2ML-Lite

0 20 40 60 80
batch

76

78

80

82

84

86

88

re
w

ar
d

MA2ML
MA2ML-Lite

Figure 4. Learning patterns of MA2ML and MA2ML-Lite on
ImageNet-200 (FLOPs constraint = 600M). Left: the aver-
age reward curves of top-20 pipelines in terms of patch numbers.
Right: the scatter plot for average rewards of pipelines in each
batch.

icant, but surpasses MA2ML-Lite a lot in the mid-term of
the search and keeps the lead till the end. The scatter depicts
the batch-level average reward, where MA2ML also greatly
outperforms MA2ML-Lite from the mid-term. Moreover,
the batch-level average reward of MA2ML is also more sta-
ble than MA2ML-Lite, which demonstrates the benefit of
monotonic policy improvement.

MA2ML takes almost the same search cost as MA2ML-
Lite and other RL-based methods, because the major part of
search cost is the training time to receive top-1 accuracy and
the cost of MARL in MA2ML is negligible. So the perfor-
mance gain of MA2ML over MA2ML-Lite takes no more
computation cost. The performance on ImageNet proves the
effectiveness and generality of MA2ML, and jointly search-
ing for ML modules is necessary.

4.2. CIFAR

Setting. We also use the action space mentioned in Section
3.1 on CIFAR-10 and CIFAR-100. For AUG, we generate
25 augmentation sub-policies, which is the only difference
from AUG module on ImageNet. For NAS, we utilize the
search space in NASNet, and search for a normal cell and
a reduction cell. We construct the whole network with 17
cells, and the 5th and 11th are designed as reduction cells.
A cell is composed of 5 sequential blocks. To create a new
block, we search for two existing blocks, choose two op-
erations and apply them to the selected blocks, and select
a way to combine the outputs of the last step. The opera-
tion space consists of 13 options and the combination con-
tains element-wise addition and concatenation. For HPO,
we choose SGD as the optimizer, fix the batch size, and
search for warmup learning rate and weight decay, since
these two hyper-parameters affect much the performance by
experience. We discretize the search space of them into 4
concrete values and use 10 steps to determine them on av-
erage. Overall, AUG, NAS and HPO space contains 1032,
1037, 1012 candidates, respectively.

On CIFAR-10 and CIFAR-100, we sample 24 ML
pipelines for each batch according to the policies of agents,
and train the model using each pipeline for 12 epochs to re-

ceive top-1 accuracy as the reward. We have in total 5016
pipelines on CIFAR-10 and 4008 on CIFAR-100 and choose
the top 30 pipelines in terms of top-1 accuracy to train for
600 epochs. As the parameter size is not constrained on
CIFAR-10 and CIFAR-100, the searched models tend to
be larger than those of the compared methods. The ML
pipeline of the highest top-1 accuracy on the test set is se-
lected to train the final models. The pipeline is trained for
5 trials for both MA2ML and MA2ML-Lite. The mean and
standard deviation are reported as the performance.

Results on CIFAR-10/100. MA2ML respectively achieves
97.77 ± 0.07% and 85.08 ± 0.14% top-1 accuracies on
CIFAR-10 and CIFAR-100, higher than those (97.70 ±
0.10% and 84.80±0.12%) of MA2ML-Lite. Table 3 shows
the results achieved by MA2ML, MA2ML-Lite, and other
outstanding AutoML methods. Compared with the state-of-
the-art AutoML methods, MA2ML achieves very competi-
tive performance.

Ablation on off-policy learning and credit assignment.
To show search efficiency improved by off-policy learning,
we implement MA2ML on-policy version as an ablation on
CIFAR-10. Figure 5 illustrates the average accuracy curves
of top-30 pipelines and the scatter plot for average accuracy
in each batch of MA2ML, MA2ML-Lite, and MA2ML on-
policy during learning on CIFAR-10. The performance of
MA2ML surpasses MA2ML-Lite at early stages and keeps
the lead all the way, which indicates the effectiveness and
high sample efficiency of MA2ML on CIFAR-10. From
the scatter diagram, one can see that MA2ML outperforms
MA2ML-Lite by a large margin from the start. Compared
with MA2ML on-policy, MA2ML surpasses it a lot at the
beginning of the search and leads all the way, which vali-
dates the search efficiency gains caused by off-policy learn-
ing. Besides, the performance gap between the MA2ML
on-policy and MA2ML-Lite in the late search stages indi-
cates the superiority of credit assignment3.

