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Abstract

Open-set fine-grained retrieval is an emerging challenge
that requires an extra capability to retrieve unknown sub-
categories during evaluation. However, current works focus
on close-set visual concepts, where all the subcategories
are pre-defined, and make it hard to capture discrimina-
tive knowledge from unknown subcategories, consequently
failing to handle unknown subcategories in open-world sce-
narios. In this work, we propose a novel Prompting vision-
Language Evaluator (PLEor) framework based on the re-
cently introduced contrastive language-image pretraining
(CLIP) model, for open-set fine-grained retrieval. PLEor
could leverage pre-trained CLIP model to infer the discrep-
ancies encompassing both pre-defined and unknown subcat-
egories, called category-specific discrepancies, and trans-
fer them to the backbone network trained in the close-set
scenarios. To make pre-trained CLIP model sensitive to
category-specific discrepancies, we design a dual prompt
scheme to learn a vision prompt specifying the category-
specific discrepancies, and turn random vectors with cate-
gory names in a text prompt into category-specific discrep-
ancy descriptions. Moreover, a vision-language evaluator
is proposed to semantically align the vision and text prompts
based on CLIP model, and reinforce each other. In addi-
tion, we propose an open-set knowledge transfer to transfer
the category-specific discrepancies into the backbone net-
work using knowledge distillation mechanism. Quantitative
and qualitative experiments show that our PLEor achieves
promising performance on open-set fine-grained datasets.

1. Introduction

Open-set fine-grained retrieval (OSFR) attempts to build
a well-generalized embedding space where the visual dis-
crepancies among unknown subcategories are clearly re-
flected. It plays a vital role in numerous vision applica-
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Figure 1. Comparison on existing evaluators in open-set fine-
grained retrieval. Although our PLEor (c) is trained in a close-
set scenarios, similar with previous works (a) (b), it could mine
the category-specific discrepancies using pre-trained CLIP model
aided by vision and text prompts, and transfer the discrepancies
encompassing both pre-defined and unknown subcategories to our
model. This enables our model to procure in-depth understanding
for unknown subcategories owing to distilling the knowledge with
open-world visual concepts from CLIP model, improving retrieval
performance eventually in open-set scenarios.

tions from fashion industry, e.g., retrieval of diverse types of
clothes [1, 31], to environmental conservation, e.g., retriev-
ing endangered species [7,49,50]. As shown in Fig. 1(a)(b),
existing works follow a close-set learning setting, where all
the subcategories are pre-defined, and evaluate embeddings
identifying the visually similar objects of pre-defined sub-
categories. However, such evaluation focuses on closed-set
visual concepts, limiting the model to a pre-defined list of
subcategories, and is not generalizable when it comes to un-
known subcategories unseen during training.

Fortunately, recent works [66, 67] using large-scale con-
trastive language-image pretraining (CLIP) model [37] have
shown great potentials in alleviating this limitation. As
shown in Fig. 1(c), CLIP model is pretrained from scratch
on a dataset of 400 moillion image-text pairs, which are au-
tomatically collected from the publicly available sources on
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the Internet. Based on this, CLIP model could associate
much wider range of visual concepts in the images with
their text descriptions, rather than a fixed set of pre-defined
categories. Therefore, one question naturally arises: is it
possible that we can effectively exploit the open-set visual
concepts in CLIP model to solve OSFR task? It is already
answered yes by recent studies exploring how to transfer
the knowledge from CLIP model to other downstream tasks
via prompt techniques [10, 16, 26, 37, 56, 66, 67]. However,
their prompt strategies are tailored for capturing category-
level semantic (e.g., dog and cat) rather than more detailed
visual discrepancies for distinguishing fine-grained objects
(e.g., different breeds of dogs). Therefore, how to effec-
tively make pre-trained CLIP model sensitive to the visual
discrepancies encompassing both pre-defined and unknown
subcategories (termed as category-specific discrepancies),
and transfer these discrepancies to the model trained in
closed-set scenarios is worthy of investigation.

