
Non-line-of-sight Imaging with Signal Superresolution Network

Jianyu Wang1, Xintong Liu1, Leping Xiao1, Zuoqiang Shi1,2, Lingyun Qiu1,2, and Xing Fu1

1Tsinghua University
2Yanqi Lake Beijing Institute of Mathematical Sciences and Applications

Abstract

Non-line-of-sight (NLOS) imaging aims at reconstruct-
ing the location, shape, albedo, and surface normal of the
hidden object around the corner with measured transient
data. Due to its strong potential in various fields, it has
drawn much attention in recent years. However, long ex-
posure time is not always available for applications such
as auto-driving, which hinders the practical use of NLOS
imaging. Although scanning fewer points can reduce the
total measurement time, it also brings the problem of imag-
ing quality degradation. This paper proposes a general
learning-based pipeline for increasing imaging quality with
only a few scanning points. We tailor a neural network
to learn the operator that recovers a high spatial resolu-
tion signal. Experiments on synthetic and measured data
indicate that the proposed method provides faithful recon-
structions of the hidden scene under both confocal and non-
confocal settings. Compared with original measurements,
the acquisition of our approach is 16 times faster while
maintaining similar reconstruction quality. Besides, the
proposed pipeline can be applied directly to existing opti-
cal systems and imaging algorithms as a plug-in-and-play
module. We believe the proposed pipeline is powerful in
increasing the frame rate in NLOS video imaging.

1. Introduction
Non-line-of-sight (NLOS) imaging problem usually em-

ploys a high temporal resolution optical system to recover
the hidden object around the corner. As shown in Fig. 1a,
photons emitted by the laser are collected by the detector
after three diffuse reflections: the reflection at the visible
wall, the reflection at the hidden object, and the reflection
at the visible wall again. Scanning a region on the visible
wall can get measured histogram data to recover the hidden
scene.

Due to its potential applications in various fields, such
as auto-driving, disaster relief, and remote sensing, the
NLOS imaging problem has become an emerging field
since it was first proposed by Kirmani et al. [17] in 2009.

(a) NLOS scenario

(b) Scanning points (c) Results

Figure 1. A typical NLOS scenario and reconstruction results. (a)
An illustration of a typical NLOS scenario. (b) An illustration
of the scanning points on the visible wall. Using the proposed
pipeline, only the blue circle points are needed to be illuminated,
and the signal at the yellow square points can be recovered with
the proposed pipeline. (c) Comparisons of the reconstruction re-
sults of the pyramid with different signals. The maximum intensity
projection of the albedo values along the depth direction is shown
in the upper left corner (GT). The results are reconstructed by the
original signal with spatial resolution 32× 32 (Original), the sub-
sampled signal with spatial resolution 8× 8 (Low), and the signal
recovered by the proposed network with spatial resolution 32×32
(Ours).

Many methods have been proposed to improve the prac-
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Figure 2. Flowchart of the proposed pipeline. The high resolution signal is recovered from the low resolution signal using a neural network.
The hidden scene is then reconstructed using state-of-the-art imaging algorithms designed for high resolution signal.

ticability [1, 3, 13, 14, 34, 35, 39] or reconstruction quality
[10, 11, 26, 41]. A back-projection method with Laplacian
of Gaussian filter (LOG-BP) [18] is introduced to improve
the reconstruction quality of the back-projection method
[38]. In 2018, O’Toole et al. [31] first apply the light-cone-
transform (LCT) method to image the hidden object with a
confocal scanning mode. Young et al. [45] then propose the
directional light-cone-transform (D-LCT) method, which
simultaneously recovers the albedo and surface normal of
the hidden object. From the perspective of wave charac-
teristics, Lindell et al. [22] introduce the fast frequency-
wavenumber migration (F-K) method to NLOS. Another re-
markable imaging method proposed by Liu et al. [25] em-
ploys the phasor field model [9, 33] and provides an effi-
cient solution for fast NLOS imaging under non-confocal
scenario [24]. Further improvements of this method us-
ing single photon avalanche diode (SPAD) arrays achieve
real-time imaging [21, 30]. Deep learning based methods
have also been introduced [7, 8, 12, 16, 29]. Recently, Liu et
al. [27] propose the signal-object collaborative regulariza-
tion (SOCR) method, which can improve the resolution of
the reconstructed object, especially in cases with high mea-
surement noise.