0 50 100 150 200
batch

89

90

91

92

to
p-

1
ac

cu
ra

cy
 (%

)

MA2ML
MA2ML-Lite
MA2ML on-policy

0 50 100 150 200
batch

82

84

86

88

90

92

to
p-

1
ac

cu
ra

cy
 (%

)

MA2ML
MA2ML-Lite
MA2ML on-policy

Figure 5. Learning patterns of MA2ML, MA2ML on-policy, and
MA2ML-Lite on CIFAR-10. Left: average accuracy curve of top
30 pipelines in terms of the number of batches. Right: the scatter
plot for the average accuracy of different pipelines in each batch.
MA2ML outperforms MA2ML on-policy and MA2ML-Lite con-
sistently in terms of accuracy and sample efficiency.

3The learning pattern of MA2ML and MA2ML-Lite on CIFAR-100 is
available in the supplementary material.

11966

Table 3. Top-1 accuracy (%) and parameter size (MB) of compared AutoML methods on CIFAR-10 and CIFAR-100. The results of
MA2ML and MA2ML-Lite are mean and standard deviation of 5 trials of the best ML pipeline.

Model CIFAR-10 CIFAR-100 Method
Acc (%) Param (M) Acc (%) Param (M)

NASNet-A [54] 97.60 27.6 - - RL
ENAS [27] 97.11 4.6 80.57 4.6 RL
L2NAS [25] 97.51±0.12 3.8 82.24±0.19 3.5 RL
AmoebaNet [29] 97.45±0.05 2.8 81.07 3.1 evolution
DARTS [22] 97.24±0.09 3.3 82.64±0.44 3.3 gradient
DARTS- [3] 97.41±0.08 3.5 82.49±0.25 3.3 gradient
MiLeNAS [11] 97.49±0.11 3.9 - - gradient
ISTA-NAS [44] 97.64±0.06 3.4 83.10±0.11 - gradient

AutoHAS [6] 95.0 - 78.4 - RL
Joint Search [17] 97.46±0.09 - 83.81±0.49 - gradient
DAAS [40] 97.76±0.10 4.0 84.63±0.31 3.8 gradient
DHA [52] 98.11±0.26 - 83.93±0.23 - gradient

MA2ML-Lite 97.70±0.10 7.8 84.80±0.12 9.0 MARL
MA2ML 97.77±0.07 9.0 85.08±0.14 7.7 MARL

Table 4. Comparison of NAS+AUG+HPO, AUG+HPO, and HPO
on CIFAR-100.

Module Baseline HPO AUG+HPO NAS+AUG+HPO

Acc(%) 73.50 74.39 77.37 85.08

Ablation on ML Modules. On CIFAR-100, the ablation
studies for ML modules are performed. We fix the net-
work architecture as ResNet-56 and run the optimization
of HPO and AUG+HPO. In Table 4, one can see that HPO
improves 0.89% accuracy (74.39% vs. 73.50%) over the
baseline (ResNet-56 using default hyper-parameters) while
AUG and NAS respectively improve 2.98% and 7.71%,
which are all significant margins.

5. Conclusion
We proposed MA2ML, a general framework for the joint

optimization of ML pipelines. MA2ML transforms the joint
optimization of modules as an MARL problem, and pro-
vides a method with theoretical guarantee. Empirically, we
investigated the joint optimization of AUG, NAS, and HPO
for image classification tasks on ImageNet and CIFAR-
10/100. MA2ML yields state-of-the-art top-1 accuracy on
ImageNet under constraints of computational cost with sim-
ilar settings, e.g., 79.7%/80.5% with FLOPs fewer than
600M/800M. MA2ML substantially outperforms MA2ML-
Lite and MA2ML on-policy, which empirically verified
the benefit of credit assignment and off-policy learning of
MA2ML.

MA2ML has several advantages over other AutoML
methods. First, MA2ML can be applied to the joint opti-

mization of any arbitrary combination of different ML mod-
ules. Second, MA2ML is agnostic to search spaces, so
we can choose suitable search spaces for different datasets.
Third, MA2ML can also be easily generalized to different
tasks by taking the evaluation (e.g., mIOU and pixel accu-
racy for semantic segmentation, and mAP for object de-
tection) as the reward. Fourth, MA2ML is an RL-based
method, which optimizes reward instead of training loss.
Consequently, the incompatibility of different ML modules
that may exist in the methods based on training loss, e.g.,
gradient-based methods, is naturally avoided. Last but not
the least, the search of MA2ML can be easily controlled
without affecting the optimality of the performance.

