Neural Fields meet Explicit Geometric Representations for Inverse Rendering of Urban Scenes

Zian Wang1,2,3, Tianchang Shen1,2,3, Jun Gao1,2,3, Shengyu Huang1,4, Jacob Munkberg1, Jon Hasselgren1, Zan Gojcic1, Wenzheng Chen1,2,3, Sanja Fidler1,2,3
1NVIDIA 2University of Toronto 3Vector Institute 4ETH Zürich

Abstract

Reconstruction and intrinsic decomposition of scenes from captured imagery would enable many applications such as relighting and virtual object insertion. Recent NeRF based methods achieve impressive fidelity of 3D reconstruction, but bake the lighting and shadows into the radiance field, while mesh-based methods that facilitate intrinsic decomposition through differentiable rendering have not yet scaled to the complexity and scale of outdoor scenes. We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth. Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows. By faithfully disentangling complex geometry and materials from lighting effects, our method enables photorealistic relighting with specular and shadow effects on several outdoor datasets. Moreover, it supports physics-based scene manipulations such as virtual object insertion with ray-traced shadow casting.

1. Introduction

Reconstructing high fidelity 3D scenes from captured imagery is an important utility of scaleable 3D content creation. However, for the reconstructed environments to serve as “digital twins” for downstream applications such as augmented reality and gaming, we require that these environments are compatible with modern graphics pipeline and can be rendered with user-specified lighting. This means that we not only need to reconstruct 3D geometry and texture but also recover the intrinsic properties of the scene such as material properties and lighting information. This is an ill-posed, challenging problem oftentimes referred to as inverse rendering [1].

Neural radiance fields (NeRFs) [34] have recently emerged as a powerful neural reconstruction approach that enables photo-realistic novel-view synthesis. NeRFs can be reconstructed from a set of posed camera images in a matter of minutes [14, 35, 43] and have been shown to scale to room-level scenes and beyond [45, 48, 55], making them an attractive representation for augmented/virtual reality and generation of digital twins. However, in NeRF, the intrinsic properties of the scene are not separated from the effect of incident light. As a result, novel views can only be synthesised
under fixed lighting conditions present in the input images, i.e., a NeRF cannot be relighted [42].

While NeRF can be extended into a full inverse rendering formulation [3], this requires computing the volume rendering integral when tracing multiple ray bounces. This quickly becomes intractable due to the underlying volumetric representation. Specifically, in order to estimate the secondary rays, the volumetric density field of NeRF would have to be queried along the path from each surface point to all the light sources, scaling with $O(nm)$ per point, where n denotes the number of samples along each ray and m is the number of light sources or Monte Carlo (MC) samples in the case of global illumination. To restrict the incurred computational cost, prior works have mostly focused on the single object setting and often assume a single (known) illumination source [42]. Additionally, they forgo the volumetric rendering of secondary rays and instead approximate the direct/indirect lighting through a visibility MLP [42, 64].

In contrast to NeRF, the explicit mesh-based representation allows for very efficient rendering. With a known mesh topology, the estimation of both primary and secondary rays is carried out using ray-mesh intersection ($O(m)$) queries that can be efficiently computed using highly-optimized libraries such as OptiX [39]. However, inverse rendering methods based on explicit mesh representations either assume a fixed mesh topology [13], or recover the surface mesh via an SDF defined on a volumetric grid [36] and are thus bounded by the grid resolution. Insofar, these methods have been shown to produce high-quality results only for the smaller, object-centric scenes.

In this work, we combine the advantages of the neural field (NeRF) and explicit (mesh) representations and propose FEGR\(^1\), a new hybrid-rendering pipeline for inverse rendering of large urban scenes. Specifically, we represent the intrinsic properties of the scene using a neural field and estimate the primary rays (G-buffer) with volumetric rendering. The underlying neural field enables us to represent high-resolution details, while ray tracing secondary rays using physics-based rendering. This leads to a differentiable optimization scheme that allows us to estimate 3D spatially-varying material properties, geometry, and HDR lighting of the scene from a set of posed camera images\(^2\). By modeling the HDR properties of the scene, our representation is also well suited for AR applications such as virtual object insertion that require spatially-varying lighting to cast shadows in a physically correct way.

