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Abstract

By simply taking convex combinations between pairs of
samples and their labels, mixup training has been shown
to easily improve predictive accuracy. It has been recently
found that models trained with mixup also perform well on
uncertainty calibration. However, in this study, we found
that mixup training usually makes models less calibratable
than vanilla empirical risk minimization, which means that
it would harm uncertainty estimation when post-hoc cali-
bration is considered. By decomposing the mixup process
into data transformation and random perturbation, we sug-
gest that the confidence penalty nature of the data transfor-
mation is the reason of calibration degradation. To miti-
gate this problem, we first investigate the mixup inference
strategy and found that despite it improves calibration on
mixup, this ensemble-like strategy does not necessarily out-
perform simple ensemble. Then, we propose a general strat-
egy named mixup inference in training, which adopts a
simple decoupling principle for recovering the outputs of
raw samples at the end of forward network pass. By em-
bedding the mixup inference, models can be learned from
the original one-hot labels and hence avoid the negative
impact of confidence penalty. Our experiments show this
strategy properly solves mixup’s calibration issue without
sacrificing the predictive performance, while even improves
accuracy than vanilla mixup.

1. Introduction

Although modern neural networks have made notable
performance on predictive accuracy in various computer vi-
sion tasks [7], they have been found to perform poorly in
terms of uncertainty calibration, which is an important con-
sideration in many real-world applications [5]. Intuitively,
we expect a predictive model to be accurate when it is confi-
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dent about its outputs while reveal high uncertainty when it
is likely to be inaccurate. Otherwise, the miscalibrated pre-
diction of models could cause undesired consequences in
many safety-critical applications such as medical diagnosis
and autonomous driving. Early researches on uncertainty
estimation mainly focus on probabilistic models. However,
in deep learning paradigm, training of deep bayesian mod-
els are expensive and their performance usually depends on
approximate inference methods due to the computational
constraint in real-world deployment. Therefore, uncertainty
calibration of deterministic neural networks becomes an im-
portant topic in recent years.

Guo et al. [5] systematically studied the uncertainty cal-
ibration problem of modern neural networks with compre-
hensive experiments. They pointed out that popular mod-
ern neural networks usually suffer from severe miscalibra-
tion issue than shallow models. They empirically showed
that large model capacity without proper regularization is
closely related to the miscalibration issue. They also evalu-
ated the performance of various calibration strategies and
found that simple post-hoc approaches like temperature
scaling (TS) [22] and histogram binning (HB) [34] can re-
duce the calibration error to a quite low level. Following
their work, a number of calibration friendly regularization
methods and post-calibration approaches were proposed to
address the miscalibration issue of deep neural networks
[12, 17, 18, 21].

Recently, researchers investigated the impact of mixup
training for calibration. Thulasidasan et al. [27] empirically
found that mixup improves calibration across various model
architectures and datasets. Zhang et al. [38] provided a the-
oretical explanation for the effect of mixup training on cal-
ibration in high-dimensional regime. Carratino et al. [3]
pointed out that mixup implicitly performs label smoothing
and hence can avoid the overconfidence issue. However,
there are also empirical observations showing that mixup
does not necessarily improve calibration. The experiments
in [16] provides evidence showing mixup degrades calibra-
tion in some cases. The empirical studies in [31] and [23]
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found that combining mixup with ensemble degrades cal-
ibration performance than individually using one of them.
In particular, they suggest that both mixup and ensembling
encourage models to be less confident, and hence the under-
confidence issue occurs when they are used together.

We notice that most of existing work investigates mixup
for calibration without the consideration of post-calibration.
As the research in [1] suggested, the comparison of calibra-
tion performance between different methods without post-
calibration might not provide a fair ranking. Another recent
work [30] also pointed out that models with better calibra-
tion performance during main training do not necessarily
yield better calibration results after post-calibration. There-
fore, in this work, we revisit mixup’s calibration problem by
considering the training stage and post-hoc processing as a
unified system. Under this setting, three questions are nat-
urally raised: (i) Does mixup really help calibration? (ii) If
it does not, what leads to the failure? (iii) How can we mit-
igate the pitfall of mixup on calibration? To answer these
questions, we make the following contributions:

• We conduct comprehensive experiments showing that
mixup often leads to less calibratable models than
vanilla empirical risk minimization (ERM), and hence
degrades uncertainty estimation in general when post-
calibration is considered after training.

• To explain this phenomenon, we decompose mixup
into two components: data transformation and random
perturbation. We show that the former part shrinks the
training labels to their means and implicitly performs
confidence penalty, which serves as the reason of cali-
bration degradation.

• We investigate the mixup inference strategy for calibra-
tion and found that despite it improves calibration on
mixup, this ensemble-like approach is no better than
vanilla deep ensemble in terms of both calibration and
accuracy with same inference budget.

• We show that mixup’s calibration issue can be easily
solved by translating the mixup inference into training.
By this process, the output of each raw sample can be
approximately recovered to be learned from the orig-
inal one-hot labels, and hence avoiding the negative
effect induced by confidence penalty. Our experiments
show that this strategy outperforms mixup in terms of
both accuracy and calibration.

