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Abstract

2D-based Industrial Anomaly Detection has been widely
discussed, however, multimodal industrial anomaly detec-
tion based on 3D point clouds and RGB images still has
many untouched fields. Existing multimodal industrial
anomaly detection methods directly concatenate the mul-
timodal features, which leads to a strong disturbance be-
tween features and harms the detection performance. In this
paper, we propose Multi-3D-Memory (M3DM), a novel
multimodal anomaly detection method with hybrid fusion
scheme: firstly, we design an unsupervised feature fusion
with patch-wise contrastive learning to encourage the in-
teraction of different modal features; secondly, we use a
decision layer fusion with multiple memory banks to avoid
loss of information and additional novelty classifiers to
make the final decision. We further propose a point fea-
ture alignment operation to better align the point cloud and
RGB features. Extensive experiments show that our multi-
modal industrial anomaly detection model outperforms the
state-of-the-art (SOTA) methods on both detection and seg-
mentation precision on MVTec-3D AD dataset. Code at
github.com/nomewang/M3DM.

1. Introduction
Industrial anomaly detection aims to find the abnormal

region of products and plays an important role in industrial
quality inspection. In industrial scenarios, it’s easy to ac-
quire a large number of normal examples, but defect exam-
ples are rare. Current industrial anomaly detection methods
are mostly unsupervised methods, i.e., only training on nor-
mal examples, and testing on detect examples only during
inference. Moreover, most existing industrial anomaly de-
tection methods [2,9,25,34] are based on 2D images. How-
ever, in the quality inspection of industrial products, human
inspectors utilize both the 3D shape and color characteris-
tics to determine whether it is a defective product, where
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Figure 1. Illustrations of MVTec-3D AD dataset [3]. The second
and third rows are the input point cloud data and the RGB data.
The fourth and fifth rows are prediction results, and according to
the ground truth, our prediction has more accurate prediction re-
sults than the previous method.

3D shape information is important and essential for correct
detection. As shown in Fig. 1, for cookie and potato, it is
hard to identify defects from the RGB image alone. With
the development of 3D sensors, recently MVTec-3D AD
dataset [3] (Fig. 1) with both 2D images and 3D point cloud
data has been released and facilitates the research on multi-
modal industrial anomaly detection.

The core idea for unsupervised anomaly detection is
to find out the difference between normal representations
and anomalies. Current 2D industrial anomaly detec-
tion methods can be categorized into two categories: (1)
Reconstruction-based methods. Image reconstruction tasks
are widely used in anomaly detection methods [2, 9, 14,
22, 34, 35] to learn normal representation. Reconstruction-
based methods are easy to implement for a single modal
input (2D image or 3D point cloud). But for multimodal in-
puts, it is hard to find a reconstruction target. (2) Pretrained
feature extractor-based methods. An intuitive way to uti-
lize the feature extractor is to map the extracted feature to
a normal distribution and find the out-of-distribution one as
an anomaly. Normalizing flow-based methods [15, 27, 33]
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use an invertible transformation to directly construct nor-
mal distribution, and memory bank-based methods [8, 25]
store some representative features to implicitly construct the
feature distribution. Compared with reconstruction-based
methods, directly using a pretrained feature extractor does
not involve the design of a multimodal reconstruction tar-
get and is a better choice for the multimodal task. Besides
that, current multimodal industrial anomaly detection meth-
ods [16, 27] directly concatenate the features of the two
modalities together. However, when the feature dimension
is high, the disturbance between multimodal features will
be violent and cause performance reduction.

To address the above issues, we propose a novel mul-
timodal anomaly detection scheme based on RGB images
and 3D point cloud, named Multi-3D-Memory (M3DM).
Different from the existing methods that directly concate-
nate the features of the two modalities, we propose a hy-
brid fusion scheme to reduce the disturbance between mul-
timodal features and encourage feature interaction. We pro-
pose Unsupervised Feature Fusion (UFF) to fuse multi-
modal features, which is trained using a patch-wise con-
trastive loss to learn the inherent relation between multi-
modal feature patches at the same position. To encourage
the anomaly detection model to keep the single domain in-
ference ability, we construct three memory banks separately
for RGB, 3D and fused features. For the final decision, we
construct Decision Layer Fusion (DLF) to consider all of
the memory banks for anomaly detection and segmentation.

Anomaly detection needs features that contain both
global and local information, where the local information
helps detect small defects, and global information focuses
on the relationship among all parts. Based on this obser-
vation, we utilize a Point Transformer [20, 36] for the 3D
feature and Vision Transformer [5,11] for the RGB feature.
We further propose a Point Feature Alignment (PFA) opera-
tion to better align the 3D and 2D features.