We summarize our contributions as follows:

- We propose a novel neural field representation that decomposes scene into geometry, spatially varying materials, and HDR lighting.
- To achieve efficient ray-tracing within a neural scene representation, we introduce a hybrid renderer that renders primary rays through volumetric rendering, and models the secondary rays using physics-based rendering. This enables high-quality inverse rendering of large urban scenes.
- We model the HDR lighting and material properties of the scene, making our representation well suited for downstream applications such as relighting and virtual object insertion with cast shadows.

FEGR significantly outperforms state-of-the-art in terms of novel-view synthesis under varying lighting conditions on the NeRF-OSR dataset [40]. We also show qualitative results on a single-illumination capture of an urban environment, collected by an autonomous vehicle. Moreover, we show the intrinsic rendering results, and showcase virtual object insertion as an application. Finally, we conduct a user study, in which the results of our method are significantly preferred to those of the baselines.

2. Related Work

Inverse Rendering is a fundamental task in computer vision. The seminal work by Barrow and Tenenbaum [1] aimed to understand the intrinsic scene properties including reflectance, lighting, and geometry from captured imagery. Considering the ill-posed nature [24] of this challenging task, early works resided to tackle the subtask known as intrinsic image decomposition, that aims to decompose an image into diffuse albedo and shading. These methods are mostly optimization-based and rely on hand-crafted priors [10, 17, 24, 65]. In the deep learning era, learning-based methods [2, 9, 22, 27, 28, 30, 41, 52–54, 57] replaced the classical optimisation pipeline and learn the intrinsic decomposition in a data-driven manner, but typically require ground truth supervision. However, acquiring ground truth intrinsic decomposition in the real world is extremely challenging. Learning-based methods thus often train on synthetic datasets [27, 28, 30, 41, 53], and may suffer from a domain gap between synthetic and real captures. In addition, these methods are limited to 2.5D prediction, i.e., 2D intrinsic images and a normal map, thus are unable to reconstruct the full 3D scene. Recent advances in differentiable rendering [38] and neural volume rendering [34] revive the optimization paradigm by enabling direct optimization of the 3D scene representation [4–8, 18, 23, 36, 60, 61, 63]. However, these works mostly focus on a single object setting and ignore higher-order lighting effects such as cast shadows.

\(^1\)Abbreviation FEGR is derived from *neural Fields meet Explicit Geometric Representations* and is pronounced as "figure".

\(^2\)We can also integrate depth information, if available, to further constrain the solution space.
Neural Scene Representation for inverse rendering mostly falls into two categories: explicit textured mesh [12, 13, 18, 36, 37, 59] and neural fields [4, 6, 60, 61, 63]. Explicit mesh representations [18, 36] are compatible with graphics pipeline and naturally benefit from classic graphics techniques. These methods show impressive performance under single-object setting but suffer from bounded resolution when scaling up to a larger scene extent. With the impressive image synthesis quality demonstrated by neural fields [34], recent works on inverse rendering also adopt neural fields as representation for scene intrinsic properties [4, 6, 50, 56, 60, 61, 63]. Despite the impressive results for primary ray appearance, it remains an open challenge for neural fields to represent higher order lighting effects such as cast shadows via ray-tracing. To reduce the complexity of ray-tracing in neural fields, prior works explore using MLP to encode visibility field [26, 42] or Spherical Gaussian visibility [64], but typically limited to object-level or low-frequency effects. The closest setup to our work is NeRF-OSR [40] that works on outdoor scene-level inverse rendering. It uses a network to represent shadows and relies on multiple illumination to disentangle shadows from albedo, but usually cannot recover sharp shadow boundaries. Related to our work are also methods that factorize the appearance changes through latent codes [31, 33]. These methods can modify scene appearance by interpolation of the latent codes, but do not offer explicit control of lighting conditions.