To this end, we design a novel prompting vision-
language evaluator (PLEor) for OSFR, based on the power
of recently introduced CLIP model. Technically, to make
pre-trained CLIP model sensitive to category-specific dis-
crepancy, we design a dual prompt scheme composed of
vision prompt and text prompt for explicitly highlighting
the category-specific discrepancies from the input perspec-
tive. Concretely, the vision prompt specifies the category-
specific discrepancies via parsing semantic features inferred
by the backbone network. And the text prompt turns ran-
dom vectors with category names into category-specific dis-
crepancy descriptions. Meanwhile, a vision-language eval-
uator is proposed to encourage pre-trained CLIP model to
locate the category-specific descriptions in vision prompt
and generate the category-specific visual semantics into text
prompt. In this way, the OSFR task aided by the designed
prompts is close to the solved task of pre-training CLIP
model, thus making the CLIP model sensitive to category-
specific discrepancy. Nevertheless, a non-negligible prob-
lem is that the corporation of CLIP model and backbone
network is quite complex, leading to very time consuming
and memory demanding during evaluation. Thereby, we
propose an open-set knowledge transfer module to transfer
the category-specific discrepancies from CLIP model to the
backbone network using knowledge distillation mechanism.

Our contributions are summarized as follows:

• A prompting vision-language evaluator, i.e., PLEor, is
proposed. It can distill the knowledge with open-world
visual concepts from CLIP model to alleviate the prob-
lems behind open-set scenarios. To our best knowl-
edge, we are the first to regard CLIP model as an eval-
uator specifically for OSFR task.

• PLEor provides timely insights into the adaptation of
pre-trained CLIP model adopting prompt learning, and

crucially, demonstrates the effectiveness of a simple
modification for inputs of CLIP model in OSFR.

• PLEor achieves new state-of-the-art results compared
with classification-based and metric-based evaluators,
which is significant gains of 8.0% average retrieval ac-
curacy on three widely-used OSFR datasets.

2. Related Work
Open-set fine-grained retrieval. Existing open-set fine-

grained retrieval works can be roughly divided into two
groups. The first group, classification-based schemes, uti-
lizes the supervision of category signals to learn discrimi-
native embeddings [34, 48, 52, 64]. Although these works
have made an inspiring achievement, their shortcoming lies
in their narrow focus on individual samples, while overlook-
ing inter-class and intra-class correlations between subcat-
egories, ultimately leading to a decrease in retrieval perfor-
mance. The second group of schemes, namely metric-based
schemes, learn an embedding space that attracts similar ex-
amples and repels dissimilar [3, 18, 20, 39, 46, 51, 62, 63].
However, they are rooted in the close-set scenarios and thus
make it hard to capture discriminative discrepancies from
unknown subcategories, inevitably impairing the retrieval
performance. To alleviate the problem behind open-set sce-
narios, we design a PLEor to transfer the visual discrepan-
cies encompassing both pre-defined and unknown subcate-
gories from pretrained CLIP model to our model trained in
close-set scenarios.

Vision-language pretraining. Yasuhide et. al [33]
has studied the connection between images and words us-
ing pair-wise text documents, and existing works [8, 53]
proposed to jointly explore image-text alignment with the
category names. Recently, CLIP [37], ALIGN [13] and
FILIP [54] have further scaled up the training with large-
scale Internet data. It is shown that powerful representa-
tion could be learned from image-text pairs via simple noise
contrastive learning. A large amount of follow-up works
have been proposed to utilize the pre-trained models for var-
ious downstream tasks, e.g., few-shot transfer [9, 60, 67],
point cloud understanding [38, 61] and video understand-
ing [16, 47]. However, these works still follow the prin-
ciples of using the large-scale vision-language models as
backbone networks, leading to very time consuming and
memory demanding. Differently, we are the first to tend to
treat the pre-trained vision-language models as an evaluator
and use it only during training.

Prompt learning. Prompting [29] in NLP reformulates
the downstream tasks into a language modeling problem,
enabling a pre-trained language model to be adapted more
efficiently to new tasks. Hence, prompt techniques are now
being used to address a wide range of NLP tasks, includ-
ing language understanding and generation [15, 22, 23, 30].
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Figure 2. Detailed illustration of prompting vision-language evaluator. See §3 for more details.

