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Abstract

Image-text retrieval is a fundamental task to bridge vi-
sion and language by exploiting various strategies to fine-
grained alignment between regions and words. This is
still tough mainly because of one-to-many correspondence,
where a set of matches from another modality can be ac-
cessed by a random query. While existing solutions to
this problem including multi-point mapping, probabilistic
distribution, and geometric embedding have made promis-
ing progress, one-to-many correspondence is still under-
explored. In this work, we develop a Multilateral Semantic
Relations Modeling (termed MSRM) for image-text re-
trieval to capture the one-to-many correspondence between
multiple samples and a given query via hypergraph model-
ing. Specifically, a given query is first mapped as a prob-
abilistic embedding to learn its true semantic distribution
based on Mahalanobis distance. Then each candidate in-
stance in a mini-batch is regarded as a hypergraph node
with its mean semantics while a Gaussian query is mod-
eled as a hyperedge to capture the semantic correlations
beyond the pair between candidate points and the query.
Comprehensive experimental results on two widely used
datasets demonstrate that our MSRM method can outper-
form state-of-the-art methods in the settlement of multi-
ple matches while still maintaining the comparable perfor-
mance of instance-level matching.

1. Introduction

Image and text are two important information carriers to
help human and intelligent agents to better understand the
real world. Many explorations [9, 18, 35] have been con-
ducted in the computer vision as well as natural language
processing domains to bridge these two modalities [16]. As
a fundamental yet challenging topic in this research, image-
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Figure 1. Examples of one-to-many correspondence caused by the
inherent nature of different modalities. The existing point-to-point
mapping can not capture the semantic richness of data.

text retrieval can benefit other vision-language tasks [1 1] in
two ways, e.g. images search for a given sentence and the
retrieval of descriptions for an image query, and spread to a
variety of applications, such as person search [48], sketch-
based image retrieval [33], and food recipe retrieval [52].

Due to the power of deep metric learning [30,31] in vi-
sual embedding augmentation, its core idea is intuitively
extended into image-text retrieval to consider the domain
differences. The naive strategy [3, 8, 38] is based on
triplet loss to learn distinctive representations at the global
level only with the help of positive pair and a hard neg-
ative one. However, such random sampling cannot effec-
tively select informative pairs, which causes a slow con-
vergence and poor performance [43]. Thus, several re-
weighting methods [1,4,42,43] are proposed to address this
issue by assigning different weights to positive and nega-
tive pairs. Moreover, a flat vector is difficult to infer the
complex relationships among many objects existing in a vi-
sual scene [16]. Hence, advanced methods formulate var-
ious attention mechanisms [2, 15, 20, 40, 50, 51] to distin-
guish important features from those negligible or irrelevant
ones based on Top-K region features obtained from the pre-
trained Faster R-CNN [29].

Actually, the prevailing image-text retrieval approaches
are instance-based, which only focus on the match of the
ground-truth sample. Despite their amazing success, image-
text retrieval is still very difficult because of the one-to-
many correspondence [6] where a set of candidates can be
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obtained. This phenomenon is partially caused by the inher-
ent heterogeneity between vision and language. In detail, an
image can cover all objects in a given scene yet lacks con-
text reasoning like text [23], while a textual description may
only describe a part scene of interest based on the subjec-
tive choices [6]. As illuminated by Figure 1, in the case
of image retrieval under the textual description of ‘A bat-
ter at a baseball game swinging his bat’, the ground-truth
image v; can be retrieved with effort but other instances
with sufficient similarity like v and v3 are possibly dis-
carded. A similar phenomenon also exists in another case of
descriptions search for a given image. The essential cause
of multiple matches is the point-to-point mapping strategy
adopted by the instance-level approaches. That is, they only
struggle to capture the one-to-one correspondence based on
the ground-truth pairs in the semantic space. Undoubtedly,
such a plain strategy suffers from insufficient representation
in one-to-many correspondence.