Lighting Estimation is a subtask of inverse rendering which aims to understand the lighting distribution across the scene, typically with the goal of photorealistic virtual object insertion. Existing work on lighting estimation is usually learning-based, adopting feed-forward neural networks given the input of a single image [16, 19, 20, 25, 29, 46, 52, 66]. For outdoor scenes, prior work investigates network designs to predict lighting representations such as a HDR sky model [19, 20, 58], spatially-varying environment map [46, 66] and a lighting volume [52]. The key challenge for outdoor lighting estimation is to correctly estimate the peak direction and intensity of the sky, which is usually the location of the sun. This is a challenging ill-posed task where a single image input may be insufficient to produce accurate results. Recent optimization-based inverse rendering works jointly optimize lighting from multi-view images [6, 18, 36, 61], however their primary purpose of lighting is to serve the joint optimization framework for recovering material properties. Lighting representations are usually point light [42] and low frequency spherical lobes [6, 40, 61], which are not suited for AR applications. In our work, we investigate optimization-based lighting estimation to directly optimize HDR lighting from visual cues in the input imagery, such as shadows. Our neural lighting representation is used as the light source for inserting virtual objects.

3. Method

Given a set of posed camera images \(\{I_i, c_i\}_{i=1}^{N_{\text{cam}}} \) where \(I \in \mathbb{R}^{h \times w \times 3} \) is an image and \(c \in \text{SE}(3) \) is its corresponding camera pose, we aim to estimate the geometry, spatially varying materials, and HDR lighting of the underlying scene. We represent the intrinsic scene properties using a neural field (Sec. 3.1) and render the views with a differentiable hybrid rendering. This allows for efficient optimization of the scene parameters to match the input images.

Figure 2. Overview of FEGR. Given a set of posed camera images, FEGR estimates the geometry, spatially varying materials, and HDR lighting of the underlying scene. We model the intrinsic properties of the scene using a neural intrinsic field and use an HDR Sky Dome to represent the lighting. Our Hybrid Deferred Renderer models the primary rays with volumetric rendering of the neural field, while the secondary rays are ray-traced using an explicit mesh reconstructed from the SD field. By modeling the HDR properties of the scene FEGR can support several scene manipulations including novel-view synthesis, scene relighting, and AR.
render (Sec. 3.2). To estimate the parameters of the neural field, we minimize the reconstruction error on the observed views and employ several regularization terms to constrain the highly ill-posed nature of the problem (Sec. 3.3). Implementation details are provided in the Appendix.

Note that our method addresses both single- and multi-illumination intrinsic decomposition. Existing literature [40] considers the multi-illumination setting that efficiently constrains the solution space of intrinsic properties and thus leads to a more faithful decomposition, while our formulation is general, and we demonstrate its effectiveness even when in the case of a single illumination capture. In the following, we keep the writing general, and address the distinction where required.

3.1. Neural Intrinsic Scene Representation

Neural intrinsic field We represent the intrinsic properties of the scene as a neural field \(F_\phi : x \mapsto (s, n, k_d, k_r) \) that maps each 3D location \(x \in \mathbb{R}^3 \) to its Signed Distance (SD) value \(s \in \mathbb{R} \), normal vector \(n \in \mathbb{R}^3 \), base color \(k_b \in \mathbb{R}^3 \), and materials \(k_a \in \mathbb{R}^2 \). Here, we use \(k_a \) to denote the roughness and metallic parameters of the physics-based (PBR) material model from Disney [11]. In practice we represent the neural field \(F_\phi \) with three neural networks \(s = f_{\text{SDF}}(x; \theta_{\text{SDF}}), n = f_{\text{norm}}(x; \theta_{\text{norm}}), \) and \((k_d, k_r) = f_{\text{mat}}(x; \theta_{\text{mat}}) \) which are all Multi-Layer Perceptrons (MLPs) with a multi-resolution hash positional encoding [35].