Our contributions are summarized as follows:

• We propose M3DM, a novel multimodal industrial
anomaly detection method with hybrid feature fusion,
which outperforms the state-of-the-art detection and
segmentation precision on MVTec-3D AD.

• We propose Unsupervised Feature Fusion (UFF) with
patch-wise contrastive loss to encourage interaction
between multimodal features.

• We design Decision Layer Fusion (DLF) utilizing mul-
tiple memory banks for robust decision-making.

• We explore the feasibility of the Point Transformer
in multimodal anomaly detection and propose Point
Feature Alignment (PFA) operation to align the
Point Transformer feature to a 2D plane for high-
performance 3D anomaly detection.

2. Related Works
For most anomaly detection methods, the core idea is

to find out good representations of the normal data. Tra-
ditional anomaly detection has developed several different
roads. Probabilistic-based methods use empirical cumula-
tive distribution functions [7,17] of normal samples to make
decisions. The position of representation space neighbors
can also be used, and it can be done with several clus-
ter methods, for example, k-NN [1, 24], correlation inte-
gral [21] and histogram [13]. Outlier ensembles use a se-
ries of decision models to detect anomaly data, the most
famous outlier ensembles method is Isolation Forest [18].
The linear model can also be used in anomaly detection,
for example simply using the properties of principal com-
ponent analysis [30] or one-class support vector machine
(OCSVM) [28]. The traditional machine learning method
relies on less training data than deep learning, so we cap-
ture this advantage and design a decision layer fusion mod-
ule based on OCSVM and stochastic gradient descent.

2D Industrial Anomaly Detection Industrial anomaly
detection is usually under an unsupervised setting. The
MVTec AD dataset is widely used for industrial anomaly
detection [2] research, and it only contains good cases in
the training dataset but contains both good and bad cases
in the testing dataset. Industrial anomaly detection needs to
extract image features for decision, and the features can be
used either implicitly or explicitly. Implicit feature meth-
ods utilize some image reconstruction model, for exam-
ple, auto-encoder [2, 14, 35] and generative adversarial net-
work [22]; Reconstruction methods could not recover the
anomaly region, and comparing the generated image and
the original image could locate the anomaly and make de-
cisions. Some data augmentation methods [34] were pro-
posed to improve the anomaly detection performance, in
which researchers manually add some pseudo anomaly to
normal samples and the training goal is to locate pseudo
anomaly. Explicit feature methods rely on the pretrained
feature extractor, and additional detection modules learn to
locate the abnormal area with the learned feature or repre-
sentation. Knowledge distillation methods [9] aim to learn
a student network to reconstruct images or extract the fea-
ture, the difference between the teacher network and stu-
dent network can represent the anomaly. Normalizing flow
[15, 33] utilizes an invertible transformation to convert the
image feature to Normal distribution, and the anomaly fea-
ture would fall on the edge of the distribution. Actually,
all of the above methods try to store feature information in
the parameters of deep networks, recent work shows that
simply using a memory bank [25] can get a total recall on
anomaly detection. There are many similarities between 2D
and 3D anomaly detection, we extend the memory bank
method to 3D and multimodal settings and get an impres-
sive result.
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Figure 2. The pipeline of Multi-3D-Memory (M3DM). Our M3DM contains three important parts: (1) Point Feature Alignment (PFA)
converts Point Group features to plane features with interpolation and project operation, FPS is the farthest point sampling and Fpt is
a pretrained Point Transformer; (2) Unsupervised Feature Fusion (UFF) fuses point feature and image feature together with a patch-
wise contrastive loss Lcon, where Frgb is a Vision Transformer, χrgb, χpt are MLP layers and σr, σp are single fully connected layers;
(3) Decision Layer Fusion (DLF) combines multimodal information with multiple memory banks and makes the final decision with 2
learnable modules Da,Ds for anomaly detection and segmentation, whereMrgb,Mfs,Mpt are memory banks, ϕ, ψ are score function
for single memory bank detection and segmentation, and P is the memory bank building algorithm.

3D Industrial Anomaly Detection The first public 3D
industrial anomaly detection dataset is MVTec-3D [3] AD
dataset, which contains both RGB information and point
position information for the same instance. Inspired by
medical anomaly detection voxel auto-encoder and gener-
ative adversarial network [3] were first explored in 3D in-
dustrial anomaly detection, but those methods lost much
spacial structure information and get a poor results. Af-
ter that, a 3D student-teacher network [4] was proposed to
focus on local point clouds geometry descriptor with ex-
tra data for pretraining. Memory bank method [16] has also
been explored in 3D anomaly detection with geometry point
feature and a simple feature concatenation. Knowledge dis-
tillation method [27] further improved the pure RGB and
multimodal anomaly detection results with Depth informa-
tion. Our method is based on memory banks, and in contrast
to previous methods, we propose a novel pipeline to utilize
a pretrained point transformer and a hybrid feature fusion
scheme for more precise detection.