Recently, several works attempt to learn more distinc-
tive representations by cross-modal integration [23,45] and
progressive relevance learning [22,24]. However, they still
adopt point-to-point mapping and can not address the is-
sue of multiple matches. Based on the hedged instance
embedding [25] and the box embedding [17, 37], Proba-
bilistic Cross-Modal Embedding (PCME) [6] and Point-to-
Rectangle Matching (P2RM) [41] are successively devel-
oped to learn richer representations based on semantic un-
certainty capture. Motivated by them [6,4 1], this work in-
troduces a novel Multilateral Semantic Relations Modeling
(MSRM) method to capture the one-to-many correspon-
dence between a given query and candidates in image-text
retrieval. Concretely, our work mainly includes two parts:
semantic distribution learning for a query and multilateral
relations modeling for retrieval. The first part maps a given
query as a probabilistic embedding to learn its true seman-
tic distribution based on Mahalanobis distance. Then each
candidate instance in a mini-batch is regarded as a hyper-
graph node with its mean semantics while a Gaussian query
is modeled as a hyperedge. Afterwards, the second part
leverages the hyperedge convolution operation to capture
the beyond pairwise semantic correlations between candi-
date points and the query.

In summary, our contributions can be concluded as:

* We introduce an interpretable method named Multilat-
eral Semantic Relations Modeling to better resolve the
one-to-many correspondence for image-text retrieval.

* We propose the Semantic Distribution Learning mod-
ule to extract the true semantics of a query based on
Mahalanobis distance, which can infer more accurate
multiple matches.

* We leverage the hyperedge convolution to model the

high-order correlations between a Gaussian query and
candidates for further improving the accuracy.

2. Related Work

Image-Text Instance Retrieval is the dominant solution to
bridge the semantic discrepancy between image and text in
a common space by focusing mainly on the ground-truth
match. The efforts can also be classified into two categories
from the perspective of the feature granularity: coarse-
grained matching [3, 8, 12, 14,39, 46] which directly com-
pares the similarity of image and text based on their global
features; fine-grained matching [1, 15,20,43,50] which ag-
gregates similarity scores of all region-word as the overall
similarity of image-text pair.

Coarse-grained matching usually deploys a two-branch
deep architecture to extract global features of image and
text, then various techniques such as metric learning [8],
generative models [12], consensus concepts [38], discrete-
continuous policy gradient [46] and generalized pooling op-
erator [3] are employed to narrow the distance between se-
mantic similar samples while holding the dissimilar ones
father away based on a ranking loss. However, SCAN [15]
and VSRN [16] argue that a flat vector can not capture the
richness of an image which thus leads to poor performance
of fine-grained matching. Therefore, many following works
devote efforts to explore better local alignments by filtering
important relevance from irrelevant correlation with vari-
ous elegant strategies, which include neighbor information
gathering based on graph [16,21], vector-based similarity
graph reasoning [7,49], different re-weighting methods for
the weight of negative pairs [1,4,42,43], various attention
mechanisms [15,20,50,51].

While great effectiveness in the retrieval of the most sim-
ilar sample, the prevailing instance-based methods suffer
from poor performance in the case of one-to-many corre-
spondence. We argue that such limitations are partially at-
tributable to their point-to-point mapping strategy, which
only pays attention to the absolute matched or unmatched
sample yet ignores many samples with acceptable similar-
ity. Hence, we should take the one-to-many correspondence
into account. Otherwise wrong conclusions may be made
for the inappropriate predictions.

One-to-Many Correspondence recently attracts great
attention for its aggravating the difficulty of image-
text retrieval. Polysemous Visual-Semantic Embedding
(PVSE) [34] pioneers M -points mapping via multi-head
self-attention to address the issue of polysemy in cross-
modal matching. But the increase of the predefined param-
eter M can not work well on multiple matches. Then, Zhou
et al. [24] pay attention to the bipolar relevance between
queries and candidates where a uniform margin is set to all
non-positive samples and thus overlooks various semantic

2831



Self-Attentio

c1:A surfer is on his
board in the middle of
an ocean spraying wave.

c4:a young person
riding skis on a >

=]
snowy field o

[m}

o —qQ1
E’ (] q2
q3
- q4
o O
Hyperedge
m O o Hyperedge

g4n

Semantic Distribution

Hypergraph Modeling

Gaussian Encoder

Semantic Distribution Learning

Multilateral Relations Modeling

Figure 2. The overview of our proposed method. Gaussian Encoder maps queries into probabilistic embeddings, Semantic Distribution
Learning attempts to extract the true semantic distribution of queries, and the last part treats each query as a hyperedge and then leverages
hypergraph to model the multilateral semantic relations for one-to-many correspondence. For brevity, the overview is illustrated by image-
to-text retrieval which indicates the mean semantic of each text is regarded as a candidate while a query image is a probabilistic embedding.