2. Background
2.1. Mixup

By taking convex combinations between pairs of exam-
ples and their labels, mixup training has been shown to eas-
ily improve predictive accuracy [36]. Given a sample (xi,

yi), mixup mixes it with sample (xj , yj) as

x̃i = λxi + (1− λ)xj ,

ỹi = λyi + (1− λ)yj ,
(1)

where λ is sampled from Beta(α, α) with α > 0, and j is
sampled from Uniform([n]) and n denotes the dataset size.
Due to its simplicity and effectiveness on generalization and
robustness, mixup has become a fundamental technique in
machine learning community [8, 20]. Moreover, mixup can
be easily utilized to improve weakly supervised learning,
such as semi-supervised learning [2, 25], noisy-label learn-
ing [15] and positive-unlabeled learning [14]. Given its im-
pressive performance, there are also several works that in-
vestigate mixup from the theoretical perspective [3, 4, 37],
which show mixup has the implicit regularization effect that
enables models to better generalize. Most previous stud-
ies focus on accuracy despite some of them evaluate mixup
with the calibration metrics, while the focus of our work is
mainly on calibration. There are some studies propose to
extend the linear interpolation to more complicated mixing
process [9,33,39], which will not be discussed in this paper.

2.2. Calibration of Deep Neural Networks

In classification and regression, uncertainty calibration
has been studied in a long history [19, 22, 35]. Intuitively, a
well calibrated model should be confident on the predic-
tion that is likely to be the ground-truth, while indicate
high uncertainty when it is likely to be inaccurate. For-
mally, a perfectly calibrated model is expected to satisfy
P(ŷ = y | p̂ = p) = p for p ∈ [0, 1], where ŷ and y de-
note the predicted and the ground-truth class respectively,
while p̂ denotes the model’s confidence. In recent years,
widely used deep models have been empirically found to
produce poorly calibrated outputs [5]. Guo et al. system-
atically studied the calibration problem in deep learning
paradigm and pointed out the importance of post-calibration
for overconfident deep neural networks [22]. Following
their work, there is a surge of studies that try to design
new post-calibration methods [10, 11, 21, 24]. In this work,
we consider the simplest post-calibration method TS due to
its impressive generalization performance [5]. Besides the
studies on improving calibration performance, there are also
several works that focus on the evaluation metric of calibra-
tion performance [6,28,32]. Due to the space limitation, the
metrics used in our experiments are described in Appendix.

Mixup for Calibration. As we discussed in Introduction,
mixup has been recently studied in terms of uncertainty cal-
ibration. Most of these existing studies try to improve cal-
ibration performance with the regularization effect induced
by mixup [8,16,27,38]. We notice there are some contradic-
tory results on mixup’s calibration performance in previous
studies [16, 27]. Our experiments show that the contradic-
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Table 1. Comparison between mixup and ERM in terms of uncalibrated ECE, calibrated ECE and the optimal ECE. ▲/▼ indicates that
mixup outperforms/underperforms the vanilla ERM. The values reported in each entry are the results of different backbones: ResNet-18,
ResNet-50, ResNet-110 and ResNet-152.

Datasets Metrics ERM mixup (α=0.1) mixup (α=0.5) mixup (α=1.0)

SVHN
ECE 2.15 2.67 2.43 2.56 3.96▼ 1.89▲ 2.46▼ 1.38▲ 11.2▼ 9.48▼ 8.04▼ 9.37▼ 14.8▼ 13.7▼ 13.8▼ 12.9▼

Calibrated ECE 0.50 0.87 0.75 0.90 0.99▼ 1.03▼ 1.08▼ 1.05▼ 1.23▼ 1.21▼ 1.28▼ 1.21▼ 1.12▼ 1.18▼ 1.14▼ 1.04▼
Optimal ECE 0.24 0.56 0.45 0.58 0.75▼ 0.74▼ 0.85▼ 0.68▼ 1.12▼ 0.95▼ 0.95▼ 0.88▼ 1.04▼ 0.98▼ 0.88▼ 0.78▼

CIFAR-10
ECE 3.33 3.99 3.78 3.47 2.57▲ 2.22▲ 2.55▲ 2.53▲ 6.87▼ 6.25▼ 6.55▼ 6.20▼ 12.1▼ 11.5▼ 10.5▼ 11.2▼

Calibrated ECE 0.65 0.79 0.83 0.65 1.04▼ 1.07▼ 1.08▼ 1.12▼ 1.15▼ 1.15▼ 0.95▼ 1.05▼ 0.94▼ 0.91▼ 0.83▼ 0.76▼
Optimal ECE 0.59 0.63 0.61 0.52 0.97▼ 0.98▼ 1.01▼ 1.01▼ 0.97▼ 1.03▼ 0.88▼ 0.88▼ 0.85▼ 0.80▼ 0.71▼ 0.65▼

CIFAR-100
ECE 10.9 12.5 11.9 11.7 2.43▲ 6.63▲ 5.95▲ 5.59▲ 10.8▲ 3.89▲ 3.91▲ 3.85▲ 13.0▼ 7.44▲ 7.50▲ 7.55▲

Calibrated ECE 2.56 2.41 2.64 2.42 1.76▼ 1.87▼ 1.37▼ 1.67▼ 1.22▼ 2.63▼ 3.21▼ 2.57▼ 1.25▼ 2.66▼ 3.02▼ 3.52▼
Optimal ECE 2.45 2.29 2.44 2.31 1.60▼ 1.59▼ 1.23▼ 1.45▼ 0.98▼ 2.46▼ 3.04▼ 2.39▼ 1.09▼ 2.54▼ 2.85▼ 3.38▼