HDR sky dome In urban scenes, the main source of light is the sky. We therefore model the lighting as an HDR environment map located at infinity, which we represent as a neural network \(e = f_{\text{env}}(d; \theta_{\text{env}}) \), that maps the direction vector \(d \in \mathbb{R}^2 \) to the HDR light intensity value \(e \in \mathbb{R}^3 \). Specifically, \(f_{\text{env}} \) is again an MLP with hash positional encoding. The HDR representation of the environment map allows to perform scene manipulations such as relighting and virtual object insertion with ray-traced shadow casting.

Single vs multi-illumination setting As the intrinsic properties of the scene do not change with the illumination, we use a single neural field representation of the underlying scene, and use \(M \) HDR sky maps to represent \(M \) different illumination conditions present in the captured imagery.

3.2. Hybrid Deferred Rendering

We now describe how the estimated intrinsic properties and lighting parameters are utilized in the proposed hybrid deferred rendering pipeline. We start from the non-emissive rendering equation [21]:

\[
L_o(x, \omega_o) = \int_{\Omega} f_r(x, \omega_i, \omega_o) L_i(x, \omega_i) |n \cdot \omega_i| d\omega_i, \tag{1}
\]

where the outgoing radiance \(L_o \) at the surface point \(x \) and direction \(\omega_o \) is computed as the integral of the surface BRDF \(f_r(x, \omega_o, \omega_i) \) multiplied by the incoming light \(L_i(x, \omega_i) \) and cosine term \(|\omega_i \cdot n| \), over the hemisphere \(\Omega \). In all experiments we assume the simplified Disney BRDF model.

Albeit an accurate model, the rendering equation does not admit an analytical solution and is therefore commonly solved using MC methods. However, due to the volumetric nature of our scene representation, sampling enough rays to estimate the integral quickly becomes intractable, even when relying on importance sampling. To alleviate the cost of evaluating the rendering equation, while keeping the high-resolution of the volumetric neural field, we propose a novel hybrid deferred rendering pipeline. Specifically, we first use the neural field to perform volumetric rendering of primary rays into a G-buffer that includes the surface normal, base color, and material parameters for each pixel. We then extract the mesh from the underlying SD field, and perform the shading pass in which we compute illumination by integrating over the hemisphere at the shading point using MC ray tracing. This allows us to synthesize high quality shading effects, including specular highlights and shadows.

Neural G-buffer rendering To perform volume rendering of the G-buffer \(G \in \mathbb{R}^{h \times w \times 8} \), which contains a normal map \(N \in \mathbb{R}^{h \times w \times 3} \), a base color map \(\mathcal{C} \in \mathbb{R}^{h \times w \times 3} \), a material map \(\mathcal{M} \in \mathbb{R}^{h \times w \times 8} \) and a depth map \(D \in \mathbb{R}^{h \times w} \), we follow the standard NeRF volumetric rendering equation [62]. For example, consider base color \(k_b \) and let \(r = o + td \) denote the camera ray with origin \(o \) and direction \(d \). The alpha-composited diffuse albedo map \(k_d \) along the ray can then be estimated as

\[
\mathcal{K}_d(r) = \int_{t_n}^{t_f} T(t)\rho(r(t))k_d(r(t))dt, \tag{2}
\]

where \(T(t) = \exp(-\int_{t_n}^{t} \rho(r(s))ds) \) denotes the accumulated transmittance, and \(t_n, t_f \) are the near and far bound respectively. Following [51] the opaque density \(\rho(t) \) can be recovered from the underlying SD field as:

\[
\rho(r(t)) = \max\left(\frac{-\Phi_{\kappa}(f_{\text{SDF}}(r(t)))}{\Phi_{\kappa}(f_{\text{SDF}}(r(t)))}, 0\right), \tag{3}
\]

where \(\Phi_{\kappa}(x) = \text{Sigmoid}(\kappa x) \) and \(\kappa \) is a learnable parameter [51]. The surface normals and material buffer of \(G \) are rendered analogously. We render the depth buffer \(D \in \mathbb{R}^{h \times w} \) as radial distance:

\[
D(r) = \int_{t_n}^{t_f} T(t)\rho(r(t))dt, \tag{4}
\]