Recently, prompt scheme has been integrated into multi-
modal computer vision [10, 16, 37, 55, 66, 67]. However,
current prompt techniques in multi-modal applications pri-
marily extend the capabilities of language-based models,
which cannot be directly applied to pre-trained vision mod-
els. In addition, recent works [14, 24, 28, 35] design a vi-
sion prompt introducing a few learnable parameters to steer
the pre-trained models for general vision tasks. However,
their prompt strategies are tailored for capturing category-
level semantic rather than more detailed visual discrepan-
cies for distinguishing fine-grained objects. Therefore, we
design a dual prompt scheme module, i.e., vision prompt
and text prompt, to make pre-trained CLIP model sensitive
to category-specific discrepancies.

Knowledge distillation. This paper is associated with
knowledge distillation [2,12,58], which aims to transfer the
knowledge from a well-trained teacher model to a student
model. Most classification-based works pay attention to im-
proving the student model by imitating the prediction out-
put or distribution of teacher model. Moreover, existing re-
searchers [5,6,19] also study knowledge distillation for im-
age retrieval tasks via exploring distances between samples.
This involves e.g., learning to rank [6] and regression on
quantities containing one or more pairs like distances [57]
or angles [36]. Direct regression on embedding is not com-
monly used or demonstrated to be inferior [57], but we think
it is actually much more effective than previously thought.

3. Methodology

The overall structure of PLEor is shown in Fig. 2. It
is clear that our network is mainly organized by four mod-

ules: retrieval module, dual prompt scheme module, vision-
language evaluator module and open-set knowledge trans-
fer module. The dual prompt scheme module and vision-
language evaluator module are designed to make pre-trained
CLIP model sensitive to the discrepancies encompassing
both pre-defined and unknown subcategories. In addition,
the open-set knowledge transfer module is responsible for
transferring these discrepancies to our model trained in
close-set scenarios.

3.1. Retrieval Module

The retrieval module aims at extracting basic image rep-
resentations and producing the final retrieval embeddings
using the backbone network. Given an input image X, let
F ∈ RW×H×C be the C-dimensional with H ×W feature
planes encoded by a backbone network F = FCNN (X).
Thus the most common way for retrieval is to embed the
final feature F by using global average pooling operations
(GAP), calculating mean values on the H×W feature plane
and producing the final retrieval embeddings ER ∈ RC . It
should be clarified that our PLEor does not introduce extra
computation overhead during evaluation.

3.2. Dual Prompt Scheme

Subtle yet discriminative discrepancies are widely rec-
ognized to be significant for fine-grained understanding
[34,52,64]. However, CLIP model is originally designed to
model the visual concepts identifying various species (e.g.,
cat, dog and person), instead of mining subtle discrepancies
among subcategories within a certain species. To allevi-
ate this, we devise a dual prompt scheme to solely modify
the inputs of vision and text for pre-trained CLIP model.
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This makes the fine-grained retrieval task aided by the dual
prompt scheme similar to those solved of pre-training CLIP
model. Specifically, the dual prompt scheme are composed
of vision prompt and text prompt. The vision prompt spec-
ifies the category-specific discrepancies via parsing seman-
tic features inferred by the backbone network. And the
text prompt turns random vectors with category names into
category-specific discrepancy descriptions.

Vision Prompt. To obtain the category-specific discrep-
ancies, the vision prompt aims to project the semantic fea-
tures into a new space where the location, scale and inten-
sity of these discrepancies are specified. Concretely, we
map the features into a pattern map M̂ ∈ RW×H . This map
can be generated by a light-weight generator G as below:

M̂ = σ(G(F)), (1)

where σ(·) is the sigmoid activation function, and G is a
convolution with kernel size 1. Then the pattern map is re-
quired to be resized to the size of the original input image.

With the amplified pattern map M, we can split the orig-
inal input image X into two vision prompts as follows:

VD = X⊗M, VN = X⊗ (1−M), (2)

where VD and VN are the category-specific vision prompt
and category-irrelevant vision prompt, respectively. ⊗ de-
notes element-wise multiplication. Note that, since each el-
ement in the pattern map belongs to 0 to 1, it can weigh
the importance of category-specific discrepancies instead of
equally treating them.