Tiny-ImageNet
ECE 23.2 20.5 20.7 21.6 8.57▲ 7.51▲ 9.76▲ 10.4▲ 3.98▲ 3.92▲ 2.16▲ 3.29▲ 6.85▲ 7.44▲ 4.98▲ 5.93▲

Calibrated ECE 1.33 1.23 1.36 1.33 1.32▼ 1.28▼ 1.55▼ 2.08▼ 1.33▼ 1.46▼ 1.52▼ 1.82▼ 1.49▼ 1.65▼ 2.26▼ 2.00▼
Optimal ECE 1.14 1.00 1.16 1.16 1.02▼ 1.05▼ 1.40▼ 1.93▼ 1.08▼ 1.21▼ 1.23▼ 1.60▼ 1.20▼ 1.30▼ 1.91▼ 1.69▼

tory results indeed occur based on different choice of hy-
perparameter α, when post-calibration is absent. Therefore,
we suggest that post-calibration is essential to fairly eval-
uate mixup’s calibration performance. To the best of our
knowledge, there is no work that focuses on the pitfall of
the interaction between mixup training and post-calibration.

3. Does Mixup Really Help Calibration?

As we mentioned in above sections, there are some con-
tradictory results on mixup’s calibration performance in
previous studies [16,27]. We suggest that the comparison of
calibration performance between different methods without
post-calibration might not provide a fair ranking [1]. There-
fore, in this section, we compare mixup and ERM in the
presence of post-calibration, where we use TS as the post-
processing tool due to its simplicity and generalization per-
formance. TS works by replacing the temperature of soft-
max layer with the value yielding best calibration result on
a hold-out validation set. We use expected calibration error
(ECE) [5] to evaluate calibration and denote the ECE with
the replaced temperature as calibrated ECE 1,2. We can also
find the temperature directly on test set and denote the re-
sult as optimal ECE, which can be considered as the lower
bound of calibrated ECE and helps us identify which model
is more calibratable in pos-hoc calibration stage.

Table 1 reports the comparative results between mixup
and ERM with four ResNet backbones of different sizes 3.
As is shown, there are nearly 60% cases showing models
trained with mixup are better than those trained with ERM

1The experiments in Section 3, 4 and 5 are also evaluated with other
two metrics ACE and NLL, and the results can be found in Appendix.

2The reported results of all tables are the average of 3 random runs. In
each run, the results of last 10 epochs are averaged as the final result.

3The implementation details can be found in Appendix.

(a) SVHN (b) CIFAR-10

(c) CIFAR-100 (d) Tiny-ImageNet

Figure 1. The comparison of mixup with different choices of α.
The experiments are conducted with ResNet110.

in terms of raw ECE (without post-calibration). However,
when post-calibration is involved, there are nearly 82%
cases that mixup are worse than ERM (in terms of calibrated
ECE and optimal ECE). These results demonstrate that de-
spite that the mixup-trained models may give better calibra-
tion performance after main training, it is harder to further
improve them in post-calibration stage, namely not being as
calibratable as ERM-trained models. This phenomenon is
even more transparent for larger models: In terms of cali-
brated ECE and optimal ECE, mixup outperforms ERM in
12 cases out of total 48 cases on ResNet-18 and ResNet-50,
while only in 4 cases on ResNet-110 and ResNet-152.

We also notice that different coefficient α leads to dif-
ferent calibration performance: With α = 0.1, mixup out-
performs ERM in 14 and 5 cases out of 16 cases respec-
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(a) SVHN (b) CIFAR-10 (c) CIFAR-100 (d) Tiny-ImageNet

(e) SVHN (f) CIFAR-10 (g) CIFAR-100 (h) Tiny-ImageNet

Figure 2. The top row shows the comparison of Calibrated ECE between four ablated variants of mixup, where the variants with blue
color use the transformed labels while the variants with green color use the original one-hot labels. The bottom row shows the comparison
of average confidence between four ablated variants.

tively in terms of uncalibrated and calibrated ECE, while
with α=1, mixup outperforms ERM in only 7 cases and 1
case on these two terms. Figure 1 shows the result of mixup
with α ∈ {0.01, 0.02, 0.04, 0.08, ..., 1.28}. As is shown,
in the absence of post-calibration, mixup training with a
proper α indeed helps calibration especially on CIFAR-100
and Tiny-ImageNet. Intuitively speaking, this improvement
might be induced by the regularization effect of mixup,
which implicitly penalizes the sharp outputs to avoid the
overconfidence issue. However, when the regularization
becomes stronger, namely larger α used in mixup, it may
cause underconfidence issue, which is also a miscalibration
case. The drawbacks of this confidence penalty mechanism
is demonstrated in Figure 1: (1) The best α varies across
datasets, which means we need to carefully choose α on a
new task; (2) Even with the best α, there is still a large mar-
gin between uncalibrated and calibrated ECE. Once post-
calibration is involved, mixup tends to degrade the calibra-
tion performance especially on large α (which is important
to obtain desired accuracy).