However, one main obstacle in NLOS imaging is that we
need a long exposure time to improve the signal-to-noise
ratio (SNR) of the measurement, which is not admissible
in many scenarios, such as auto-driving. Several methods
have been proposed to reduce the capture time [20,23]. For
a confocal scenario, Isogawa et al. [15] propose a circular
scanning mode. In 2021, Metzler et al. [28] consider an
extreme case that tracks the objects with a single detection
point. By introducing the downsampling operation, Ye et
al. [44] reconstruct the object with a subset of the virtual
sources. For non-confocal scenarios, most methods employ
SPAD arrays to realize fast measurement. Among them,
Nam et al. [30] achieve a reconstruction of five frames per
second by remapping the data from two 16 × 1 SPAD ar-
rays. Pei et al. [32] realize 20 frames per second recon-
struction using a 32 × 32 SPAD array. In 2022, Yang et
al. [42] propose a spatial multiplexing method based on the

compressed sensing strategy. Although these methods can
reduce the measurement time, they might either cause de-
terioration in imaging quality or substantially increase ex-
pense.

In this paper, we propose a deep learning based pipeline
that can reconstruct the hidden object with fine details using
only a small number of scanning points. Different measure-
ment densities are shown in Fig. 1b. In the following sec-
tions, we term the signal measured at the blue circle points
as the “low resolution signal” while those measured at both
circle and square points as the “high resolution signal”.

Instead of designing new algorithms for sparse measure-
ments, we focus on recovering the dense virtual signals,
which can be applied to most algorithms as a plug-in-and-
play module. The proposed pipeline consists of two steps:
the low resolution signal is first mapped into the high reso-
lution signal space by a neural network; the reconstruction
is then obtained from the recovered high resolution signal
using existing imaging algorithms. The reconstruction re-
sults of the pyramid are shown in Fig. 1c. These results
are reconstructed by the F-K method. As the comparison
shows, the proposed pipeline can provide a high quality re-
construction with only 64 scanning points, which is 6.25%
of the original number.

To our best knowledge, this is the first work in NLOS
to study the signal recovery problem of the low resolution
signal sparsely measured on a uniform grid. The proposed
method can reduce the exposure time without losing the re-
construction quality. The main contributions of this work
are:

• We propose a novel learning based pipeline for faithful
reconstruction of the hidden scene, which only takes
6.25% of the original measuring time.

• We show that the high resolution signal can be recov-
ered accurately with the proposed signal superresolu-
tion network, which we abbreviate as “SSN”.

• The effectiveness of the proposed method is vali-
dated on public datasets under both confocal and non-
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Figure 3. The architecture of the signal superresolution network (SSN) in the proposed pipeline. The network is composed of two main
branches: a conventional upsampling branch and a learning branch. The final output is the sum of the results from these two branches.

confocal settings.

• We demonstrate the potential application of the pro-
posed method in high frame rate (64 frames per scond)
NLOS video imaging using public datasets.

2. Reconstruction Pipeline
This work aims to develop a learning based pipeline for

NLOS imaging, which can reduce the measurement time
while maintaining the reconstruction quality. In this section,
we formulate the signal recovery problem and introduce the
proposed pipeline.

2.1. Formulation of the problem

Most existing methods that reconstruct the hidden object
from low resolution signals dl can be formulated as

I(x, y, z) = Fl(dl) (1)

in which I(x, y, z) is the reconstructed object and Fl is
the imaging algorithm designed for low resolution signal
[15, 28, 44]. Since only a few sampling points are scanned,
the total exposure time can be reduced. However, the re-
construction quality also decreases with the number of scan
points.

On the contrary, the algorithms designed for high reso-
lution signal can be expressed as

I(x, y, z) = Fh(dh) (2)

in which Fh represents the algorithm designed for high res-
olution signal dh. Many works have been proposed for
fast [22, 24, 31, 45] and high resolution [18, 27] reconstruc-
tion as discussed above.