For fine-grained understanding, the pattern map should
solely cover the discrepancies of an object, so that we can
better identify objects relying on the discrepancies involved
in the pattern map. Therefore,we apply the regularization
constraint to restrain the size of response in the pattern map,
which ensures that the irrelevant responses are excluded:

Lreg =
1

W ×H

W∑
m=1

H∑
n=1

M̂(m,n). (3)

Text Prompt. When understanding a fine-grained ob-
ject, human can instinctively seek help from discriminative
visual clues. For example, the extra semantic information,
such as appearance descriptions, will make it easier to dis-
tinguish fine-grained objects among subcategories. How-
ever, it is difficult to acquire such visual semantics in OSFR
task due to only providing the category names, which are
pre-defined and fixed. To handle this limitation, we de-
sign a text prompt to generate appropriate text descriptions
automatically via keeping semantically coherent with the
category-specific vision prompt.

Concretely, we construct the ”virtual” prompt template
via combining the category names and random vectors:

Pclass = (a1, a2, · · · , ai, · · · , ak, < class >), (4)

where Pclass ∈ RN×(k+1)×D is the text prompt of all
subcategories, N is the number of subcategories, k is the
number of prompt vectors and D is the vector dimension.
ai ∈ RD denotes the i-th prompt vector, consisting of sev-
eral learnable parameters. < class >∈ RD refers to the
generated word embeddings for this category name. Note
that these prompt vectors a are shared for all subcategories,
thus they are only task-specific. Ultimately, these learnable
prompt vectors cooperating with category names end up
constructing virtual prompt templates, which can be under-
stood by the text encoder of CLIP model to generate appro-
priate descriptions regarded as extra discriminative clues.

3.3. Vision-language Evaluator

Our goal is to make the pre-trained CLIP model sensitive
to the category-specific discrepancies. Thus, the key chal-
lenge is to let the pre-trained CLIP model learn discrimina-
tive representation that can attend to vision prompt and text
prompt. To achieve this, we design a vision-language evalu-
ator to mutually align vision prompt and text prompt into se-
mantic space via contrastive learning. In one word, the con-
trastive objective of vision-language evaluator encourages
the pre-trained CLIP model to locate the category-specific
descriptions in vision prompt and generate the category-
specific semantics into text prompt.

By forwarding the vision prompt and text prompt to the
image encoder ΦI and text encoder ΦT of pre-trained CLIP
model, respectively, we can obtain the corresponding visual
and textual embeddings:

ED = ΦI(VD),EN = ΦI(VN ),ET = ΦT (Pclass), (5)

where ED ∈ RC and EN ∈ RC are category-specific and
category-irrelevant visual embeddings, respectively. ET ∈
RN×C are category-specific textual embeddings.

Category-specific discrepancy matching. Given the
category-specific visual embeddings ED and the category-
specific textual embeddings ET, we can calculate the
category-specific discrepancy matching loss:

Lcdm = −
N∑
i=1

yi · log
exp(cos < ED,Ei

T > /τ)∑N
i=1 exp(cos < ED,Ei

T > /τ)
,

(6)
where y is the class label, Ei

T indicates the corresponding
textual embeddings of the yi-th category, τ denotes the hy-
perparameter of temperature, and cos <,> indicates the co-
sine similarity between visual and textual embeddings. The
category-specific vision prompt and text prompt will gradu-
ally approach category-specific discrepancies under the su-
pervision of Lcdm. However, Lcdm alone can not encourage
CLIP model to inject the complementary discrepancies into
the category-specific vision and text prompts.

Category-irrelevant region matching. To improve the
completeness of category-specific discrepancies, we devise
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the category-irrelevant region matching constraint Lcrm.
Formally, we denote the category-irrelevant vision-text pair
as (EN,ET) which contains category-irrelevant visual em-
beddings EN and category-specific textual embeddings
ET. Therefore, Lcrm can be formulated as:

Lcrm = −
N∑
i=1

yi·

log(1− exp(cos < EN,Ei
T > /τ)∑N

i=1 exp(cos < EN,Ei
T > /τ)

).

(7)

Optimizing Lcrm can make the missing discrepancies re-
covered in category-specific vision and text prompts and
thus ensure that more complete discrepancies are perceived
by pre-trained CLIP model.

3.4. Open-set Knowledge Transfer

After the friendly cooperation of dual prompt scheme
and vision-language evaluator, the pre-trained CLIP model
with the aid of the backbone network could provide a re-
markable retrieval performance under open-set scenarios.
However, the complex combination is very time consum-
ing and memory demanding for retrieval evaluation. Net-
work distillation is proven to be one of the solutions to
handle this problem in the classification filed [12]. In-
spired by this, we propose an open-set knowledge trans-
fer module to extend the theory of knowledge distillation
to retrieval tasks that aims to project an image into an em-
bedding space. Concretely, this module aims to transfer
the category-specific discrepancy knowledge containing un-
known subcategories from pre-trained CLIP model to the
backbone network trained in close-set scenarios.