3. Method
3.1. Overview

Our Multi-3D-Memory (M3DM) method takes a 3D
point cloud and an RGB image as inputs and conducts 3D
anomaly detection and segmentation. We propose a hybrid
fusion scheme to promote cross-domain information inter-
action and maintain the original information of every single
domain at the same time. We utilize two pretrained feature

extractors, DINO [5] for RGB and PointMAE [20] for point
clouds, to extract color and 3D representations respectively.

As shown in Fig. 2, M3DM consists of three important
parts: (1) Point Feature Alignment (PFA in Sec. 3.2): to
solve the position information mismatch problem of the
color feature and 3D feature, we propose Point Feature
Alignment to align the 3D feature to 2D space, which
helps simplify multimodal interaction and promotes detec-
tion performance. (2) Unsupervised Feature Fusion (UFF in
Sec. 3.3): since the interaction between multimodal features
can generate new representations helpful to anomaly detec-
tion [16, 27], we propose an Unsupervised Feature Fusion
module to help unify the distribution of multimodal features
and learn the inherent connection between them. (3) Deci-
sion Layer Fusion (DLF in Sec. 3.4): although UFF helps
improve the detection performance, we found that informa-
tion loss is unavoidable and propose Decision Layer Fusion
to utilize multiple memory banks for the final decision.

3.2. Point Feature Alignment

Point Feature Extraction. We utilize a Point Trans-
former (Fpt) [36] to extract the point clouds feature. The
input point cloud p is a point position sequence with N
points. After the farthest point sampling (FPS) [23], the
point cloud is divided into M groups, each with S points.
Then the points in each group are encoded into a feature
vector, and the M vectors are input into the Point Trans-
former. The output g from the Point Transformer are M
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Figure 3. UFF architecture. UFF is a unified module trained with
all training data of MVTec-3D AD. The patch-wise contrastive
loss Lcon encourages the multimodal patch features in the same
position to have the most mutual information, i.e., the diagonal el-
ements of the contrastive matrix have the biggest values.

point features, which are then organized as point feature
groups: each group has a single point feature, which can
be seen as the feature of the center point.

Point Feature Interpolation. Since after the farthest
point sampling (FPS), the point center points are not evenly
distributed in space, which leads to a unbalance density of
point features. We propose to interpolate the feature back
to the original point cloud. Given M point features gi as-
sociated with M group center points ci, we use inverse
distance weight to interpolate the feature to each point pj
(j ∈ {1, 2, ..., N}) in the input point clouds. The process
can be described as:

p′j =

M∑
i=1

αigi, αi =

1
∥ci−pj∥2+ϵ∑M

k=1

∑N
t=1

1
∥ck−pt∥2+ϵ

, (1)

where ϵ is a fairly small constant to avoid 0 denominator.
Point Feature Projection. After interpolation, we

project p′j onto the 2D plane using the point coordinate and
camera parameters, and we denote the projected points as
p̂. We noticed that the point clouds could be sparse, if a
2D plane position doesn’t match any point, we simply set
the position as 0. We denote the projected feature map as
{p̂x,y|(x, y) ∈ D} (D is the 2D plane region of the RGB
image), which has the same size as the input RGB image.
Finally, we use an average pooling operation to get the patch
feature on the 2D plane feature map.

3.3. Unsupervised Feature Fusion

The interaction between multimodal features can create
new information that is helpful for industrial anomaly de-
tection. For example, in Fig. 1, we need to combine both
the black color and the shape depression to detect the hole
on the cookie. To learn the inherent relation between the
two modalities that exists in training data, we design the

Unsupervised Feature Fusion (UFF) module. We propose a
patch-wise contrastive loss to train the feature fusion mod-
ule: given RGB features frgb and point clouds feature fpt,
we aim to encourage the features from different modalities
at the same position to have more corresponding informa-
tion, while the features at different positions have less cor-
responding information.

We denote the features of a patch as {f (i,j)rgb , f
(i,j)
pt },

where i is the index of the training sample and j is the index
of the patch. We conduct multilayer perceptron (MLP) lay-
ers {χrgb, χpt} to extract interaction information between
two modals and use fully connected layers {σrgb, σpt} to
map processed feature to query or key vectors. We denote
the mapped features as {h(i,j)rgb , h

(i,j)
pt }. Then we adopt In-

foNCE [19] loss for the contrastive learning:

Lcon =
h
(i,j)
rgb · h(i,j)pt

T∑Nb

t=1

∑Np

k=1 h
(t,k)
rgb · h(t,k)pt

T
, (2)

whereNb is the batch size andNp is the nonzero patch num-
ber. UFF is a unified module trained with all categories’
training data of the MVTec-3D AD, and the architecture of
UFF is shown in Fig. 3.