proximity between image and text. However, their solution
of ladder loss is not too practical as it has multiple manu-
ally pre-set semantic margins and is still essentially based
on one-to-one relations. On the strength of PVSE [34] and
inspired by hedged instance embedding [25], Probabilistic
Cross-Modal Embedding (PCME) [6] first introduces the
semantic uncertainty estimation based on Gaussian distri-
bution into image-text retrieval as a promising solution of
one-to-many correspondence albeit its unsatisfactory per-
formance. The latest work P2RM [4 1] leverages the volume
of a rectangle query to contain many candidate points which
is actually another uncertainty estimation based on hyper-
cube embedding [17]. Nevertheless, the P2RM method suf-
fers from the difficulty of optimization for sparse gradients
caused by hard edge [17].

Overall, the explorations of one-to-many correspon-
dence remain insufficient. Based on previous achievements,
our query is first mapped as probabilistic embedding to
learn the true semantic distribution based on Mahalanobis
distance. Then, the query is modeled as a hyperedge to cap-
ture the multi-way semantic relevance to many candidate
points. Benefiting from the true semantic distribution and
the powerful representation ability, we can effectively re-
solve one-to-many correspondence in image-text retrieval.

3. The Proposed Approach

The overview of our MSRM method is illustrated in
Figure 2 and it mainly contains three components: Gaus-
sian encoder, semantic distribution learning, and multilat-
eral relations modeling. Next, we will elaborate on the con-
struction and function of each component. Note that exist-
ing solutions of one-to-many correspondence [0, 34,4 1] are
all based on global features by learning dual encoders F,,,
E; for image and text respectively, we hence follow this
paradigm.

3.1. Feature Extraction

Visual features can be obtained with the output before
the global average pooling layer of ResNet [13]: 2, =
CNN(v) : v — R>wxdv \where CNN(-) can be re-
placed by any other backbone.

Textual features is constructed as an array of word embed-
ding for a given description ¢ by the pre-trained GloVe [27]:
2 = GloVe(t) € REX4t where GloVe can also be other
embedding models and L is the length of ¢.

3.2. Gaussian Encoder

Inspired by hedge instance embedding [25] and
PCME [6], we also present a learnable Gaussian distribu-
tion for each query that aims to capture multilateral seman-
tic correspondence with a true feature distribution. That is,
we also project image and text into probabilistic embed-
ding with two learned Gaussian encoders which share the
same architecture with previous remedies [6,4 1] to multiple
matches and are based on multi-head self-attention [36].
Image Encoder E, maps a given image v into a latent
Gaussian embedding G,, including mean semantic i, ex-
traction and uncertainty estimation for variance o, based
on z,, formulated as:

s = LN(GAP(2,) 4 sg(W!Attn(z,))), (1)
0y = ReLU (WY (GAP(z,) + Attn(z,))), 2)

where GAP(-) , LN(-), Attn(-), and sg(-) indicate global av-
erage pooling, layer normalization, self-attention [36], and
sigmoid function, respectively. W! W2 € R *4 define
learnable matrices for affine transformations. Note that the
sg(-) and LN(-) operations are discarded for their restric-
tion on the capture of semantic variance, as mentioned in
PCME [6] and P2RM [41].

Text Encoder E; can be constructed in a similar way, and
the only difference is that GAP(-) for an image is changed
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to a Bi-directional Gated Recurrent Unit (BiGRU) [5] for
text context learning.

Afterwards, we can represent an image v and a descrip-
tion ¢ in the way of normal distributions with mean seman-
tics and diagonal covariance matrices of variance:

Gy~ N(E{(20),diag(E7 (20))) ~N(pv, 0c),
G~ N(E{(z),diag(E{ (2t))) ~N (e, 01),

where i, jis, 0y, 0p € RE.

Note that although our MSRM method maps both im-
age and text into probabilistic embedding, we actually em-
ploy the intact embedding of a given query while only the
mean semantic y of all candidates to perform one-to-many
(distribution-to-points) correspondence .

3)

3.3. Semantic Distribution Learning

This component aims to learn true semantic distributions
for each query based on probabilistic embedding, which can
better capture the variation of semantics, such as the seman-
tic ambiguity including synonymy, hyponymy, and multi-
view existed in descriptions [47] or the inherent uncertainty
of visual data [26].