Shading pass Given the G-buffer, we can now perform the shading pass. To this end, we first extract an explicit mesh \(S \) of the scene from the optimized SD field using marching cubes [32]. We then estimate Eq. (1) based on
the rendered G-buffer, Specifically, for each pixel in the G-buffer, we query its intrinsic parameters (surface normal, base color, and material) and use the depth value to compute its corresponding 3D surface point x. We then perform MC sampling of the secondary rays from the surface point x. While previous work assume a simplified case where all the rays reach the light source [13,36,61], the extracted mesh S enables us to determine the visibility v_i of each secondary ray with OptiX [39], a highly-optimized library for ray-mesh intersection queries. Here, the v is defined as:

$$v_i(x, \omega_i, S) = \begin{cases} 0 & \text{if } \omega_i \text{ is blocked by } S \\ 1 & \text{otherwise} \end{cases} \quad (5)$$

The visibility of each ray is incorporated into the estimation of the incoming light as $L_i(x, \omega_i) = v_i(x, \omega_i, S) f_{env}(\omega_i; \theta_{env})$. Explicit modeling of the visibility in combination with the physically based BRDF enables us to compute higher-order lighting effects such as cast shadows.

In practice, we trace 512 secondary rays by importance sampling the BSDF and the HDR environment map. Following [18], we combine samples of the two sampling strategies using multiple importance sampling [49]. Using the highly optimized library OptiX, ray-tracing of the secondary rays is carried out in real-time. Once our representation is optimized, we can export the environment map $E \in \mathbb{R}^{h_e \times w_e \times 3}$ (evaluating f_{env} once per each texel of E), allowing us to perform importance sampling using E without additional evaluations of f_{env}. During optimization, when the SD field is continuously updated, we reconstruct a new explicit mesh every 20 iterations. Empirically, this offers a good compromise between the rendering quality and efficiency.

3.3. Optimizing the Neural Scene Representation

Given a set of posed images captured under unknown illumination condition and, when available, LiDAR point clouds, we optimize the neural scene representation end-to-end by minimizing the loss:

$$L = L_{\text{render}} + \lambda_{\text{depth}} L_{\text{depth}} + \lambda_{\text{rad}} L_{\text{rad}} + \lambda_{\text{norm}} L_{\text{norm}} + \lambda_{\text{shade}} L_{\text{shade}} + \lambda_{\text{reg}} L_{\text{reg}}, \quad (6)$$

where L_{render}, L_{depth} are the reconstruction loss on the observed pixel and LiDAR rays and L_{rad}, L_{norm}, and L_{shade} are used to regularize the geometry, normal field, and lighting, respectively. We additionally employ several regularization terms L_{reg} to constrain the ill-posed nature of the problem. λ_i are the weights used to balance the contribution of the individual terms. More details are discussed in the Appendix.

Rendering loss As the main supervision signal, we use the L1 reconstruction loss between input images and correspond-
map [18]. In urban scenes, shadows are often cast on areas with a single dominant albedo, resulting in shadow boundaries that can be used as visual cues for intrinsic decomposition. In addition, these regions are often in the same semantic class, e.g., road, sidewalks, and buildings. Based on this observation, we introduce a set of auxiliary learnable parameters -- one albedo per semantic class, and encourage its re-rendering to be consistent with the ground-truth image:

\[
L_{\text{shade}} = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{|\mathcal{R}_b|} \sum_{\mathcal{r} \in \mathcal{R}_b} |C_{\text{diffuse}}^b(\mathcal{r}) - \hat{C}(\mathcal{r})|, \quad (11)
\]

where \(B \) is the number of semantic classes, \(k_{\text{sem}}^b \in \mathbb{R}^3 \) is the \(b \)-th learnable semantic albedo, \(\mathcal{R}_b \) is the set of camera rays that belong to the \(b \)-th semantic class, \(C_{\text{diffuse}}^b(\mathcal{r}) = k_{\text{sem}}^b s_{\text{diffuse}} \) is the rendered color, and \(s_{\text{diffuse}} \) is the diffuse shading in deferred rendering. Intuitively, the shading regularization term encourages the optimization to explain the cast shadows by adapting the environment map, due to the limited capacity of per-semantic class albedo. The semantic segmentation are computed with an off-the-shelf semantic segmentation network [47].