Formally, the retrieval embeddings ER and the category-
specific visual embeddings ED are used for distillation:

Lokt =∥ ER −ED ∥, (8)

where ∥ · ∥ refers to the Frobenius norm. The retrieval
embeddings can only learn from pre-defined subcategories.
In contrast, the category-specific visual embeddings could
contain the discriminative knowledge of both pre-defined
and unknown subcategories, as pre-trained CLIP model can
generalize. After optimizing Lokt, the retrieval embeddings
are sufficiently discriminative and generalized, thus better
retrieving the visually similar objects under open-set sce-
narios accordingly.

3.5. Overall Training Objective

The overall training loss for the proposed PLEor can be
formulated as:

L = αLcdm + βLcrm + γLreg + λLokt, (9)

where α, β, γ, and λ are the hyper-parameters to weight the
four loss items.

Table 1. Comparison of performance and efficiency on CUB-200-
2011 using different combinations of constraints. The first row
indicates that we use the tranditional classification-based classifier
(i.e., ResNet-50) as supervision, to replace the proposed PLEor for
comparison. ”Time” is the time of extracted retrieval embeddings.

Lcdm Lcrm Lreg Lokt Recall@1 Time

66.3% 21.1ms
✓ 72.1% 42.3ms
✓ ✓ 74.4% 42.3ms
✓ ✓ ✓ 75.1% 42.3ms
✓ ✓ ✓ ✓ 74.8% 21.1ms

Table 2. Evaluation results of retrieval performance on CUB-200-
2011 dataset with/without the prompt learning. Hand-craft prompt
denotes that we use the handcrafted prompt template (”a photo of
a [·].”) in text prompt.

Prompt Recall@1

CLIP + Hand-craft prompt 71.5%
CLIP + Text Prompt 73.3%+1.8

CLIP + Vision&Hand-craft Prompt 72.4%+0.9

CLIP + Vision&Text Prompt 74.8%+3.3

4. Experiments
4.1. Experimental Setup

Datasets. CUB-200-2011 [4] consists of 200 bird
species. We use the first 100 subcategories (5,864 images)
for training and the consists of (5,924 images) for testing.
The Stanford Cars [21] includes 196 car models. Similarly,
we use the first 98 classes, which contain 8,054 images, for
training and the remaining classes, which contain 8,131 im-
ages, for testing. Finally, FGVC Aircraft [32] is split into
first 50 classes, containing 5,000 images, for training and
the remaining 50 classes with 5,000 images, for testing.

Evaluation protocols. To evaluate the retrieval perfor-
mance, we use Recall@K with cosine distance, which cal-
culates the average recall score over all query images in the
test set and strictly follows the setting in previous work [44].
Specifically, for each query, our model returns the top K
similar images. In the top K returning images, the score
will be 1 if there exists at least one positive image, and 0
otherwise.

Implementation Details. In our experiments, we use the
widely-used ResNet-50 [11] as our backbone network, with
pre-trained parameters. For CLIP model, the image and text
encoders are adopted from pre-trained CLIP Resnet-50 and
ViT-B/16, respectively. More importantly, their parame-
ters in CLIP model keep frozen. The only trainable pa-
rameters are backbone network and vision&text prompts.
Before feeding the images into our model, we resize them
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Table 3. Compared with competitive methods on CUB-200-2011, Stanford Cars 196 and FGVC Aircraft datasets. ”Arch” represents the
architecture of utilizing backbone network. ”R50” and ”BN” respectively denote Resnet50 [11] and Inception V3 with BatchNorm [45].