In summary, there exists a dilemma between accuracy
and calibration in using mixup when considering training
and post-calibration as a unified system. In this study, we
aim to mitigate the pitfall of mixup for calibration without
sacrificing its predictive performance. Before that, let us
first explain why mixup causes the failure of calibration by
empirical study.

4. Why Mixup Fails on Calibration

As shown by Equation (1), mixup takes the linear inter-
polation between pairs of inputs and labels to create new
samples. Following the result of [3], this formulation can
be decomposed into two operations.

Remark 1. [3] Let λ ∼ Beta[ 12 ,1]
(α, α) and j ∼ Uniform

([n]) be two random variables with α > 0, n > 0 and let
λ̄ = Eλλ. The mixed sample (x̃i, ỹi) as in Equaton (1) for
any i ∈ [n] can be reformulated as:

x̃i = x̄+λ̄(xi−x̄) + (λ−λ̄)xi+(1−λ)xj−(1−λ̄)x̄,

ỹi = ȳ+λ̄(yi−ȳ) + (λ−λ̄)yi+(1−λ)yj−(1−λ̄)ȳ,
(2)︸ ︷︷ ︸

Data Transformation x′
i,y

′
i

︸ ︷︷ ︸
Random Perturbation ϵxi ,ϵ

y
i

where x̄, ȳ are the mean of inputs and labels of all train-
ing samples, and the perturbation terms satisfy Eλ,jϵ

x
i =

Eλ,jϵ
y
i = 0.

This reformulation allow us to consider mixup as the combi-
nation of two complementary components, i.e., data trans-
formation and random perturbation. As λ̄ < 1, the data
transformation part shrinks the inputs and labels towards
their means. Assuming balanced label distribution, the la-
bel transformation is equivalent to the label smoothing tech-
nique introduced in [26]. Moreover, since the expectations
of ϵxi and ϵyi are zero, the random perturbation terms will
add zero-mean noises to each transformed input and label.

Inspired by the recent work [30] that shows the negative
impact of label smoothing on calibration. We conjecture
that the label transformation part of the second Equation in
(2) leads to the failure on calibration. To verify this, we
come up with the following four ablated variants of mixup:
Mixup-DT, which only uses the Data Transformation part
of Equation (2); Mixup-TO, which mixes between Target
labels Only; Mixup-SC, which mixes within Same Class;
and Mixup-IO, which mixes between Inputs Only. The for-
mulations of these variants are shown in Table 2. It is shown
that different from the vanilla mixup and the former two
variants, the latter two variants learn models from one-hot
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(a) SVHN (b) CIFAR-10 (c) CIFAR-100 (d) Tiny-ImageNet

Figure 3. The predictive accuracy of Mixup-IO, Mixup-SC by comparing with that of vanilla mixup and ERM. The detailed results could
be found in Table 4 and Table 5.

Table 2. The inputs and targets used by 4 ablated variants.

Variants Inputs Targets One-hot?

Mixup-DT {x̄+λ̄(xi−x̄)} {ȳ+λ̄(yi−ȳ)} ✘

Mixup-TO {xi} {λyi+(1−λ)yj} ✘

Mixup-SC {λxi+(1−λ)xj |yi=yj} {yi} ✔

Mixup-IO {λxi+(1−λ)xj} {yi} ✔

labels. We conduct experiments on these derivations and
make the following two observations on calibration and ac-
curacy.
Confidence penalty hurts calibration. The top row of Fig-
ure 2 shows the comparative results on calibrated ECE be-
tween these four derivations. It is clearly shown that Mixup-
DT and Mixup-TO achieves much larger calibration error
than the others. The bottom row shows that Mixup-DT and
Mixup-TO make models less confident on their prediction
during training. Therefore, we can tell that although the
transformation on labels helps penalize the overconfident
outputs during training, it compresses the room of potential
improvement in post-calibration, and hence hurt calibration
performance in general.
Trivial confidence promotion hurts accuracy. Unlike the
former two derivations, Mixup-SC and Mixup-IO directly
use the original one-hot labels to learn models, which does
not induce the confidence penalty effect, and leads to more
calibratable models. Unfortunately, Figure 3 shows that the
superiority of mixup on predictive performance would be
eliminated when using these two derivations. As is shown,
the accuracy of Mixup-SC and Mixup-IO is not consistently
higher than ERM, while always lower than original mixup.
Therefore, the dilemma between the accuracy and calibra-
tion can not be solved by these trivial confidence promotion
stragety.

5. Mitigating the Pitfall of Mixup
5.1. Mixup Inference

Most of the existing studies only focus on exploiting
mixup mechanism in the training phase, while the study in

[20] found that the mixing of features at inference phase can
further improve mixup-trained models’ robustness against
adversarial perturbations. The mixup inference approach
used in their paper is quite simple: At every inference
time t, they first mix the test sample x with a uniformly
drawn sample x′ as x̃t = λx + (1 − λ)x′, then calcu-
late the model prediction ŷt = f(x̃t); After T iterations,
they simply average the predictions of the mixed samples
as f̄(x) = 1

T

∑T
t=1 ŷt. The experiments reported in [20]

demonstrate the superiority of this simple approach for ad-
versarial robustness. However, without a decoupling pro-
cess in output space, it is hard to obtain precise label confi-
dence information by this simple mixup inference approach.
The following remark demonstrates the decoupling princi-
ple of mixup-trained models.