Optimization scheme Since our hybrid renderer relies on the explicit mesh extracted from the SD field, similar to NeRF-Factor [63], we first initialise the geometry by optimizing with only radiance, then optimize with other scene intrinsics using all losses. More details are in the Appendix.

4. Experiments

We use three urban outdoor datasets to evaluate FEGR and to justify our design choices. We start by describing the datasets and the evaluation setting used in our experiments (Sec. 4.1). We then provide a quantitative and qualitative evaluation of inverse rendering of large urban scenes under multi-illumination setting (Sec. 4.2). Additionally, we evaluate our method on a very challenging scenario of autonomous driving scenes captured under a single illumination. Finally, we showcase that FEGR can support downstream tasks such as virtual object insertion with ray-traced shadow casting (Sec. 4.3).

4.1. Datasets and evaluation setting

NeRF-OSR dataset [40] contains in total eight outdoor scenes captured using a DSLR camera in 110 recording sessions across all scenes. Each session also contains an environment map estimated from the images acquired using a 360° camera. In our evaluation, we follow the setting proposed in [40]. Specifically, we use three scenes for quantitative evaluation and use 13/12/11 sessions respectively to optimize the parameters of our neural scene representation. We then use environment maps from five other recording sessions to relight each scene and measure average PSNR and MSE between the rendered and ground-truth images. To remove dynamic objects, sky and vegetation pixels we again follow [40] and use the segmentation masks predicted by an off-the-shelf semantic segmentation network [47].

Driving dataset includes two scenes captured by autonomous vehicles (AV) in an urban environment. The first scene is from the Waymo Open Dataset (WOD) [44], and has a 20-second clip acquired by five pinhole cameras and one 64-beam LiDAR sensor at 10 Hz. We use all five camera views for our experiments. The second set of scenes is also from a high-quality AV dataset (dubbed RoadData) acquired in-house. It is captured using eight high resolution (3848x2168 pixel) cameras with calibrated distortion and one 128-beam LiDAR. We only use images from the front-facing 120 FoV camera. For both scenes, we additionally rely on LiDAR point clouds for depth supervision. The Driving dataset is challenging as it records large street environments with complex geometry, lighting, and occlusion, and typically with a fast camera motion. It also only records a scene in a single drive thus providing only single illumination capture. However, urban environments are of high interest to digitize so as to serve as content to a variety of downstream applications such as gaming and AV simulation.

Baselines We select different baselines for each of the tasks. In the relighting benchmark on NeRF-OSR dataset, we compare our method to NeRF-OSR [40]. For the challenging inverse rendering problem on the Driving dataset, we compare to NVIDIA’s WEGR [18]. Finally, we perform a user-study and compare FEGR to Hold-Geoffroy et al. [19] and Wang et al. [52] on the task of virtual object insertion.

4.2. Evaluation of Inverse Rendering

Outdoor scene relighting Tab. 1 shows the quantitative evaluation of the relighting performance on the NeRF-OSR dataset. FEGR significantly outperforms the baseline across all three scenes in terms of both PSNR and MSE. In Fig. 3 we additionally show qualitative results obtained by relighting the scenes using two different environment maps The normal vectors estimated by NeRF-OSR contain high-frequency noises, which result in artifacts when relighting the scene.
with strong directional light. On the other hand, FEGR succeeds in faithfully decomposing the geometry and material from lighting and yields visually much more pleasing results with sharp cast shadows and high-quality details.