Method Arch
CUB-200-2011 Stanford Cars 196 FGVC Aircraft

1 2 4 8 1 2 4 8 1 2 4 8

SCDA TIP17
[52] R50 57.3 70.2 81.0 88.4 48.3 60.2 71.8 81.8 56.5 67.7 77.6 85.7

CRL IJCAI18 [64] R50 62.5 74.2 82.9 89.7 57.8 69.1 78.6 86.6 61.1 71.6 80.9 88.2
CEP ECCV20 [3] R50 69.2 79.2 86.9 91.6 89.3 93.9 96.6 98.1 - - - -
HDCL IJON21 [59] R50 69.5 79.6 86.8 92.4 84.4 90.1 94.1 96.5 71.1 81.0 88.3 93.3

DGCRL AAAI19 [65] R50 67.9 79.1 86.2 91.8 75.9 83.9 89.7 94.0 70.1 79.6 88.0 93.0
DCML CVPR21 [62] R50 68.4 77.9 86.1 91.7 85.2 91.8 96.0 98.0 - - - -
DAS ECCV22 [27] R50 69.2 79.3 87.1 92.6 87.8 93.2 96.0 97.9 - - - -
IBC ICML21

[41] R50 70.3 80.3 87.6 92.7 88.1 93.3 96.2 98.2 - - - -
NIA CVPR22

[40] R50 70.5 80.6 - - 89.1 93.4 - - - - - -
Proxy CVPR21

[17] BN 71.1 80.4 87.4 92.5 88.3 93.1 95.7 97.5 - - - -
HIST CVPR22

[25] R50 71.4 81.1 88.1 - 89.6 93.9 96.4 - - - - -
ETLR CVPR21 [18] BN 72.1 81.3 87.6 - 89.6 94.0 96.5 - - - - -
PNCA++ ECCV20 [46] R50 72.2 82.0 89.2 93.5 90.1 94.5 97.0 98.4 - - - -

Our PLEor R50 74.8 84.5 91.3 94.9 94.4 96.9 98.3 98.9 86.3 91.7 95.1 96.7

to 256 × 256 and then crop them into 224 × 224. Dur-
ing training, we utilize Stochastic Gradient Descent opti-
mizer with a weight decay of 0.0001, momentum of 0.9,
and batch size of 16. We adopt the widely-used data aug-
mentation techniques, such as, random cropping, left-right
flipping, and color jittering. We train our model end-to-end
on a single NVIDIA 2080Ti GPU to accelerate the training
process. The initial learning rate is set to 10−5, with expo-
nential decay of 0.9 after every 5 epochs. The total number
of training epochs is set to 200. The momentum coefficient
in semantic regularization is set to 0.2. The maximum num-
ber of textual tokens (D) in text prompt is 77 (following the
official CLIP design), and the temperature hyper-parameter
τ in Eq. (6)(7) is set to 0.01.

4.2. Ablation Studies

Efficacy of various constraints. To evaluate the effi-
cacy of proposed prompting vision-language evaluator, we
first employ ResNet-50 [11] with a fully connected layer as
a classification-based evaluator, e.g., 66.3% on CUB-200-
2011 dataset. It can be found in Tab. 1 that adopting the
category-specific discrepancies matching constraint (Lcdm)
for mining the category-specific discrepancies, the perfor-
mance boosts by 5.8%. While exploiting more complete
discrepancies by introducing the category-irrelevant region
matching constraint (Lcrm) can notably improve the re-
trieval performance. Besides, the regularization constraint
(Lreg) acting on the pattern map also enhances the focus-
ing discrepancies, providing a stable improvement on re-
sult performance. More importantly, based on this high-
performance baseline, we further add the open-set knowl-

edge transfer constraint (Lokt) to solve the problem of time
consuming and memory demanding during evaluation and
obtain a satisfactory performance compared to baseline.

Importance of the prompt scheme. Tab.2 presents the
results for various prompt schemes. As the baseline, we
directly use the handcrafted prompt templates (”a photo
of a [·]”) provided by the official CLIP in text prompt to
guide the backbone network to discover category-specific
discrepancies from input images. Although CLIP model
may neglect vital discrepancies due to using the handcrafted
prompt templates, the performance is much higher than
baseline in Tab. 1 owing to its open-set visual concepts.
Adding learnable text prompt templates instead of hand-
crafted prompt templates brings immediate benefits, with
gains of 1.8%. This result reflects the learnable vectors in
text prompt can learn a set of words describing the differ-
ences between subcategories, thus obtaining a performance
boost. When we design the vision prompt scheme that em-
phasizes the visual discrepancies in images and combine
it with handcrafted prompt templates, the retrieval perfor-
mance only reaches 72.4%. Moreover, combining vision
prompt with text prompt can discover more discrepancies
among subcategories, thus improving the retrieval accuracy
by 3.3%. Overall, all results suggest that, both learnable vi-
sion prompt and text prompt can reinforce each other and
further capture more precise discrepancies to identify visu-
ally similar objects under open-world settings.