Remark 2. Recall the basic idea of mixup: linear inter-
polations of feature vectors should lead to linear interpo-
lations of the output space. Based on this assumption, by
mixing two samples twice with λ1 ̸= λ2 ∈ (0, 1), as is

x̃1 = λ1xa + (1− λ1)xb,

x̃2 = λ2xa + (1− λ2)xb,
(3)

we can decouple these two samples in outputs space:

ŷa =
f(x̃1)− f(x̃2)(1− λ1)/(1− λ2)

λ1 − λ2(1− λ1)/(1− λ2)
,

ŷb =
f(x̃1)− f(x̃2)λ2/λ1

1− λ2 − (1− λ1)λ2/λ1
.

(4)

Considering the convex combinations of hidden repre-
sentations [29], this decoupling principle could be exploited
in the hidden layers of neural networks. In particular, to
avoid the negative value of model confidence, we can sim-
ply adopt the decoupling process before softmax layer. We
conjecture that by exploiting this decoupling principle in
the mixup inference, we can improve the calibration perfor-
mance of mixup-trained models. As is shown in Algorithm
I in Appendix, at every inference time, our MI approach re-
covers the prediction of x by Equation (4), which adopts the
same coefficient α as in training phase.

Table 3 shows the results of our new MI strategy on both
predictive accuracy and calibration. The implementation of
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(a) SVHN (b) CIFAR-10 (c) CIFAR-100 (d) Tiny-ImageNe

(e) SVHN (f) CIFAR-10 (g) CIFAR-100 (h) Tiny-ImageNet

Figure 4. The comparison between our mixup inference approaches and different ensemble strategies. For comparison, we also present the
results of individual ERM-trained and mixup-trained models with dashed lines. The experiments are conducted with ResNet110.

Table 3. The comparison between mixup inference and mixup.
▲/▼ indicates that MI-O/MI outperform/underperform mixup.

Datasets Backbones
Mixup

Acc ECE

MI-Op

Acc ECE

MIp

Acc ECE

SVHN

ResNet18 94.5 ▼1.12 95.0▼0.45▲ 94.9▼0.70▲
ResNet50 95.5 ▼1.18 95.7▼0.56▲ 95.7▼0.60▲
ResNet110 95.8 ▼1.14 96.1▼0.77▲ 96.1▼0.64▲
ResNet152 96.2 ▼1.04 96.5▼0.61▲ 96.5▼0.71▲

CIFAR-10

ResNet18 95.8 ▼0.94 95.7▼0.69▲ 95.9▼0.63▲
ResNet50 96.0 ▼0.91 95.9▼0.65▲ 95.9▼0.62▲
ResNet110 96.2 ▼0.83 96.2▼0.68▲ 96.2▼0.46▲
ResNet152 96.7 ▼0.76 96.6▼0.57▲ 96.6▼0.45▲

CIFAR-100

ResNet18 77.2 ▼1.25 78.1▼1.21▲ 78.2▼1.25▼
ResNet50 77.8 ▼2.66 78.6▼1.38▲ 78.6▼1.61▲
ResNet110 79.3 ▼3.02 80.3▼1.45▲ 79.9▼1.39▲
ResNet152 79.6 ▼3.52 80.5▼1.23▲ 80.2▼1.67▲

Tiny-ImageNet

ResNet18 47.8 ▼1.49 50.6▼1.28▲ 50.2▼1.44▲
ResNet50 50.4 ▼1.65 52.5▼1.92▼ 52.1▼1.89▼
ResNet110 42.6 ▼2.26 43.7▼2.35▼ 44.6▼1.74▲
ResNet152 44.6 ▼2.00 44.8▼2.93▼ 45.5▼2.25▼

MI is same with the pseudo-code shown in Appendix, while
MI-O fixes λ2=0. In MI-O, ỹ2 can be collected before the
testing phase, and hence only one single forward pass is
needed in each iteration. As is shown, both of these two
mixup inference approaches improve the calibration perfor-
mance of mixup, while slightly improve the predictive ac-
curacy in partial cases. Despite the improvement, we have
to face the computational cost and time consuming problem
during inference phase (the results of Table 3 are achieved
by 15 iterations per sample). As is studied in previous work,
if do not consider the inference time, simple ensemble of
independently-trained networks is a good choice in terms
of both accuracy and calibration [1,13,31]. Therefore, a re-

alistic question is raised: Is this ensemble-like strategy bet-
ter than vanilla deep ensemble? Similar problem has been
investigated in [1], which found that popular ensemble-like
approaches require dozens of ensemble members to achieve
equivalent performance of the ensemble of only few inde-
pendently trained models.