During the inference stage, we concatenate the MLP lay-
ers outputs as a fused patch feature denoted as f (i,j)fs :

f
(i,j)
fs = χrgb(f

(i,j)
rgb )⊕ χpt(f

(i,j)
pt ). (3)

3.4. Decision Layer Fusion

As shown in Fig. 1, a part of industrial anomaly only ap-
pears in a single domain (e.g., the protruding part of potato),
and the correspondence between multimodal features may
not be extremely obvious. Moreover, although Feature Fu-
sion promotes the interaction between multimodal features,
we still found that some information has been lost during
the fusion process.

To solve the above problem, we propose to utilize mul-
tiple memory banks to store the original color feature, po-
sition feature and fusion feature. We denote the three kind
of memory banks as Mrgb,Mpt,Mfs respectively. We re-
fer PatchCore [25] to build these three memory banks, and
during inference, each memory bank is used to predict an
anomaly score and a segmentation map. Then we use two
learnable One-Class Support Vector Machines (OCSVM)
[28] Da and Ds to make the final decision for both anomaly
score a and segmentation map S. We call the above process
Decision Layer Fusion (DLF), which can be described as:

a = Da(ϕ(Mrgb, frgb), ϕ(Mpt, fpt), ϕ(Mfs, ffs)), (4)

S = Ds(ψ(Mrgb, frgb), ψ(Mpt, fpt), ψ(Mfs, ffs)), (5)

where ϕ, ψ are the score functions introduced by [25],
which can be formulated as:

ϕ(M, f) = η∥f (i,j),∗ −m∗∥2, (6)
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ψ(M, f) = { min
m∈M

∥f (i,j) −m∥2
∣∣∣f (i,j) ∈ f}, (7)

f (i,j),∗,m∗ = arg max
f(i,j)∈f

arg min
m∈M

∥f (i,j) −m∥2, (8)

where M ∈ {Mrgb,Mpt,Mfs}, f ∈ {frgb, fpt, ffs} and
η is a re-weight parameter.

We propose a two-stage training procedure: in the first
stage we construct memory banks, and in the second stage
we train the decision layer. The pseudo-code of DLF is
shown as Algorithm 1.

Algorithm 1: Decision Layer Fusion Training
Input: Memory bank building algorithm P [25], decision layer

{Da,Ds}, OCSVM loss function Loc [28]
Data: Training set features {Frgb,Fpt,Ffs}.
Output: Multimodal memory banks {Mrgb,Mpt,Mfs},

decision layer parameters {ΘDa ,ΘDs}.
for modal ∈ {rgb, pt, fs} do

for fmodal ∈ Fmodal do
Mmodal ← fmodal

end
Mmodal ← P(Mmodal)

end
for frgb ∈ Frgb, fpt ∈ Fpt, ffs ∈ Ffs do

ΘDa

optim←− Loc(Da; ΘDa)

ΘDs

optim←− Loc(Ds; ΘDs)
end

4. Experiments
4.1. Experimental Details

Dataset. 3D industrial anomaly detection is in the be-
ginning stage. The MVTec-3D AD dataset is the first 3D
industrial anomaly detection dataset. Our experiments were
performed on the MVTec-3D dataset.

MVTec-3D AD [3] dataset consists of 10 categories, a
total of 2656 training samples, and 1137 testing samples.
The 3D scans were acquired by an industrial sensor us-
ing structured light, and position information was stored
in 3 channel tensors representing x, y and z coordinates.
Those 3 channel tensors can be single-mapped to the cor-
responding point clouds. Additionally, the RGB informa-
tion is recorded for each point. Because all samples in the
dataset are viewed from the same angle, the RGB informa-
tion of each sample can be stored in a single image. Totally,
each sample of the MVTec-3D AD dataset contains a col-
ored point cloud.

Data Preprocess. Different from 2D data, 3D ones are
easier to remove the background information. Following
[16], we estimate the background plane with RANSAC [12]
and any point within 0.005 distance is removed. At the same
time, we set the corresponding pixel of removed points in
the RGB image as 0. This operation not only accelerates
the 3D feature processing during training and inference but

also reduces the background disturbance for anomaly de-
tection. Finally, we resize both the position tensor and the
RGB image to 224 × 224 size, which is matched with the
feature extractor input size.