4.3. Comparisons with the State-of-the-Arts

We first compare the quality of the proposed prompt-
ing vision-language evaluator with previous open-set fine-
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Table 4. Evaluation results of the text prompt with different num-
ber of category-specific vectors on CUB-200-2011 dataset.

Number (k) 4 8 16 32

Recall@1 72.4% 73.9% 74.8% 74.6%

Table 5. Comparison of the retrieval performance on CUB-200-
2011 dataset using pretraining and fine-tuning CLIP models, re-
spectively. It should be clarified that the parameters do not contain
the ones of backbone network.

Optimization Parameter Recall@1 Recall@2

Fine-tuning 114.13M 65.4% 77.8%

Pre-training 0.03M 74.8%+8.1 84.5%+7.7

grained retrieval methods. Table 3 reports the performance
of extensive competitive works on three datasets, i.e., CUB-
200-2011, Stanford Cars-196, and FGVC Aircraft datasets.
The methods are separated into three groups from top to
bottom of Tab. 3, which are (1) classification-based eval-
uators, (2) metric-based evaluators, and (3) the vision-
language evaluator, termed as PLEor.

As shown in Tab. 3, it is obvious that the retrieval perfor-
mance obtained by our evaluator is better than other meth-
ods no matter whether the classification-based or metric-
based evaluators are adopted. Concretely, existing works
based on classification evaluators, i.e., CEP [3] and HDCL
[59], tend to project the final retrieval embeddings into a
category space. Despite the encouraging achievement, the
shortcoming of these works is that they only focus on in-
dividual samples while neglecting the correlations among
subcategories, thus limiting the retrieval performance. To
address this problem, the effectiveness of these models
based on metric evaluator, i.e., ETLR [18] and PNCA++
[46], can be largely attributed to their precise identification
of negative/positive pairs through the manipulation of dis-
tances, which indirectly enhances the discriminative power
of features. However, these existing works, e.g., CEP [3],
HIST [25] and PNCA++ [46], follow a close-set learning
setting, where all the categories are pre-defined, to learn the
discriminative and generalizable embeddings for identify-
ing the visually similar objects of unknown subcategories.
It is thus very challenging for a feature extractor trained in
closed-set scenarios with classification or metric supervi-
sions to capture discriminative discrepancies from unknown
subcategories, consequently impairing the retrieval perfor-
mance. Compared to these works, although our PLEor also
follows the close-set learning setting, it can transfer the
discrepancies encompassing unknown subcategories from
CLIP model to our model, thus achieving the state-of-the-
art performance.

Table 6. Results of the text prompt with random and manual ini-
tialization on CUB-200-2011 dataset, respectively.

Initialization Recall@1

Random [a1, a2, a3, a4] 72.4%

Manual [”a”, ”photo”, ”of”, ”a”] 72.4%

Table 7. Results comparing to various vision prompts based on
Recall@K on CUB-200-2011.

Method R@1 R@2 R@4 R@8

CAM [42] 69.8% 79.7% 84.2% 91.6%
Bounding box 73.9% 82.6% 90.5% 94.2%

Our PLEor 74.8% 84.5% 91.3% 94.9%

4.4. Further Analysis

Investigation on the length of text prompt. How many
category-specific vectors in the text prompt should be used?
And is it better to have more category-specific words? Here
we study the impact of this hyperparameter of Eq. (4) on re-
trieval performance. Specifically, we repeat experiments on
CUB-200-2011 dataset by varying the number of category-
specific vectors from 4 to 32 with a stride of 4. The retrieval
performance can be found in Tab. 4, which indicates that
the performance drops when the number of vectors in the
text prompt increases to 32. The possible reason of the per-
formance drop is that after using more vectors, the vision-
language evaluator may force our network to focus on more
visual clues and even the useless.