The comparison between MI and ensemble is presented
in Figure 4. We compare our MI approaches with ensem-
bles of models independently trained with ERM or mixup
(α = 1). We also make MI interact with ensemble, where
we use different independently trained models among infer-
ence iterations. The top row shows the comparison on ac-
curacy. It is clearly shown that ensemble of mixup-trained
models outperforms MI and the combination of MI and
ensemble. Even simple ensemble of ERM-trained models
achieves comparable results compare with MI. The compar-
ison on calibrated ECE in the bottom row, as well as on cal-
ibrated NLL in appendix, also shows similar phenomenon
that MI do not necessarily outperform ensemble.

5.2. Mixup Inference in Training

As we suggested in Section 4, the confidence penalty
property of mixup seems to be the reason of the degradation
on calibration. On the contrary, Mixup-SC and Mixup-IO,
which promote model confidence by directly learning on the
original one-hot labels, instead achieve very good calibra-
tion performance. This phenomenon inspires us to design
a new strategy that only preserves the data augmentation
nature of mixup, but do not penalize the model confidence
during training.

We propose to achieve this goal by simply translating
the mixup inference process into the training. With the in-
ference process, the output of each raw sample could be
approximately recovered. Then, one can learn models by
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Table 4. The overall comparative results in terms of calibrated ECE. The number in each bracket indicates the ranking across all methods.
The orange/blue color indicates that a method outperforms/underperforms ERM in average. The boldface and underline denote the best
and the second best results of each row. The marker † means the backbone is pretrained.

Backbones ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN

ResNet18 0.50 (2) 0.99 (7) 1.23 (11) 1.12 (10) 1.01 (8) 1.05 (9) 0.50 (3) 0.61 (5) 0.47 (1) 0.65 (6) 0.53 (4)
ResNet50 0.87 (6) 1.03 (7) 1.21 (9) 1.18 (8) 1.55 (11) 1.39 (10) 0.59 (4) 0.50 (2) 0.49 (1) 0.52 (3) 0.66 (5)
ResNet110 0.75 (6) 1.08 (7) 1.28 (9) 1.14 (8) 1.39 (10) 1.43 (11) 0.50 (2) 0.60 (4) 0.48 (1) 0.53 (3) 0.70 (5)
ResNet152 0.90 (6) 1.05 (8) 1.21 (9) 1.04 (7) 1.28 (10) 1.37 (11) 0.57 (2) 0.65 (4) 0.61 (3) 0.53 (1) 0.67 (5)
Avg. gain — + 0.28 + 0.47 + 0.36 + 0.55 + 0.55 – 0.21 – 0.16 – 0.24 – 0.19 – 0.11

CIFAR-10

ResNet18 0.65 (6) 1.04 (8) 1.15 (9) 0.94 (7) 1.70 (11) 1.45 (10) 0.62 (4) 0.61 (3) 0.56 (1) 0.59 (2) 0.62 (5)
ResNet50 0.79 (6) 1.07 (8) 1.15 (9) 0.91 (7) 1.81 (11) 1.64 (10) 0.65 (4) 0.46 (1) 0.63 (3) 0.59 (2) 0.68 (5)
ResNet110 0.83 (7) 1.08 (9) 0.95 (8) 0.83 (6) 1.52 (10) 1.56 (11) 0.54 (3) 0.50 (1) 0.52 (2) 0.54 (4) 0.78 (5)
ResNet152 0.65 (4) 1.12 (9) 1.05 (8) 0.76 (7) 1.55 (11) 1.42 (10) 0.67 (5) 0.48 (1) 0.57 (3) 0.50 (2) 0.67 (6)
Avg. gain — + 0.34 + 0.34 + 0.13 + 0.91 + 0.78 – 0.11 – 0.21 – 0.15 – 0.17 – 0.04

CIFAR-100

ResNet18 2.56 (9) 1.76 (5) 1.22 (1) 1.25 (2) 5.24 (11) 3.33 (10) 2.00 (7) 1.87 (6) 1.44 (3) 2.18 (8) 1.75 (4)
ResNet50 2.41 (7) 1.87 (2) 2.63 (8) 2.66 (9) 4.86 (11) 4.55 (10) 1.82 (1) 2.10 (5) 1.90 (3) 2.15 (6) 1.97 (4)
ResNet110 2.64 (7) 1.37 (1) 3.21 (9) 3.02 (8) 4.70 (11) 4.45 (10) 1.76 (2) 1.93 (3) 1.98 (4) 2.25 (6) 2.00 (5)
ResNet152 2.42 (6) 1.67 (2) 2.57 (8) 3.52 (9) 4.19 (11) 3.97 (10) 1.65 (1) 1.98 (4) 1.71 (3) 2.47 (7) 2.17 (5)
Avg. gain — – 0.84 – 0.10 + 0.10 + 2.24 + 1.56 – 0.69 – 0.53 – 0.74 – 0.24 – 0.53