In this work, we aim at designing a pipeline that can
provide faithful reconstruction with only a small number of

scanning points, and has good compatibility with traditional
optical systems as well as existing imaging algorithms. To
solve this problem, we introduce a signal recovering opera-
tor Φ, which maps the low resolution signal dl into the space
of high resolution signal dh. The proposed pipeline can be
expressed as

I(x, y, z) = Fh(Φ(dl)) (3)

in which Φ(dl) is of the same size with dh. Thus, the prob-
lem of NLOS imaging from low resolution signal converts
to the problem of finding the operator Φ which satisfies
Φ(dl) = dh.

2.2. The choice of recovering operator

The choice of the operator Φ is highly dependent on the
physical model of the measurement process. We adopt a
simplified version of the widely used three-point transport
model [37] as

τ(xl,xd, t) =

∫
S

T (xl,xd, t, s)C(xl,xd, s)f(s)dA(s)

(4)
in which τ is the photon intensity detected with the virtual
source xl, virtual detector xd and time t. f(s) represents
the albedo of the point s on the hidden object S and A(s) is
the corresponding area measure. T is a function that char-
acterizes the arrival time of the photons, which is defined
as

T (xl,xd, t, s) = δ(||xl − s||2 + ||xd − s||2 − ct) (5)

in which δ is the Dirac function and c is the light speed. Be-
sides, the function C characterizes the intensity attenuation
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in the physical model, which is expressed as

C(xl,xd, s) =
< s− xl,n(xl) >< xl − s,n(s) >

||xl − s||42

×< s− xd,n(xd) >< xd − s,n(s) >

||xd − s||42

(6)

in which n(s) is the unit normal vector pointing toward the
visible wall at point s and < ·, · > is the inner product in
R3.

Suppose that there are two pairs (xl1 ,xd1
), (xl2 ,xd2

) on
the visible wall. For a fixed point s on the hidden object, we
assume that the contributions of this point to the signal at
these two pairs are contained in time bin t1 and t2 respec-
tively. Then from Eq. (5), we know that t1 and t2 are close
if

D = ||xl1 − xl2 ||2 + ||xd1
− xd2

||2 (7)

is small. We can then regard the signal recovery problem
as an interpolation problem, since the points have contribu-
tions to neighboring time bins.

However, when the spacing between adjacent detection
points is large, conventional interpolation methods will fail
due to the violation of the assumption. This phenomenon is
very common in practical applications. To solve this prob-
lem, Nam et al. [30] employs two SPAD arrays to meet
the assumption, but brings additional expense to the sys-
tem. Another solution is brought up by Yang et al. [42],
which combines a micro-mirror device with the compressed
sensing strategy to increase detection efficiency. However,
this method is sensitive to the geometry of the visible wall,
which limits its application.

Instead of introducing new detection systems, we take
advantage of the fast development of deep learning meth-
ods and adopt a neural network to learn the nonlinear oper-
ator Φ. Details about the network will be introduced in the
next section. With the employed network, we can obtain a
better approximation of the operator Φ, as well as a higher
reconstruction quality.

The proposed pipeline is shown in Fig. 2. The low res-
olution signal dl is first processed by the neural network Φ
to recover the high resolution signal Φ(dl). Then the recon-
struction I is obtained using the existing imaging algorithm
Fh. With the proposed pipeline, we can decrease the expo-
sure time significantly while maintaining the reconstruction
quality.

3. Signal Superresolution network
Based on the analysis in the last section, we have formu-

lated the signal recovery problem as an interpolation prob-
lem and have noticed that conventional interpolation meth-
ods may fail when the spacing between adjacent detection
pairs gets larger. Besides, the contribution of one point on

Figure 4. Comparisons of the mean SNR values of the results ob-
tained with the nearest neighbor method and the proposed network
on testing sets. The signals recovered by the proposed network
have much higher SNR on both testing sets.

the hidden object is contained in adjacent time bins for ad-
jacent detection pairs. It means that the problem can not
be solved by simply applying 2-D image superresolution
to each time slice.

In this section, we introduce the neural network which
learns the nonlinear signal recovery operator Φ and the
training dataset. Details about the training process and the
ablation study are provided in the supplement.

3.1. Network architecture

Recently, attention mechanism [4, 36] has become in-
creasingly popular in the deep learning society. However,
it has been shown that there is no need to apply the atten-
tion mechanism to every part of the network [6].