Feature Extractors. We use 2 Transformer-based fea-
ture extractors to separately extract the RGB feature and
point clouds feature: 1) For the RGB feature, we use a Vi-
sion Transformer (ViT) [11] to directly extract each patch
feature, and in order to adapt to the anomaly detection task,
we use a ViT-B/8 architecture for both efficiency and de-
tection grain size; For higher performance, we use the ViT-
B/8 pretrained on ImageNet [10] with DINO [5], and this
pretrained model recieves a 224 × 224 image and outputs
totally 784 patches feature for each image; Since previous
research shows that ViT concentrated on both global and
local information on each layer, we use the output of the fi-
nal layer with 768 dimensions for anomaly detection. 2) For
the point cloud feature, we use a Point Transformer [20,36],
which is pretrained on ShapeNet [6] dataset, as our 3D fea-
ture extractor, and use the {3, 7, 11} layer output as our 3D
feature; Point Transformer firstly encodes point cloud to
point groups which are similar with patches of ViT and each
group has a center point for position and neighbor numbers
for group size. As described in Sec. 3.2, we separately test
the setting M = 784, S = 64 and M = 1024, S = 128 for
our experiments. In the PFA operation, we separately pool
the point feature to 28× 28 and 56× 56 for testing.

Learnable Module Details. M3DM has 2 learnable
modules: the Unsupervised Feature Fusion module and the
Decision Layer Fusion module. 1) For UFF, the χrgb, χpc

are 2 two-layer MLPs with 4× hidden dimension as in-
put feature; We use AdamW optimizer, set learning rate as
0.003 with cosine warm-up in 250 steps and batch size as
256, we report the best anomaly detection results under 750
UFF training steps. 2) For DLF, we use two linear OCSVMs
with SGD optimizers, the learning rate is set as 1×10−4 and
train 1000 steps for each class.

Evaluation Metrics. All evaluation metrics are exactly
the same as in [3]. We evaluate the image-level anomaly de-
tection performance with the area under the receiver oper-
ator curve (I-AUROC), and higher I-AUROC means better
image-level anomaly detection performance. For segmen-
tation evaluation, we use the per-region overlap (AUPRO)
metric, which is defined as the average relative overlap of
the binary prediction with each connected component of
the ground truth. Similar to I-AUROC, the receiver oper-
ator curve of pixel level predictions can be used to calculate
P-AUROC for evaluating the segmentation performance.

4.2. Anomaly Detection on MVTec-3D AD

We compare our method with several 3D, RGB and RGB
+ 3D multimodal methods on MVTec-3D, Tab. 1 shows
the anomaly detection results record with I-AUROC, Tab. 2
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Method Bagel Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3D

Depth GAN [3] 0.530 0.376 0.607 0.603 0.497 0.484 0.595 0.489 0.536 0.521 0.523
Depth AE [3] 0.468 0.731 0.497 0.673 0.534 0.417 0.485 0.549 0.564 0.546 0.546
Depth VM [3] 0.510 0.542 0.469 0.576 0.609 0.699 0.450 0.419 0.668 0.520 0.546
Voxel GAN [3] 0.383 0.623 0.474 0.639 0.564 0.409 0.617 0.427 0.663 0.577 0.537
Voxel AE [3] 0.693 0.425 0.515 0.790 0.494 0.558 0.537 0.484 0.639 0.583 0.571
Voxel VM [3] 0.750 0.747 0.613 0.738 0.823 0.693 0.679 0.652 0.609 0.690 0.699
3D-ST [4] 0.862 0.484 0.832 0.894 0.848 0.663 0.763 0.687 0.958 0.486 0.748
FPFH [16] 0.825 0.551 0.952 0.797 0.883 0.582 0.758 0.889 0.929 0.653 0.782
AST [27] 0.881 0.576 0.965 0.957 0.679 0.797 0.990 0.915 0.956 0.611 0.833
Ours 0.941 0.651 0.965 0.969 0.905 0.760 0.880 0.974 0.926 0.765 0.874

R
G

B

DifferNet [26] 0.859 0.703 0.643 0.435 0.797 0.790 0.787 0.643 0.715 0.590 0.696
PADiM [8] 0.975 0.775 0.698 0.582 0.959 0.663 0.858 0.535 0.832 0.760 0.764
PatchCore [25] 0.876 0.880 0.791 0.682 0.912 0.701 0.695 0.618 0.841 0.702 0.770
STFPM [32] 0.930 0.847 0.890 0.575 0.947 0.766 0.710 0.598 0.965 0.701 0.793
CS-Flow [29] 0.941 0.930 0.827 0.795 0.990 0.886 0.731 0.471 0.986 0.745 0.830
AST [27] 0.947 0.928 0.851 0.825 0.981 0.951 0.895 0.613 0.992 0.821 0.880
Ours 0.944 0.918 0.896 0.749 0.959 0.767 0.919 0.648 0.938 0.767 0.850