Tiny-ImageNet

ResNet18 1.33 (4) 1.32 (2) 1.33 (3) 1.49 (8) 2.22 (11) 1.55 (10) 1.38 (5) 1.30 (1) 1.47 (7) 1.54 (9) 1.41 (6)
ResNet50 1.23 (3) 1.28 (4) 1.46 (6) 1.65 (9) 2.08 (11) 1.83 (10) 1.59 (8) 1.58 (7) 1.18 (1) 1.23 (2) 1.36 (5)
ResNet110 1.36 (4) 1.55 (8) 1.52 (7) 2.26 (11) 2.14 (10) 1.28 (1) 1.92 (9) 1.49 (6) 1.35 (3) 1.29 (2) 1.39 (5)
ResNet152 1.33 (3) 2.08 (10) 1.82 (7) 2.00 (8) 1.81 (6) 2.06 (9) 1.46 (5) 2.19 (11) 1.43 (4) 1.17 (1) 1.30 (2)
ResNet18† 1.12 (2) 1.43 (5) 1.22 (3) 1.31 (4) 2.83 (11) 1.90 (10) 1.58 (7) 1.72 (8) 1.56 (6) 1.79 (9) 1.11 (1)
ResNet152† 1.96 (6) 1.57 (4) 2.75 (9) 2.74 (8) 4.83 (10) 6.60 (11) 1.19 (1) 1.68 (5) 1.37 (3) 2.58 (7) 1.26 (2)

Avg. gain — + 0.14 + 0.29 + 0.51 + 1.26 + 1.14 + 0.13 + 0.27 0.00 + 0.21 – 0.08

fitting the decoupled outputs to the original one-hot labels
and hence avoid the confidence penalty effect caused by la-
bel smoothing. This procedure is illustrated in Figure A in
the Appendix. In practice, the decoupling process may in-
duce noise if one of the mixed example is poorly learned.
We suggest that a large margin between λ1 and λ2 can re-
duce this noise, and we can achieve this by sampling λ1 and
λ2 from Beta[0.5,1](α, α) and Beta[0,0.5](α, α) respectively,
or further force them to be greater than a specific constant.
The implementation details of the sample strategy is pre-
sented in Appendix.

The decoupling process can be easily extended to the
hidden layers of neural networks. For example, in the l-
th hidden layer, we can decouple the features to recover
zla, z

l
b with λl−1

1 , λl−1
2 that used in the mixing process of

the last previous layer. Then, we remix zla, z
l
b twice with

newly sampled λl
1, λ

l
2 and feed the remixed features into

the next layer. In practice, this mix-then-decouple process
can be embedded in any hidden layer with only several lines
of codes and negligible computational cost.

Table 4 and 5 show the overall comparative results on
calibrated ECE and accuracy. MIT-L means that we simply
employ the decoupling process in the last layer (before soft-
max), and MIT-A means that we apply it to all the blocks of

the ResNets and also the last layer. MIT-L/A with ∆λ> 1
2

means that we force the difference between λ1 and λ2 to
be greater than 1

2 (see details in Appendix). As we can
see, the methods that learn from one-hot labels (the right 5
columns) clearly outperform the others on calibrated ECE.
As is mentioned in Section 4, two ablated variants Mixup-
SC and Mixup-IO perform well on calibration, however,
they are sub-optimal in terms of the predictive accuracy. As
is shown in Table 5, they underperform ERM on SVHN and
Tiny-ImageNet with all backbones, while yield very small
improvements on CIFAR-10/100.

Our methods improve calibration without sacrificing the
predictive performance. As is shown Table 4, all of our
methods attain lower calibrated ECE than ERM, which is
opposite to the results of vanilla mixup. And more surpris-
ingly, Table 5 shows that our methods can also achieve bet-
ter performance on accuracy than vanilla mixup. It is worth
noting that, in terms of accuracy, vanilla mixup fails in sev-
eral cases on SVHN and Tiny-ImageNet (see the results
of ResNet-110/152 on Tiny-ImageNet), but our methods
show stable improvements. Furthermore, we can observe
that with the constraint on λ, MIT-A (∆λ > 1

2 ) achieves
higher accuracy compared with the ablated version MIT-A.
The comparative results with other calibration methods are
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Table 5. The overall comparative results in terms of the predictive accuracy. The number in each bracket indicates the ranking across all
methods. The orange/blue color indicates that a method outperforms/underperforms ERM in average. The boldface and underline denote
the best and the second best results of each row. The marker † means the backbone is pretrained.

Backbones ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN

ResNet18 95.4 (5) 95.5 (4) 94.8 (7) 94.5 (8) 95.6 (3) 96.0 (1) 94.3 (9) 93.5 (10) 95.0 (6) 93.2 (11) 95.7 (2)
ResNet50 96.0 (4) 96.0 (3) 95.8 (5) 95.5 (8) 95.5 (7) 95.7 (6) 95.3 (9) 94.9 (10) 96.2 (2) 94.3 (11) 96.2 (1)

ResNet110 96.0 (5) 96.1 (4) 96.3 (3) 95.8 (7) 95.6 (8) 95.9 (6) 95.4 (9) 95.3 (10) 96.5 (2) 95.0 (11) 96.7 (1)
ResNet152 96.2 (5) 96.6 (2) 96.4 (4) 96.2 (6) 95.6 (8) 95.9 (7) 95.5 (9) 95.5 (10) 96.5 (3) 94.9 (11) 96.7 (1)
Avg. gain — + 0.11 – 0.10 – 0.40 – 0.32 – 0.06 – 0.78 – 1.12 + 0.14 – 1.55 + 0.41