To learn the operator, we generalize the attention in at-
tention net (A2N) [6] which has two branches and dropout
modules for the attention mechanism. One of the branches
uses the conventional method to provide a rough estima-
tion of the high resolution signal, and the other branch em-
ploys the network. The final output is the sum of the results
from these two branches. The network architecture with
two branches has been widely studied in the field of image
superresolution [2, 19, 43].

The proposed signal superresolution network (SSN) is il-
lustrated in Fig. 3. The learning branch is composed of sev-
eral convolution layers and 3-D attention in attention blocks
(3D-A2B). Each block has a dropout module to learn the
weight between the attention branch and the non-attention
branch, which can determine whether the attention mech-
anism is needed in the block. The reconstruction module
contains several convolution layers to reconstruct the high
resolution signal through the extracted feature. The low di-
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mensional feature is first interpolated to a high dimensional
feature using trilinear interpolation, and then the feature is
processed by several convolution layers. The output of the
convolution layer is passed to the next part of the recon-
struction module and the process is repeated.

The generalization of the network from A2N [6] to SSN
is not trivial. Based on our analysis, the contribution of
one point on the hidden object is contained in adjacent time
bins for adjacent detection pairs. Conventional interpola-
tion methods will perform poorly when the spacing between
adjacent detection pairs gets larger. Thus, 3-D kernels are
needed to extract and recover the information, and the size
of the kernels is relevant to the spacing. In addition, the sig-
nal is only interpolated in spatial dimensions instead of all
three dimensions to make the operator easier to learn.

3.2. Dataset

For all experiments in this paper, we use subsets of
Fashion-MNIST [40] and ShapeNet [5] to generate syn-
thetic signals for training and testing. The Fashion-MNIST
dataset consists of 2-D figures, while the ShapeNet com-
prises 3-D objects. We choose 5,000 samples from the train-
ing set of Fashion-MNIST and the class “Car” of ShapeNet
respectively to generate our training set. In addition, we
choose 1,000 samples from the testing set of Fashion-
MNIST and the class “Car” of ShapeNet respectively to
generate the testing set. Thus, the training set used in this
work comprises 10,000 signal pairs, and the testing set com-
prises 2,000. All the signals are generated using Eq. (4).
Besides, we set Nx = Ny = 8, Nt = 100 in this paper.
For measured signals whose Nt is larger than 100, the net-
work can also be applied directly since the network operates
locally.

For the confocal scenario, to match the experimental set-
ting with the Stanford dataset [22], the 2-D figures from
FashionMNIST [40] are placed 1 m away from the visible
wall, the size of the figures is set as 1 × 1 m2. And the 3-D
objects from ShapeNet [5] are placed in a 1 × 1 × 0.2 m3

(horizontal, vertical, depth) box with a maximum depth of
1.1 m. The illumination region on the visible wall is 2 × 2
m2, and the time resolution of the SPAD is 32 ps.

For the non-confocal setting, we match the experimental
setting with the data provided by phasor field [25]. The 2-D
figures from Fashion-MNIST are placed 1 m away from the
wall, and the size is 1.25 × 1.25 m2. The 3-D objects from
ShapeNet are placed in a 1.25 × 1.25 × 0.2 m3 (horizontal,
vertical, depth) box with a maximum depth of 1.1 m. The
illumination region on the visible wall is 1.25 × 1.25 m2,
and the time resolution of the SPAD is 16 ps.

4. Results
In this section, we show the reconstruction results of the

proposed pipeline on both synthetic and measured data. For

(a) GT

(b) Recovered signals

(c) Reconstruction results

Figure 5. Recovered signals and reconstruction results of the pyra-
mid. (a) Ground truth of the hidden object. (b) A comparison of
the recovered signals (the first arrival time of the original signal
is marked by the blue curve in the zoom-in window of each sub-
figure). (c) Reconstruction results of state-of-the-art methods with
different signals.
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each instance, reconstruction results obtained with signals
of different spatial resolutions are shown to validate the
effectiveness of the proposed pipeline. The first column
(Original) shows reconstructions obtained from the origi-
nal signal with a spatial resolution of 32 × 32; results in
the second column (Low) are reconstructed using the signal
scanned at 8 × 8 points; the third column (Nearest) shows
reconstructions of the recovered signal obtained with near-
est neighbor interpolation; the last column (Ours) illustrates
reconstruction results obtained with the proposed pipeline.
Comparisons with other interpolation methods and exsiting
learning based NLOS imaging method are provided in the
supplement.