Comparison of fine-tuning and pretraining schemes.
Tab. 5 shows that fine-tuning pre-trained CLIP model
can actually reduce retrieval accuracy compared to freezing
it. This phenomenon is reasonable since fine-tuning CLIP
model on the close-set scenarios could impair the ability
of visual modelling in open-set scenarios due to discard-
ing the remarkable zero-shot generalisation ability. Besides,
we apply pretrained CLIP model as an evaluator, which
only introduces only about 0.03 M of learnable parameters.
Thereby, its parameters are less than a classification-based
evaluator containing a fully connected layer.

Initialization of text prompt. In our comparison be-
tween random initialization and manual initialization, we
used the embeddings of “a photo of a” to initialize the
category-specific words in the latter. To ensure a fair com-
parison, we set the length of the learnable vectors in the text
prompt to 4 when using random initialization. As shown in
Tab 6, using a meaningful initialization did not result in a
vital difference in performance. Although further tuning of
the initialization with meaningful words may be helpful, we
suggest using the random initialization method.

19387



Figure 3. Analyses of hyper-parameters α, β, γ and λ in Eq. (9).
The results denote Recall@1 on CUB-200-2011.

Figure 4. Visualization of vision prompt based on classification-
based evaluator (b)(c) and our vision-language evaluator (d)(e),
respectively. +L means that we successively add this constraint,
i.e., +Lreg= Lcls + Lreg , +Lcrm= Lcdm + Lreg + Lcrm.

Analyses of vision prompt. By switching the process-
ing method of input images, we can gain further insight into
the effectiveness of the vision prompt scheme. As shown
in Tab. 7, switching from our vision prompt strategy to
the fixed prompt strategy, such as directly highlighting ob-
jects, leads to a significant drop in performance. Specif-
ically, we apply the class activation map or the bounding
boxes provided by the dataset to localize the objects from
the original images. These cropped objects are regarded as
fixed prompts. However, the fixed prompt strategy only pro-
vides the location of object or parts instead of the category-
specific discrepancies, thus making it hard for CLIP models
to capture category-specific discrepancies. Therefore, our
PLEor makes the open-set retrieval task aided by the learn-
able prompt strategy similar to the original pre-training task,
resulting in a steady improvement in performance.

Hyper-parameter analyses. The sensitivity analyses of
the hyper-parameters in Eq. (9) are conducted, and the eval-
uation results are presented in Fig. 3. It is observed that the
performance of our PLEor is a little sensitive with the varia-
tion of α, β, γ and δ. In our experiments, the default values
of α, β, γ and δ are set to 0.7, 0.4, 0.3 and 0.5, respectively.

(a) CUB-200-2011 Train Set (b) CUB-200-2011 Test Set

Figure 5. The nearest description for text prompt learned by
PLEor, with their similarity shown in grids.

What makes a network retrieve objects visually?
With this question in our mind, we exhibit the visualiza-
tion results of vision prompt VD. Since the values in VD

are continuous, we visualize them in a class activation map
manner [42] to better display them. The referred results
of classification-based and vision-language evaluators are
shown in Fig. 4. It is shown that different constraints of our
PLEor have different impact on category-specific discrep-
ancies. Concretely, Lreg could efficiently constrain the size
of activated regions, the combination of Lcdm and Lcrm

significantly activates more complete discrepancies.
The interpretation of the learned text prompt can be chal-

lenging due to the optimization of category-specific vec-
tors in a continuous space. Therefore, we use an indirect
method to interpret it by comparing the similarities between
our text prompt and the actual descriptions. In Fig. 5, we
calculate these similarities for the first 5 subcategories from
both the train and test sets. We observe that the nearest
descriptions to the learned text prompt are mostly the corre-
sponding real descriptions. Overall, our text prompt learns
category-specific descriptions, which guide the CLIP model
to identify category-specific discrepancies.

5. Conclusion

In this paper, we propose to exploit the pre-trained CLIP
model as an evaluator in place of traditional classification-
based and metric-based evaluators for open-set fine-grained
retrieval. The designed prompting vision-language evalu-
ator, termed PLEor, makes the pretrained CLIP model re-
fer the category-specific discrepancies with the appropriate
prompt technologies, and transfers these discrepancies en-
compassing pre-defined and unknown subcategories to our
model trained in close-set scenarios. This is the last tip,
but the most important: This model could be end-to-end
trained and gain competitive performance in three widely-
used open-set fine-grained retrieval datasets.
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