Specifically, the distance metric between a given query
q and a candidate c is based on the squared Mahalanobis
distance rather than the traditional Euclidean distance, and
can be formulated as

d?n(% c) = (uc — Mq)TUz;l(uc — Hq)- )
Consequently, we develop a probability ;. to evaluate the
association between a query ¢ and a candidate c:

2
b _ el (a.0) s

2 cen €xp(—Td (g, )’
where B defines the set of a mini-batch, and 7 > 0 is a
learnable temperature scaling factor. This idea is reasonable
to only consider the variance of query ¢, because one-to-
many correspondence obtains multiple candidate answers,
which is caused by the incomplete semantic descriptions
of the query. Additionally, it is essentially different from
previous works [6,26,47] which learn probabilistic embed-
ding for various visual applications but their similarity is
calculated by Euclidean distance of the sampling from the
learned distributions based on Monte-Carlo estimation.
Then a soft version of contrastive loss is employed as

- ZOQ(PQC)7
—log(1 — Pye),

qc if ¢, c is a match
Ly =

(6)

otherwise.

Consider the direction of retrieval, the loss of distribution
learning can be defined as

Lag = Lavot + Laiov, @)

B B vit;
where Lg 2t = % Yot ijl L, and Lg2, can be
derived in a similar way.

3.4. Multilateral Relations Modeling.

Each pair in instance-based retrieval only provides bipo-
lar supervision which pulls positive pairs closer while push-
ing negative pairs distant [8, 15,21,50]. However, this strat-
egy causes poor performance on the multiplicity of seman-
tic retrieval [0,41]. Contrastively, we aim at learning a se-
mantic distribution of a query to model the associations with
multiple candidates that share similar semantics.

Formally, we construct a non-bipolar semantic correla-
tion S(gq) for each query based on the mini-batch B. With
the learned prototypical distribution, S(g) can be formal-
ized as a semantic relation matrix S € [0, 1]V+*¥¢, whose
entry is defined by

1, if ¢, c is a match,
_ 8
Se edm(2:0) otherwise, ®

where « is a learnable parameter to control the ratio of non-
positive samples.

Since our prototypical distribution is assumed to capture
the true distribution of semantics existing in a given query,
these different weights are considered as the relevance of
candidate answers to this query. Now, the main concern is
how to model the multilateral relations rather than the pair-
wise relationships captured by the existing powerful graph
network [16,21].

Due to the ability of complex connections modeling,
we are the first to introduce hypergraph [10] into one-to-
many correspondence of image-text retrieval. Unlike binary
graphs only modeling pairwise relations, the hypergraph
can formulate higher-order relations by enclosing multiple
nodes v € V within a hyperedge e € &£ to construct in-
cidence matrix H (Eq.9) and then learning distinctive rep-
resentations via truncated Chebyshev polynomials. Specifi-
cally, each entry of the incidence matrix H for a hypergraph
G can be defined as:

h(v,¢) 1,ifv € e, ©)
U= 0,ifv ¢ e.

Please refer to HGNN [10] for detailed explanations of hy-
pergraph. Despite the establishment of association with
multiple nodes, the hyperedge is still constructed based
on bipolar similarity, presented as its definition of Eq(9).
Therefore, we combine the non-bipolar semantic correla-
tion (Eq(8)) based on Mahalanobis distance between plau-
sible instances and the query into hypergraph to further im-
prove the hyperedge convolution for tackling the multiplic-
ity. That is, Eq(8) can be treated as a weighted version of the
incidence matrix H, where each hyperedge connects other
nodes with soft incidence weight in [0,1] computed by the
squared Mahalanobis distance.

With the constructed hypergraph, the features of candi-
dates in a mini-batch are updated via [ layers of hyperedge
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convolution:
Ut = sg(D;YPHD; P H T DYPUOY,  (10)

where U! € RB*? denotes the input features of [ layer and
is constructed by the mean semantics of candidates, sg(-) is
an activation with sigmoid function, © € R4* g a learn-
able parameter, and D., D, indicate the degrees of hyper-
edge and vertex, respectively. Please refer to HGNN [10]
for detailed definitions and derivations.

We take the output of the last layer as our final represen-
tation of each candidate. Afterwards, the similarity between
a given query and a candidate is computed with their mean
semantics based on the cosine function:

exp(—Acos(pg, pie))

P = .
/ ZceB exp(—)\cos(uq, ,uc))

Y

Finally, we can derive the loss of hypergraph modeling
as Ly, = Ly 2t + L 12, according to the soft contrastive
loss displayed in Eq.(6) and Eq.(7). The final objective loss
is the weighted combination of the two proposed losses.