To illustrate the proposed pipeline can be acted as a plug-
in-and-play module for most algorithms, we combine state-
of-the-art methods with our pipeline. For confocal experi-
ments, the results are reconstructed by F-K [22], LCT [31],
LOG-BP [18], D-LCT [45] and SOCR [27] algorithms,
while for non-confocal experiments, results are given by
LOG-BP, Phasor [24] and SOCR methods. For each in-
stance, the parameters are fixed in each algorithm.

To assess the results quantitatively, we compute the sig-
nal to noise ratio (SNR) of the recovered signals, as well as
the peak signal to noise ratio (PSNR) and structural simi-
larity index measure (SSIM) of the reconstructed maximum
intensity projections. For measured data, we use the recon-
structions obtained from the original signals as references
to compute PSNR and SSIM.

4.1. Results of confocal experiment

In Fig. 4, we compare the mean SNR values of the
signals interpolated with SSN and the nearest neighbor
method. It is shown that the network provides much bet-
ter results on both datasets. In other words, the network ap-
proximates the oracle interpolation operator Φ with high ac-
curacy and serves as a crucial part of the proposed pipeline.

To test the robustness of the proposed pipeline, we use
the instance of the pyramid from SOCR [27], whose signal
was generated with a different physical model. As shown
in Fig. 5b, the first arrival time is correctly recovered by the
proposed network, while the nearest neighbor interpolation
method fails. Fig. 5c shows that the proposed pipeline pro-
vides a signal for high quality reconstructions with better
visual quality and higher PSNR and SSIM values.

The proposed pipeline is then tested on measured data
from Stanford dataset [22]. This dataset contains signals
measured with different hidden objects and exposure time.
We choose the instance of the statue to validate the effec-
tiveness of the proposed pipeline. The measurement time of
each sampling point is 0.0069 s. The total exposure time of
the signal scanned at 32 × 32 points is 7.03 s, and it only
takes 0.44 s to scan 8 × 8 points. As is shown in Fig. 6b,
the result of SSN has higher SNR. The first arrival time can

(a) GT

(b) Recovered signals

(c) Reconstruction results

Figure 6. Recovered signals and reconstruction results of the
statue. (a) Ground truth of the hidden object. (b) A comparison
of recovered signals (the first arrival time of the original signal
is marked by the blue curve in the zoom-in window of each sub-
figure). (c) Reconstruction results of state-of-the-art methods with
different signals.
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hardly be distinguished in the nearest neighbor interpolated
signal, while it is much clearer in the signal recovered by
the proposed network. As shown in Fig. 6c, the proposed
pipeline results in fewer artifacts in the background. More
comparisons of different exposure times are provided in the
supplement, which also indicates the outperformance of the
proposed pipeline.

4.2. Results of the dynamic scene

To illustrate the potential application of the proposed
pipeline on real-time NLOS imaging, we test it on the cap-
tured dynamic scenes from the Stanford dataset. The data
is captured over a 2 × 2 m2 region on the visible wall, and
the person is wearing a retroreflective suit to increase the
detection of the indirect signal. It takes 0.25 s to scan 32
× 32 points, which allows for a reconstruction video with
4 frames per second. The reflection model of the retrore-
flective material [31] is different from the one defined in
Eq. (6).

The results of several frames are shown in Fig. 7b, the
complete video of the reconstruction results can be found in
the supplement. All the results are reconstructed by the F-K
method. Although the training set is generated by a differ-
ent forward model, the proposed pipeline can still recover
signals for high quality reconstructions. The pose of the
person can be clearly identified in the reconstructions using
the proposed pipeline, while the reconstructions using the
nearest neighbor interpolated signal contain more artifacts.
The mean PSNR and SSIM of the reconstruction results ob-
tained from the proposed pipeline are 24.46 and 0.63, while
those obtained with nearest neighbor interpolation are only
18.68 and 0.37.

The total capture time of each frame is reduced from 0.25
s to 0.0156 s. This enables us to obtain a high quality recon-
struction video with 64 frames per second. Besides, it only
takes 0.08 s to recover the high resolution signal with the
proposed network, and 0.01s to reconstruct the hidden ob-
ject with the F-K method on an NVIDIA RTX 3090. Thus,
real-time video imaging with a high frame rate can be real-
ized with a delay of a few frames.