R
G

B
+

3D

Depth GAN [3] 0.538 0.372 0.580 0.603 0.430 0.534 0.642 0.601 0.443 0.577 0.532
Depth AE [3] 0.648 0.502 0.650 0.488 0.805 0.522 0.712 0.529 0.540 0.552 0.595
Depth VM [3] 0.513 0.551 0.477 0.581 0.617 0.716 0.450 0.421 0.598 0.623 0.555
Voxel GAN [3] 0.680 0.324 0.565 0.399 0.497 0.482 0.566 0.579 0.601 0.482 0.517
Voxel AE [3] 0.510 0.540 0.384 0.693 0.446 0.632 0.550 0.494 0.721 0.413 0.538
Voxel VM [3] 0.553 0.772 0.484 0.701 0.751 0.578 0.480 0.466 0.689 0.611 0.609
3D-ST [4] 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833
PatchCore + FPFH [16] 0.918 0.748 0.967 0.883 0.932 0.582 0.896 0.912 0.921 0.886 0.865
AST [27] 0.983 0.873 0.976 0.971 0.932 0.885 0.974 0.981 1.000 0.797 0.937
Ours 0.994 0.909 0.972 0.976 0.960 0.942 0.973 0.899 0.972 0.850 0.945

Table 1. I-AUROC score for anomaly detection of all categories of MVTec-3D AD. Our method clearly outperforms other methods in 3D
and 3D + RGB setting; For pure 3D setting, our method reaches 0.874 mean I-AUROC score, and for 3D + RGB setting, we get 0.945
mean I-AUROC score. The results of baselines are from the [3, 16, 27, 37].

shows the segmentation results report with AUPRO and we
report the P-AUROC in supplementary materials. 1) On
pure 3D anomaly detection we get the highest I-AUROC
and outperform AST [27] 4.1%, which shows our method
has much better detection performance than the previous
method, and with our PFA, the Point Transformer is the
better 3D feature extractor for this task; for segmentation,
we get the second best result with AUPRO as 0.906, since
our 3D domain segmentation is based on the point cloud,
we find there is a bias between point clouds and ground
truth label and discuss this problem in Sec. 4.7. 2) On
RGB anomaly detection, the difference between our method
and Patchcore [25] is that we use a Transformer based fea-
ture extractor instead of a Wide-ResNet one and remove the
pooling operation before building the memory bank; Our
I-AUROC in RGB domain is 8.0% higher than the orig-
inal PatchCore results and get the highest AUPRO score
for segmentation, which is 7.6% higher than the second
best one. 3) On RGB + 3D multimodel anomaly detec-
tion, our method gets the best results on both I-AUROC and
AUPRO scores, we get 0.8% better I-AUROC than the AST
and 0.5% better AUPRO than the PatchCore + FPFH [16];
These results are contributed by our fusion strategy and the
high-performance 3D anomaly detection results. The previ-
ous method couldn’t have great detection and segmentation
performance at the same time, as shown in Tab. 3. Since the
AST [27] didn’t report the AUPRO results, we compare the
segmentation performance with P-AUROC here. Although

PatchCore + FPFH method gets a high P-AUROC score, its
I-AUROC is much lower than the other two. Besides, AST
gets a worse P-AUROC score than the other two methods,
which means the AST is weak in locating anomalies.

4.3. Ablation Study

We conduct an ablation study on a multimodal setting,
and to demonstrate our contributions to multimodal fusion,
we analyze our method in Tab. 4 with the following set-
tings: 1) Only Point Clouds (Mpt) information; 2) Only
RGB (Mrgb) information; 3) Single memory bank (Mfs)
directly concatenating Point Transformer feature and RGB
feature together; 4) Single memory bank (Mfs) using
UFF to fuse multimodal features; 5) Building two mem-
ory banks (Mrgb,Mpt) separately and directly adding the
scores together; 6) Building two memory banks separately
(Mrgb,Mpt) and using DLF for the final result; 7) Build-
ing three memory banks (Mrgb,Mpt,Mfs) (Ours). Com-
paring row 3 and 4 in Tab. 4, we can find that adding UFF
greatly improves the results on all three metrics (I-AUROC
4.1% ↑, AURPO 1.2% ↑ and P-AUROC 0.3% ↑), which
shows UFF plays an important role for multimodal interac-
tion and helps unify the feature distribution; Compare row
5 and 6, we demonstrate that DLF model helps improve
both anomaly detection and segmentation performance (I-
AUROC 0.3% ↑, AURPO 0.6% ↑ and P-AUROC 0.3% ↑).
Our full set is shown in row 7 in Tab. 4, and compared with
row 6 we have 1.3% I-AUROC and 0.5% AUPRO improve-
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Method Bagel Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3D