MA2ML may have some limitations. From the experi-
ments, we can find that there exists a gap between the rank
of short-term and final long-term training accuracy, which
causes the superiority of MA2ML’s final performance over
MA2ML-Lite not as large as in the search. Moreover, al-
though MA2ML provides theoretical guarantee of the per-
formance, as an MARL-based method, the search cost is
large as other RL-based AutoML methods, since receiving
the final reward costs much. How to address these two lim-
itations is left as future work.

Acknowledgement

This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC) under Grant 62225208,
62171431, 61836012, and 62250068, the Strategic Priority
Research Program of Chinese Academy of Sciences under
Grant No. XDA27000000, and Huawei Technologies Co.,
Ltd.

11967

References
[1] James Bergstra and Yoshua Bengio. Random search for

hyper-parameter optimization. Journal of Machine Learn-
ing Research, 13(2), 2012. 2

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once for all: Train one network and specialize
it for efficient deployment. In International Conference on
Learning Representations (ICLR), 2020. 6

[3] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. Darts-: Robustly stepping out
of performance collapse without indicators. In International
Conference on Learning Representations (ICLR), 2020. 2, 8

[4] Ekin D Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1, 2

[5] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-
jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew Yu,
Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search
using predictor pretraining. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. 2,
5, 6, 11

[6] Xuanyi Dong, Mingxing Tan, Adams Wei Yu, Daiyi Peng,
Bogdan Gabrys, and Quoc V Le. Autohas: Efficient
hyperparameter and architecture search. arXiv preprint
arXiv:2006.03656, 2020. 2, 8

[7] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras,
Nantas Nardelli, and Shimon Whiteson. Counterfactual
multi-agent policy gradients. In AAAI Conference on Arti-
ficial Intelligence (AAAI), 2018. 3

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems (NeurIPS), 2014. 2

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Interna-
tional Conference on Machine Learning (ICML), 2018. 4

[10] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki
Nakayama. Faster autoaugment: Learning augmentation
strategies using backpropagation. In European Conference
on Computer Vision (ECCV), 2020. 2

[11] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Mile-
nas: Efficient neural architecture search via mixed-level re-
formulation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 2, 6, 8

[12] Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter
Abbeel. Population based augmentation: Efficient learning
of augmentation policy schedules. In International Confer-
ence on Machine Learning (ICML), 2019. 2

[13] Andrew Howard, Andrey Zhmoginov, Liang-Chieh Chen,
Mark Sandler, and Menglong Zhu. Inverted residuals and
linear bottlenecks: Mobile networks for classification, de-
tection and segmentation. In IEEE/CVF International Con-
ference on Computer Vision (CVPR), 2018. 5

[14] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Euro-
pean Conference on Computer Vision (ECCV), 2016. 5

[15] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Sequential model-based optimization for general algorithm
configuration. In International Conference on Learning and
Intelligent Optimization (LION), 2011. 2

[16] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider,
and Barnabás Póczos. Multi-fidelity bayesian optimisation
with continuous approximations. In International Confer-
ence on Machine Learning (ICML), 2017. 2

[17] Taiga Kashima, Yoshihiro Yamada, and Shunta Saito. Joint
search of data augmentation policies and network architec-
tures, 2021. 2, 8

[18] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 5

[19] Aaron Klein and Frank Hutter. Tabular benchmarks for
joint architecture and hyperparameter optimization. arXiv
preprint arXiv:1905.04970, 2019. 2

[20] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 2

[21] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and
Sungwoong Kim. Fast autoaugment. In Advances in Neural
Information Processing Systems (NeurIPS), 2019. 2

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In International Confer-
ence on Learning Representations (ICLR), 2018. 2, 6, 8

[23] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Opti-
mizing millions of hyperparameters by implicit differentia-
tion. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2020. 2

[24] Dougal Maclaurin, David Duvenaud, and Ryan Adams.
Gradient-based hyperparameter optimization through re-
versible learning. In International Conference on Machine
Learning (ICML), 2015. 2

[25] Keith G Mills, Fred X Han, Mohammad Salameh,
Seyed Saeed Changiz Rezaei, Linglong Kong, Wei Lu, Shuo
Lian, Shangling Jui, and Di Niu. L2nas: Learning to op-
timize neural architectures via continuous-action reinforce-
ment learning. In ACM International Conference on Infor-
mation & Knowledge Management (CIKM), 2021. 1, 2, 6,
8