4.3. Results of non-confocal experiment

For the non-confocal setting, we use the instance of “4”
provided by Phasor [24] to validate the effectiveness of the
proposed method. The measured signal is subsampled to
32 × 32 and the illumination region on the visible wall is
cropped to 1.25 × 1.25 m2. We use the signal scanned at 8
× 8 points as the input of our pipeline. It takes 1 s to scan
each point on the visible wall.

As is shown in Fig. 8b, the SNR of the signal recovered
by the network is much higher than the one interpolated
with the nearest neighbor method. Reconstruction results
are shown in Fig. 8c. The proposed pipeline provides re-

(a) GT

(b) Reconstruction results

Figure 7. Reconstruction results of the dynamic scene. (a) An il-
lustration of the dynamic scene. (b) Reconstruction results of the
dynamic scene. The results are obtained with the F-K method.
The PSNR and SSIM values are computed with the reconstruc-
tions obtained with the original signals as references. The pro-
posed pipeline provides much better reconstructions in terms of
both quantitative criteria and visual quality.

constructions with higher quantitative and visual quality.

5. Discussion
We have introduced a novel pipeline for high quality

NLOS reconstruction with the signal measured at only a
small number of scanning points. In this section, we dis-
cuss several factors that affect the reconstruction quality and
some feasible solutions to improve the pipeline further.

5.1. Training of the network

The training of the network employed in the proposed
pipeline is supervised. Thus, it is affected by the generation
of the training set, including the forward model, experimen-
tal setting, and hidden objects. For example, hidden objects
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with different materials will lead to various physical mod-
els. The networks trained and tested on signals with differ-
ent models would bring additional errors to the results.

However, a network with good generalization ability can
avoid degradation. As shown in Fig. 7, although the physi-
cal model of the dynamic scenes differs from the one used
in the training set, the reconstructed objects are only slightly
affected. Thus, the proposed pipeline has strong robustness
to the forward model.

5.2. Performance of different algorithms

As the reconstruction results shown in previous sections,
the improvement of reconstruction quality of the proposed
pipeline varies between different methods. Compared to the
reconstruction results obtained from the low resolution sig-
nal, fast imaging algorithms like F-K, LCT and D-LCT have
larger improvements, while the iterative inversion algorithm
SOCR might have similar visual quality in some cases. This
phenomenon may come from the fact that the iterative algo-
rithm can make full use of the information contained in the
signal, but with a longer reconstruction time.

5.3. Combination with SPAD array for further ac-
celeration

Since the proposed pipeline can recover the signal faith-
fully under the non-confocal setting, combining it with a
SPAD array can accelerate the measurement process fur-
ther. However, the existing SPAD array can only focus on
a rectangular area on the visible wall, which means that
the network has to learn an extrapolation operator. This is
much harder than learning an interpolation operator. Thus,
it would be more practical if the SPAD array could focus
on sparse rectangular points on a relatively large area of the
visible wall. This may be seen as a new area for hardware
design.

6. Conclusion
In this paper, we have studied the signal recovery prob-

lem in NLOS imaging, and proposed a two-step learning
based pipeline for fast NLOS imaging with only a small
number of scanning points. In the first step, the signal of
high spatial resolution is recovered with a neural network.
In the second step, the hidden objects are obtained from the
virtually measured signals at a dense grid. Our pipeline pro-
vides high-quality reconstructions under both confocal and
non-confocal settings, which takes only 6.25% of the orig-
inal measurement time. Besides, the proposed pipeline is
compatible with most existing detection systems and imag-
ing algorithms. With the proposed pipeline, the high frame
rate imaging video is possible, which is a noteworthy ad-
vance in this area. It is expected to combine emerging tech-
niques in the fields of SPAD array for real-time and high
quality NLOS reconstructions with higher frame rates.

(a) GT

(b) Recovered signals

(c) Reconstruction results

Figure 8. Recovered signals and reconstruction results of the in-
stance “4”. (a) Ground truth of the hidden object. (b) A compari-
son of recovered signals (the first arrival time of the original signal
is marked by the blue curve in the zoom-in window of each sub-
figure). (c) Reconstruction results of state-of-the-art methods with
different signals.
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