Depth GAN [3] 0.111 0.072 0.212 0.174 0.160 0.128 0.003 0.042 0.446 0.075 0.143
Depth AE [3] 0.147 0.069 0.293 0.217 0.207 0.181 0.164 0.066 0.545 0.142 0.203
Depth VM [3] 0.280 0.374 0.243 0.526 0.485 0.314 0.199 0.388 0.543 0.385 0.374
Voxel GAN [3] 0.440 0.453 0.875 0.755 0.782 0.378 0.392 0.639 0.775 0.389 0.583
Voxel AE [3] 0.260 0.341 0.581 0.351 0.502 0.234 0.351 0.658 0.015 0.185 0.348
Voxel VM [3] 0.453 0.343 0.521 0.697 0.680 0.284 0.349 0.634 0.616 0.346 0.492
FPFH [16] 0.973 0.879 0.982 0.906 0.892 0.735 0.977 0.982 0.956 0.961 0.924
Ours 0.943 0.818 0.977 0.882 0.881 0.743 0.958 0.974 0.95 0.929 0.906

R
G

B

CFlow [15] 0.855 0.919 0.958 0.867 0.969 0.500 0.889 0.935 0.904 0.919 0.871
PatchCore [25] 0.901 0.949 0.928 0.877 0.892 0.563 0.904 0.932 0.908 0.906 0.876
PADiM [8] 0.980 0.944 0.945 0.925 0.961 0.792 0.966 0.940 0.937 0.912 0.930
Ours 0.952 0.972 0.973 0.891 0.932 0.843 0.97 0.956 0.968 0.966 0.942

R
G

B
+

3D

Depth GAN [3] 0.421 0.422 0.778 0.696 0.494 0.252 0.285 0.362 0.402 0.631 0.474
Depth AE [3] 0.432 0.158 0.808 0.491 0.841 0.406 0.262 0.216 0.716 0.478 0.481
Depth VM [3] 0.388 0.321 0.194 0.570 0.408 0.282 0.244 0.349 0.268 0.331 0.335
Voxel GAN [3] 0.664 0.620 0.766 0.740 0.783 0.332 0.582 0.790 0.633 0.483 0.639
Voxel AE [3] 0.467 0.750 0.808 0.550 0.765 0.473 0.721 0.918 0.019 0.170 0.564
Voxel VM [3] 0.510 0.331 0.413 0.715 0.680 0.279 0.300 0.507 0.611 0.366 0.471
3D-ST [4] 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833
PatchCore + FPFH [16] 0.976 0.969 0.979 0.973 0.933 0.888 0.975 0.981 0.950 0.971 0.959
Ours 0.970 0.971 0.979 0.950 0.941 0.932 0.977 0.971 0.971 0.975 0.964

Table 2. AUPRO score for anomaly segmentation of all categories of MVTec-3D. Our method outperforms other methods on RGB and
RGB + 3D settings. for the RGB setting, our method reaches 0.942 mean AUPRO score, and for the RGB + 3D setting, our method reaches
0.964 mean AUPRO score. The results of baselines are from the [3, 16, 37].

Method I-AUROC P-AUROC

PatchCore + FPFH [16] 0.865 0.992
AST [27] 0.937 0.976
Ours 0.945 0.992

Table 3. Mean I-AUROC and P-AUROC score for anomaly detec-
tion of all categories of MVTec-3D. Our method performance well
on both anomaly detection and segmentation.

Method Memory bank I-AUROC AUPRO P-AUROC

Only PC Mpt 0.874 0.906 0.970
Only RGB Mrgb 0.850 0.942 0.987

w/o UFF Mfs 0.857 0.944 0.987
w/ UFF Mfs 0.898 0.956 0.990

w/o DLF Mrgb,Mpt 0.929 0.953 0.987
w/ DLF Mrgb,Mpt 0.932 0.959 0.990

Ours Mrgb,Mpt,Mfs 0.945 0.964 0.992

Table 4. Ablation study on fusion block. M is the number of mem-
ory banks used. Compared with directly concatenating feature,
with UFF, the single memory bank method get better performance.
With DLF, the anomaly detection and segmentation performance
gets great improvement.

ment, which further demonstrates that UFF activates the in-
teraction between two modals and creates a new feature for
anomaly detection.

4.4. Analysis of PFA Hyper-parameter

Since we are the first to use Point Transformer for 3D
anomaly detection, we conduct a series of exploring exper-
iments on the Point Transformer setting. 1) We first explore
two important hyper-parameters of Point Transformer: the
number of groups and the groups’ size during farthest point

sampling. The number of groups decides how many fea-
tures will be extracted by the Point Transformer and the
groups’ size is equal to the concept of the receptive field.
As shown in Tab. 5, the model with 1,024 point groups and
128 points per group performs better in this task, which we
think is because more feature vectors help the model find re-
fined representation and a suitable neighbor number would
give more local position information. 2) To verify the PFA
operation, we conduct another 3D anomaly detection exper-
iment with the original point groups feature: a point group
can be seen as a patch, and the memory bank store point
groups feature here; The detection method is as same as the
patch-based one, and to get the segmentation predictions,
we first project point group feature to a 2D plane and use
an inverse distance interpolation to get every pixel value;
As shown in Tab. 5 row 2, the group-based method has bet-
ter performance than its peer in row 4, however, when the
patch-size gets smaller, the PFA-based method gets the best
result on three metrics.