L=~Lg+ Ly, (12)

where 7 is a hyper-parameter to control the contributions of
different items.

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. Following the recent solutions [6,41] of one-to-
many correspondence, the incomplete and non-exhaustive
MS-COCO [19] including 123,287 images and a smaller
yet cleaner CUB [44] with totally 11,788 images for 200
fine-grained categories of birds are taken as benchmarks
to evaluate our effectiveness. Specifically, we clone the
split information of MSCOCO widely adopted by instance-
level methods [3, 15,50], where 113, 287 images and 5, 000
instances are split into the training and validation set, re-
spectively. Each image is labeled with 5 ground-truth sen-
tences in MSCOCO while 10 captions per image are gener-
ated by [28] for CUB. The evaluation setting for MSCOCO
includes 1K test and 5K test, which are consistent with
instance-based methods [7,42,50]. The split for CUB is the
same as PCME [6] and P2RM [4 1], including 1) all classes
training; 2) zero-shot learning which picks out 50 classes as
unseen for evaluation.

Evaluation Metrics. First, we adopt the traditional Re-
call@K as our protocols to evaluate the performance of
ground-truth match. However, R@K may be not good at se-
mantic ranking especially only with bipolar relevance pro-
vided by datasets, which may cause an unsatisfactory per-
formance [0]. Hence, we also evaluate our model under
the protocols of Plausible Match Recall Precision (PMRP)

and Recall-Precision (R-P) for MSCOCO and CUB respec-
tively, which are designed to focus more on the ‘preci-
sion’ for semantics, not just ‘recall’ for the most similar
instance [6,41]. R-P is calculated by the ratio of posi-
tive instances in the top-|Q2(query)| retrieved results while
PMREP is designed to retrieve items with almost similar con-
cepts to the query as MSCOCO is non-exhaustive anno-
tated. Specifically, at most ¢ € {0,1, 2} positions differ-
ence for total 80 labels are taken into account. Please refer
to PCME [6] for detailed definitions of the above metrics.

4.2. Implementation Details

As aforementioned, we share the main architecture with
PCME [6], therefore most of the implementation details
also stay the same to PCME for fair comparisons. Con-
cretely, we pre-train ResNet [13] on ImageNet [32] and
GloVe [27] with 2.2M vocabulary to extract our initial fea-
tures for vision and language. The other unlisted settings
including backbone, dimension (d = 1024 for MS-COCO
and 512 for CUB), batch size B (64 for CUB and 128 for
MSCOCO), AdamP optimizer, and so on are consistent with
PCME [6]. The value of v is set to 0.8, the initial values of
learnable temperatures A, 7 are set to 5 and 10, and layers [
of HGNN equals to 2, respectively.

4.3. Performance Comparison

As aforementioned, PVSE [34], PCME [6], and
P2RM [41] are employed to solve the issue of one-to-
many correspondence by multi-point mapping, probabilis-
tic embedding, and geometric representation. Therefore,
we mainly compare our performance on multiple matches
with them to demonstrate the effectiveness of our proposed
MSRM method.

Additionally, several instance-based methods which fo-

cus on the ground-truth match, including VSE++ [8] which
mined hardest negative, VSRN [16] based on graph reason-
ing for better alignment, and AOQ [4] which draws the idea
of metric learning to make positive pairs closer, are also se-
lected as our competitors.
Results on CUB. We report the performance of multiple
matches under different metrics for image-text retrieval in
the CUB [44] dataset with two settings. Table 1 is for the
setting of ‘all classes training” and Table 2 is for ‘zero-shot
learning’ setting. Deep analyze these comprehensive com-
parisons between our MSRM method and other competi-
tors, we can make some important conclusions:

(1) The increase of M value can indeed improve the
R@K performance of PVSE [34] while suffering an oppo-
site trend on R-P performance, which to a certain degree
confirms that R@K metric pays more attention to the most
similar instance in the retrieval yet ignores the phenomenon
of multiple matches caused by semantic variation of im-
age or text. It also indicates that this multi-point mapping
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Table 1. Performance comparisons in the CUB dataset [44] for
‘all classes training’ setting. The ‘i’ indicates that only the mean
value of probabilistic embedding was used to evaluate.