Ablation study We ablate our design choices by comparing FEGR to three simplified versions: (i) *Ours (mesh only)* denotes a version where we transfer the intrinsic properties from the neural field to the vertices of the reconstructed mesh and compute both primary and secondary rays from the mesh representation, (ii) in *Ours (w/o shadows)* we disregard secondary rays and render only the primary rays from the neural field, and (iii) *Ours (w/o exposure)* where we do not perform per color channel exposure compensation (see Appendix for more details). Tab. 1 show that the proposed combination of the high resolution neural field with the explicit mesh is crucial to high-quality results. Physically based ray-tracing of shadows and exposure compensation further boost our performance and result in gains of up to 1.5 dB PSNR.

Driving dataset Driving dataset is challenging in several aspects: (i) The scenes are large (up to 200m × 200m in horizontal plane) with complex geometry and spatially-varying material; (ii) Environment illumination is unknown and could contain high intensity from the sun; (iii) Images are captured by a fast-moving vehicle (≈ 10 m/s on WOD dataset) resulting in motion blur and HDR artifacts. Even so, our method still achieves superior intrinsic scene decomposition on both scenes, leading to photo-realistic view-synthesis results (see Fig. 4). Compared to Nvdiffrecmc⁴ [18], we reconstruct cleaner base color, more accurate geometry, and

⁴In driving scenario where inputs is a restricted set of views in an "inside-looking-out" manner, Nvdiffrecmc relies heavily on depth supervision to recover the geometry. This leads to artifacts on surfaces that are not observed by LiDAR or have incorrect depth signal (e.g. windows). The erroneous geometry hurts the estimation of intrinsic properties.
higher resolution environment maps. It is worth noting that Nvdiffrecmc is designed for "outside-looking-in" setups with 360-view coverage and does not directly work on Driving dataset without modifications. In Fig. 5 we additionally show the qualitative scene relighting results under the challenging illumination settings.

4.3. Application to virtual object insertion

Qualitative comparison Fig. 6 shows qualitative results of object insertion on Driving dataset. FEGR is capable of faithfully representing the location of the sun, resulting in cast shadows that agree with the surroundings and yield a photo-realistic insertion.

User study To quantitatively evaluate the object insertion results of FEGR against other baselines, we conduct a user study using Amazon Mechanical Turk. In particular, we show the participants two augmented images with the same car inserted by our method and by the baseline in random order, and ask them to evaluate which one is more photo-realistic based on: (i) the quality of cast shadows, and (ii) the quality of reflections. For each baseline comparison, we invite 9 users to judge 29 examples and use the majority vote for the preference for each example. The results of the user study are presented in Tab. 2. A significant majority of the participants agree that FEGR yields more realistic results than all baselines, indicating a more accurate lighting estimation of our method.

5. Conclusion

We introduced FEGR, a novel hybrid rendering pipeline for inverse rendering of large urban scenes. FEGR combines high-resolution of the neural fields with the efficiency of explicit mesh representations and is capable of extracting the scene geometry, spatially varying materials, and HDR lighting from a set of posed camera images. The formulation of FEGR is flexible and it supports both single and multi-illumination data. We demonstrated that FEGR consistently outperforms SoTA methods across various challenging datasets. Finally, we have demonstrated that FEGR can seamlessly support various scene manipulations including relighting and virtual object insertion (AR).

Limitations While FEGR makes an important step forward in neural rendering of large urban scenes, it naturally also has limitations. Inverse rendering is a highly-ill posed problem in which the solution spaces has to be constrained, especially when operating on single illumination data. We currently rely on manually designed priors to define regularization terms. In the future we would like to explore ways of learning these priors from the abundance of available data. Similar to most methods based on neural fields, FEGR is currently limited to static scenes. A promising extension in the future could incorporate advances in dynamic NeRFs [15] to mitigate this problem.
References

[64] Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou. Modeling indirect illumination for inverse rendering. In CVPR, 2022. 2, 3