4.5. Analysis of Multimodal Feature distribution

We visualize the feature distribution with histogram and
t-SNE [31]. The original point cloud features have two dis-
connected regions in the t-SNE map (Fig. 4b), and it is
caused by the pooling operation on the edge between the
non-point region and the point cloud region. The two fused
features have similar distribution (in the Fig. 4a), and these
properties make the concatenated feature more suitable for
memory bank building and feature distance calculation. The
original features have a more complex distribution, which
is helpful for single-domain anomaly detection. Our hybrid
fusion scheme integrates the advantage of both original fea-
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S.G N.G Sampling I-AUROC AUPRO P-AUROC

64 784 point group 0.793 0.813 0.922
128 1024 point group 0.841 0.896 0.960
64 784 28 × 28 patches 0.805 0.879 0.963
128 1024 28 × 28 patches 0.819 0.896 0.967
128 1024 56 × 56 patches 0.874 0.906 0.970

Table 5. Exploring Point Transformer setting on the pure 3D set-
ting. S.G means the point number per group, and N.G means the
total number of point groups. We get the best performance with
1024 point groups per sample and each point group contains 128
points; Compared with directly calculating anomaly and segmen-
tation scores on point groups, the method based on a 2D plane
patch needs a small patch size towards high performance.

(a) Statistic distribution. (b) T-SNE distribution.

Figure 4. Distribution of bagel multimodal features. The fused
point feature has a smaller variance in distribution and has a closer
distribution with the fused RGB feature.

Method I-AUROC AUPRO P-AUROC

5-shot 0.796 0.927 0.981
10-shot 0.821 0.939 0.985
50-shot 0.903 0.953 0.988
Full dataset 0.945 0.964 0.992

Table 6. Few-shot setting results. On 10-shot or 5-shot setting, our
method still has good segmentation performance and outperforms
most Non-few-shot methods.

tures and fused features and thus has a better performance
than the single memory bank method.

4.6. Few-shot Anomaly detection

We evaluate our method on Few-shot settings, and the
results are illustrated in Tab. 6. We randomly select 10 and
5 images from each category as training data and test the
few-shot model on the full testing dataset. We find that our
method in a 10-shot or 5-shot setting still has a better seg-
mentation performance than some non-few-shot methods.

4.7. Discussion about the MVTec-3D AD

In this section, we discuss some properties of the
MVTec-3D AD dataset. 1) The 3D information helps de-
tect more kinds of anomalies. In the first row of Fig. 5, we
can find that the model fails to detect the anomaly with RGB
information, but with the point cloud, the anomaly is accu-
rately predicted. This indicates that 3D information indeed
plays an important role in this dataset. 2) The label bias

RGB Image M Ground TruthPoint clouds RGB PC

Figure 5. Properties of the MVTec-3D AD. PC is short for point
cloud prediction, and M is short for multimodal prediction. With
3D information on the point cloud, the anomaly is accurately lo-
cated in row 1. The label bias causes inaccurate segmentation, for
the model hard to focus on the missing area.

will cause inaccurate segmentation. As shown in Fig. 5, the
cookie of row 2 has some cuts, and the anomaly label is an-
notated on the missing area. However, for the pure point
clouds method, the non-point region will not be reported,
instead, the cut edge will be reported as an anomaly region,
the phenomenon can be seen in the PC prediction of cookie
in the Fig. 5. Because of this kind of bias between 3D point
clouds and the 2D ground truth, the 3D version has a lower
AUPRO score than the RGB one in Tab. 2. with the RGB
information, the missing region will be more correctly re-
ported as an anomaly. Although we successfully predict
more anomaly areas with multimodal data, there is still a
gap between the prediction map and the ground truth. We
will focus on resolving this problem in future research.

5. Conclusion
In this paper, we propose a multimodal industrial

anomaly detection method with point clouds and RGB im-
ages. Our method is based on multiple memory banks and
we propose a hybrid feature fusion scheme to process the
multimodal data. In detail, we propose a patch-wise con-
trastive loss-based Unsupervised Feature Fusion to promote
multimodal interaction and unify the distribution, and then
we propose Decision Layer Fusion to fuse multiple mem-
ory bank outputs. Moreover, we utilize pretrained Point
Transformer and Vision Transformer as our feature extrac-
tors, and to align the above two feature extractors to the
same spatial position, we propose Point Feature Alignment
to convert 3D features to a 2D plane. Our method outper-
forms the SOTA results on MVTec-3D AD datasets and we
hope our work be helpful for further research.
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