Image-to-text Text-to-image

Methods Venue

R-P R@1 R-P R@]
VSEO [8] BMVC’18 22.40 44.20 22.60 32.70
PVSE M=1 [34] 22.30 40.90 20.50 31.70
PVSE M=2 [34] CVPR’19 19.70 47.30 21.20 28.00
PVSE M=4 [34] 18.40 47.80 19.90 34.40
PCME p [6] , 2470 46.40 25.60 35.50
PCME [6] CVPR21 26.30 46.90 26.80 35.20
P2RM [41] MM’22 26.88 49.11 27.93 37.30
MSRM Ours 27.91 51.03 28.82 39.20

which is a deterministic point mapping in nature cannot
learn the true semantic distribution. By introducing prob-
abilistic fitting and rectangle embedding, PCME [6] and
P2RM [41] can effectively alleviate the one-to-many cor-
respondence, which is mainly due to the introduction of un-
certainty estimation to capture the rich semantic space of
different modalities. However, they also suffer from vari-
ous limitations and one-to-many correspondence is still un-
der exploration, which calls for more effective solutions.

Table 2. Performance comparisons among various methods under
zero-shot setting for CUB [44].

Image-to-text Text-to-image

Methods Venue

R-P R@1 R-P R@]
VSEO [8] BMVC’18 22.35 44.19 22.57 32.71
PVSE M=1 [34] 22.34 40.88 20.51 31.71
PVSE M=2 [34] CVPR’19 19.67 4729 21.16 27.98
PVSE M=4 [34] 18.38 47.76 19.94 34.39
PCME p [6] , 2470 46.38 25.64 35.50
PCME [6] CVPR21 26.28 46.92 26.77 35.22
P2RM MM’22 26.75 47.12 27.87 37.16
MSRM Ours 27.92 50.53 28.43 37.54

(2) Differently, we learn the true semantic distribution
of queries based on Mahalanobis distance and probabilis-
tic embedding, and then capture the complex relevance be-
tween image and text via hyperedge convolution. Based
on that, we can capture the semantic variation from rep-
resentation learning and meanwhile better model the one-
to-many correspondence from high-order correlation explo-
ration. Consequently, our MSRM method can comprehen-
sively surpass the existing PCME and P2RM approaches

under all evaluation metrics and test settings. Compared
with PCME, which also utilizes probabilistic embedding to
capture semantic uncertainty, we are ahead with a margin
of at least 0.56% occurring in the image-to-text retrieval
scene, and by a maximum improvement up to 1.90%.
Even compared with the latest SOTA, we can still exceed
P2RM [41] with a satisfactory margin. For example, the
maximum relative lead is 1.17%. Various performance im-
provements experimentally demonstrate the effectiveness of
our approach in tackling the one-to-many correspondence.

(3) The advantages of our method can again be verified
in the horizontal comparison between the two settings of
all-class training and zero-shot learning. That is partly be-
cause CUB is relatively clean and our power of learned true
semantic distribution. The clean indicates that captions and
images are basically describing the same class, false posi-
tives and false negatives are unlikely to happen [6].

Results on MS-COCO. Unlike CUB [44], MSCOCO is
a large-scale yet incomplete especially bipolar relevance
dataset, which exacerbates the difficulty of one-to-many
correspondence. Similarly, we report the results of PMRP
metrics for multiple matches and widely used Recall@K
for ground-truth retrieval on MS-COCO in Table 3. The
following can be drawn from this table:

1) The performance difference between only mean se-
mantic and the intact probabilistic embedding of PCME is
very small with only about 0.1%. This phenomenon shows
that PCME does not capture semantic uncertainty well on
MSCOCO. By contrast, our approach solves the one-to-
many problem by learning true semantic distributions which
can effectively represent the semantic richness of different
modalities. Particularly, whether it is under 1K testing or
5K testing and regardless of the retrieval direction, our per-
formance on multiple matches can beat PCME by a mini-
mum of 1.33%.

2) The performance gap between two kinds of evalua-
tion metrics of VSRN [16] and AOQ [4] further indicates
that R@K focusing only on ground-truth match (the most
similar instance) may lead to poor performance in seman-
tic retrieval. Even though fine-grained alignment based
on graph structure and the power of metric learning is ap-
plied to image-text retrieval, seeking a way to address both
instance-based and semantic retrieval is a great challenge.