[26] Fabian Pedregosa. Hyperparameter optimization with ap-
proximate gradient. In International Conference on Machine
Learning (ICML), 2016. 2

[27] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning
(ICML), 2018. 2, 8

[28] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020. 6

[29] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI Conference on Artificial Intelligence (AAAI),
2019. 2, 6, 8

11968

[30] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-
ena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey
Kurakin. Large-scale evolution of image classifiers. In In-
ternational Conference on Machine Learning (ICML), 2017.
2

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. 2

[32] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and By-
ron Boots. Truncated back-propagation for bilevel optimiza-
tion. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2019. 2

[33] Kefan Su and Zongqing Lu. Divergence-regularized multi-
agent actor-critic. In International Conference on Machine
Learning (ICML), 2022. 4

[34] Richard S Sutton, David A McAllester, Satinder P Singh, and
Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural
Information Processing Systems (NeurIPS), 2000. 3

[35] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[36] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, 2019. 5

[37] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning (ICML), 2019. 6

[38] H. Tobias, NG Nicolás, M. Sven, and W. Stefan. Speeding up
the hyperparameter optimization of deep convolutional neu-
ral networks. International Journal of Computational Intel-
ligence and Applications, 17(02):1850008–, 2018. 1

[39] Xiaoxing Wang, Xiangxiang Chu, Yuda Fan, Zhexi Zhang,
Xiaolin Wei, Junchi Yan, and Xiaokang Yang. Rome:
robustifying memory-efficient nas via topology disentan-
glement and gradients accumulation. arXiv preprint
arXiv:2011.11233, 2020. 6

[40] Xiaoxing Wang, Xiangxiang Chu, Junchi Yan, and Xiaokang
Yang. Daas: Differentiable architecture and augmentation
policy search, 2021. 2, 6, 8

[41] Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and An-
drew Gordon Wilson. Practical multi-fidelity bayesian opti-
mization for hyperparameter tuning. In Uncertainty in Arti-
ficial Intelligence (UAI), 2020. 2

[42] Han Xiao, Ziwei Wang, Zheng Zhu, Jie Zhou, and Jiwen Lu.
Shapley-nas: Discovering operation contribution for neural
architecture search. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11892–11901, June 2022. 6

[43] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel

connections for memory-efficient architecture search. In In-
ternational Conference on Learning Representations (ICLR),
2020. 6

[44] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian,
and Zhouchen Lin. Ista-nas: Efficient and consistent neural
architecture search by sparse coding. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. 2, 6, 8

[45] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,
Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars:
Continuous evolution for efficient neural architecture search.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[46] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hut-
ter. Towards automated deep learning: Efficient joint neu-
ral architecture and hyperparameter search. arXiv preprint
arXiv:1807.06906, 2018. 2

[47] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions (ICLR), 2018. 5

[48] Miao Zhang, Shirui Pan, Xiaojun Chang, Steven Su, Jilin Hu,
Gholamreza (Reza) Haffari, and Bin Yang. Balenas: Differ-
entiable architecture search via the bayesian learning rule. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11871–11880,
June 2022. 6

[49] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong.
Adversarial autoaugment. In International Conference on
Learning Representations (ICLR), 2019. 2

[50] Xiawu Zheng, Xiang Fei, Lei Zhang, Chenglin Wu, Fei
Chao, Jianzhuang Liu, Wei Zeng, Yonghong Tian, and Ron-
grong Ji. Neural architecture search with representation mu-
tual information. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11912–11921, June 2022. 6

[51] Xiawu Zheng, Rongrong Ji, Yuhang Chen, Qiang Wang,
Baochang Zhang, Jie Chen, Qixiang Ye, Feiyue Huang, and
Yonghong Tian. Migo-nas: Towards fast and generalizable
neural architecture search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(9):2936–2952, 2021.
6

[52] Kaichen Zhou, Lanqing Hong, Shoukang Hu, Fengwei
Zhou, Binxin Ru, Jiashi Feng, and Zhenguo Li. Dha:
End-to-end joint optimization of data augmentation pol-
icy, hyper-parameter and architecture. arXiv preprint
arXiv:2109.05765, 2021. 2, 6, 8

[53] Barret Zoph and Quoc V Le. Neural architecture search
with reinforcement learning. In International Conference on
Learning Representations (ICLR), 2017. 1, 2

[54] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 1, 2, 6, 8, 11

11969