CIFAR-10

ResNet18 94.5 (9) 95.1 (6) 95.7 (3) 95.8 (2) 93.9 (11) 94.5 (8) 94.4 (10) 94.7 (7) 95.5 (4) 95.2 (5) 95.9 (1)
ResNet50 94.4 (9) 95.3 (7) 95.8 (3) 96.0 (1) 93.1 (11) 94.2 (10) 94.5 (8) 95.3 (6) 95.8 (4) 95.7 (5) 96.0 (2)

ResNet110 94.7 (9) 95.7 (6) 96.3 (1) 96.2 (2) 93.7 (11) 94.3 (10) 95.1 (8) 95.4 (7) 96.1 (4) 96.0 (5) 96.1 (3)
ResNet152 95.1 (8) 95.8 (7) 96.4 (2) 96.7 (1) 93.9 (11) 94.8 (10) 95.0 (9) 95.8 (6) 96.3 (4) 96.2 (5) 96.4 (3)
Avg. gain — + 0.78 + 1.36 + 1.53 – 1.01 – 0.21 + 0.08 + 0.64 + 1.27 + 1.12 + 1.41

CIFAR-100

ResNet18 74.4 (8) 75.3 (7) 76.8 (2) 77.2 (1) 72.4 (11) 76.4 (4) 72.6 (9) 72.5 (10) 76.2 (5) 75.9 (6) 76.6 (3)
ResNet50 73.9 (9) 76.4 (6) 78.3 (2) 77.8 (3) 68.2 (11) 75.1 (7) 72.9 (10) 74.5 (8) 78.3 (1) 76.6 (5) 77.7 (4)

ResNet110 76.1 (9) 77.9 (6) 80.1 (1) 79.3 (2) 70.9 (11) 77.3 (7) 74.6 (10) 76.7 (8) 78.7 (4) 77.9 (5) 79.1 (3)
ResNet152 75.3 (9) 78.2 (6) 79.7 (2) 79.6 (3) 72.5 (11) 76.9 (7) 75.1 (10) 76.7 (8) 79.1 (4) 78.2 (5) 79.8 (1)
Avg. gain — + 2.01 + 3.79 + 3.55 – 3.92 + 1.50 – 1.12 + 0.18 + 3.14 + 2.24 + 3.38

Tiny-ImageNet

ResNet18 46.1 (9) 46.6 (7) 47.4 (5) 47.8 (4) 36.5 (11) 47.1 (6) 43.0 (10) 46.6 (8) 49.5 (1) 48.5 (3) 49.3 (2)
ResNet50 49.3 (7) 49.5 (6) 50.0 (5) 50.4 (4) 37.5 (11) 49.0 (8) 46.4 (10) 48.8 (9) 51.4 (2) 51.0 (3) 51.8 (1)

ResNet110 48.5 (3) 43.6 (7) 42.7 (9) 42.6 (10) 35.6 (11) 44.6 (4) 43.9 (6) 43.5 (8) 48.6 (2) 44.4 (5) 50.8 (1)
ResNet152 47.3 (2) 44.7 (5) 42.3 (9) 44.6 (6) 34.5 (11) 45.5 (4) 43.0 (8) 39.7 (10) 46.1 (3) 43.8 (7) 50.0 (1)
ResNet18† 53.6 (6) 53.5 (8) 54.0 (5) 53.5 (7) 44.1 (11) 54.7 (1) 49.7 (10) 50.5 (9) 54.5 (3) 54.4 (4) 54.7 (2)

ResNet152† 62.4 (6) 63.2 (2) 63.7 (1) 63.0 (3) 49.6 (11) 62.6 (4) 58.8 (10) 59.9 (9) 61.9 (7) 62.5 (5) 61.6 (8)
Avg. gain — – 1.01 – 1.18 – 0.87 – 11.5 – 0.60 – 3.70 – 3.04 + 0.81 – 0.41 + 1.83

presented in Appendix, from which we can see similar phe-
nomenon that these methods improve calibration in training
but often degrade the result after post-calibration.

The results of our methods in Table 4 and 5 are con-
ducted by simply setting α= 1. In appendix, we show the
performance of our method can be further slightly improved
with other choices of α. Moreover, due to the space limita-
tion, we present and discuss the results on two other calibra-
tion metric (average calibration error) ACE and (negative
log-likelihood) NLL in Appendix.

6. Conclusion

We systemically studied the calibration peformance of
mixup, with a focus on the interaction between mixup and
post-calibration. We found a pathological but interesting
phenomenon that although mixup-trained models yield bet-
ter accuracy and raw calibration performance, they are usu-
ally not as calibratable as models trained with ERM. We
explain this by decomposing mixup into data transforma-
tion and random perturbation, and show that the former
implicitly performs confidence penalty and hence degrades
the model’s calibratability. To tackle this, we first stud-
ied the mixup inference strategy with the help of a decou-

pling process. We found that despite it improves on mixup,
this ensemble-like strategy does not necessarily outperform
simple ensemble of independently trained models. To bet-
ter deal with the dilemma between accuracy and calibration,
we proposed to perform mixup inference in training. It is
shown that this simple strategy can properly solve mixup’s
calibration issue, and also improve accuracy when apply-
ing it in the hidden layers. Despite the surprising perfor-
mance, we prefer to regard this work as an empirical study,
which contributes nontrivial knowledge to the understand-
ing of deep model calibration.
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