3) Different from P2RM [41] which mainly solves the
one-to-many issue by introducing rectangle embedding to
contain many candidate points with similar semantics, we
resolve both one-to-one and one-to-many matching by
learning a true semantic distribution and modeling multilat-
eral connections with hypergraphs. Specifically, although
P2RM is ahead of PCME in PMREP, its R@K performance
is inferior to the latter by a maximum margin of 2.2%.
However, our MSRM method is superior to the point-to-
rectangle matching strategy with varying degrees in the one-
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Table 3. The performance comparison of different metrics in MS-COCO between our MSRM method and several latest methods under 1K

and 5K test. Note that 1 indicates the results re-produced by P2RM [

] with the released code of PCME [6].

1K Test 5K Test

Methods Dimension Image-to-text ~ Text-to-image  Image-to-text  Text-to-image

PMRP R@1 PMRP R@l1 PMRP R@l1 PMRP R@]
VSE++ (BMVC’18) [8] 1024 - 64.60 - 52.00 - 41.30 - 30.30
PVSE M=1 (CVPR’19) [34] 1024 4030 66.70 4190 5350 2930 41.70 30.10 30.60
PVSE M=2 (CVPR’19) [34] 1024 x 2 4280 69.20 43.70 5520 31.80 4520 32.00 3240
VSRN (ICCV’19) [16] 2048 4120 7620 4240 62.80 29.70 53.00 29.90 40.50
VSRN +AOQ (ECCV’20) [4] 2048 x2 4470 77.50 45.60 63.50 33.00 5510 3350 41.10
PCME 1 only (CVPR’21) [6] 1024 45.00 68.00 4590 54.60 34.00 43.50 3430 31.70
PCME (CVPR’21) [6] 1024 x2 4510 68.80 46.00 5460 34.10 4420 3440 3190
PCME (CVPR’21)f 1024 x2 4510 6590 46.00 5330 34.10 41.70 3440 31.20
P2RM (ACM MM’22) [41] 1024 x2 4590 66.60 4642 5422 3552 4212 3511 31.50
MSRM (Ours) 1024 x2 4643 68.85 4735 56.12 35.62 4432 3581 3340

to-many evaluation and continues to outperform PCME in
the ground truth matching, which is sufficient to demon-
strate the effectiveness of our method even on a more diffi-
cult dataset MSCOCO. Note that our performance on R@K
is still inferior to VSRN [16] and AOQ [4], which is clearly
caused by our selection of global-level alignment.

Table 4. Ablation study on each loss in Table 5. Analysis on non-

our method. binary relevance matrix.
Methods 2T T2I Variants of S 12T T2I
R-P R@1 R-P R@1 ¢odn(a0) —( 27.1 28.1
MSRM 279 51.0 288 39.2 =1 27.7 28.7
ponly 26.8 502 27.6 387 4 =2 27.9 28.8
wlo Lq 272 492 278 381 =3 27.8 28.8
a=>5 27.8 28.7

wlo L, 25.8 45.7 262 352

4.4. Further Analysis

To demonstrate the effectiveness of our proposed
method, we further make comprehensive ablation studies
in CUB dataset with ‘all classes training’ setting. Note that
this is the default configuration unless stated otherwise.
Ablation Study. We ablate either loss of our MSRM
method (without £, or without £;,) to examine the effec-
tiveness of different components. The varying degrees of
performance degradation shown in Table 4 prove that our
two components can both help the model to solve the mul-
tiplicity of semantic matching. We further bypass the vari-
ance of query embedding, the expected performance fall in-
dicates that we have indeed learned the true semantic distri-

bution of queries to facilitate multiple matches.

Analysis of Non-bipolar Correlation. We first set the
value of « as 0 to validate the advantage of non-bipolar se-
mantic correlation in tackling multiple matches. The first
line of Table 5 validates the argument that the performance
of bi-polar setting is indeed inferior to that of our proposed
method. Additionally, we also investigated the impact of
different o on the multiplicity. Table 5 shows that the vary-
ing of o within a certain range have little effect on multiple
matches, and we set to 2 for best performance.

Parameter Sensitivity. We further explore the effect of
weight , batch size B, and hypergraph layers / on our per-
formance. Specifically, we set a numerical range [0.5,2.0]
for y to dynamically reflect our performance under different
evaluation metrics. The figure 4 shows that the performance
of different evaluators increases monotonically and then de-
creases, and the best performance is achieved at 0.8, which
is the final value of our 7.

Additionally, the impact of [ on our method is presented
in Figure 5. Too many layers of hypergraph may cause over-
fitting while a few layers are insufficient to explore the one-
to-many relations between vision and language. Therefore
our final layers are configured to 2, same as HGNN [10].

As our MSRM method attempts to capture high-order
correlations between a query and candidates in a mini-
batch, we further investigated the impact of the mini-batch
size. Figure 6 displays the results of our MSRM method
with B € {32,64,96,128}. As we can see, our perfor-
mance of one-to-many correspondence is not very sensitive
to the mini-batch size B and is optimal with a small value.
It also reveals that our MSRM method has learned the true
semantic distribution of a query, which facilitates the mul-
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Query Our MSRM

PCME

1. A couple of men are loading a truck with glass.

4. A couple are approaching a man sitting down
8| outside of a small shop.

5. A man reaches in the back of a truck .
6. A truck with a bunch of people in back of it.

3. A man bending into the back of a truck on a street

2. Many men work together to put objects in a truckg —

1. A couple of men are loading a truck with glass.

|
w o = o

2. A man bending into the back of a truck on a street.

4. A couple are approaching a man sitting down outside of a
small shop

A A A

5. A man leaning over the back of a truck in front of buildings.C =3

0
0
1 3. A man reaches in the back of a truck.
3
0
1 ¢=3

6. Some people trying to load an item onto a motorcycle.

Two children play
while eating in a
restaurant.

Figure 3. Visualization of one-to-many correspondence examples, and ¢ indicates the semantic concept differences from GT (green) under
the evaluation of PMRP. The red samples are not positive labeled in dataset but share similar semantics with that of query.

50
48
a6
a4
142
140
338

28.
—&— 2T ---0-- 12T
—@—T21---0-T2I —8—2TRP -5 2TR@L

28. —@—T2IR-P--C- T2IR@1

27.

27.

2 LlayersT 3

Figure 4. Performance effect of Figure 5. Impact of different
different ~. layers [ for hypergraph.

tiple matches between images and texts. In the end, we set
it as B = 64 for optimal performance and fair comparisons
to PCME [6] in CUB dataset.

8.8 42 —B— PVSE M=2 —@— VSRN
4 —A— PCME —— VSRN+AOQ

—@— P2RM —#— MSRM

8.7 3

3
8.6 34

=-A=-T2IR-P

Batch size 3 4

27.4 & % 8 o 1 3 3 3

32

Figure 6. Exploration on mini- Figure 7. PMRP performance
batch size B. vs. ¢ varying.

Performance vs ( Varying. We investigate the effect of ¢
varying on the PMRP performance in MS-COCO with six
methods, illustrated by Figure. 7. Our MSRM method can
achieve better one-to-many correspondence than PCME [6]
and P2RM [41] at all different ¢ values. The figure 7 can
also demonstrate that the traditional instance-based meth-

ods such as VSRN [16] and AOQ [4] are better at matching
the most similar instance yet can not capture the semantic
richness to match those plausible samples (¢ > 0).
Visualization. To further demonstrate our validity, we
visualize several examples of top-6 retrieval results in
MSCOCO between our MSRM method and the PCME,
shown in Figure 3. The ground truths marked in dataset
are in green while the other retrieval samples are in red.
From Figure 3, we find that compared to PCME, our MSRM
model can perform better both in ground-truth retrieval and
one-to-many match. We ascribe all the advances to the
adoption of semantic distribution learning and multilateral
relations modeling to the settlement of multiple matches.

5. Conclusion

In this work, we developed a novel method to better re-
solve the issue of one-to-many correspondence in image-
text retrieval. Specifically, we first learned a true semantic
distribution based on Mahalanobis distance for each query
which can better estimate the semantic uncertainty. Then
we regarded the distributions of queries as different hyper-
edges and leveraged the high-order correlation ability of hy-
pergraph to capture the multilateral relations in candidates
on the basis of their own mean semantics. Benefiting from
these novel designs, our MSRM method can significantly
improve the performance of image-text semantic retrieval.
Finally, extensive experiments with achieving new SOTA
and solid ablation studies under different evaluations in two
widely used benchmarks demonstrated that we can learn
true semantic distributions for queries, which facilitated our
effectiveness and superiority on multiple matches.
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