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Abstract

Recent advances in robust semi-supervised learning
(SSL) typically filter out-of-distribution (OOD) information
at the sample level. We argue that an overlooked problem of
robust SSL is its corrupted information on semantic level,
practically limiting the development of the field. In this pa-
per, we take an initial step to explore and propose a unified
framework termed OOD Semantic Pruning (OSP), which
aims at pruning OOD semantics out from in-distribution
(ID) features. Specifically, (i) we propose an aliasing OOD
matching module to pair each ID sample with an OOD sam-
ple with semantic overlap. (ii) We design a soft orthogonal-
ity regularization, which first transforms each ID feature by
suppressing its semantic component that is collinear with
paired OOD sample. It then forces the predictions before
and after soft orthogonality decomposition to be consistent.
Being practically simple, our method shows a strong per-
formance in OOD detection and ID classification on chal-
lenging benchmarks. In particular, OSP surpasses the pre-
vious state-of-the-art by 13.7% on accuracy for ID classifi-
cation and 5.9% on AUROC for OOD detection on TinyIm-
ageNet dataset. The source codes are publicly available at
https://github.com/rain305f/OSP.

1. Introduction
Deep neural networks have obtained impressive per-

formance on various tasks [30, 44, 46]. Their success is

partially dependent on a large amount of labeled train-

ing data, of which the acquisition is expensive and time-

consuming [20, 25, 40, 45]. A prevailing way to reduce the

dependency on human annotation is semi-supervised learn-

ing (SSL). It learns informative semantics using annotation-
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Figure 1. (a) Intuitive diagram of OOD Semantic Pruning (OSP),

that pruning OOD semantics out from ID features. (b) t-SNE vi-

sualization [52] from the baseline [23]. (c) t-SNE visualization

from our OSP model. The colorful dots donate ID features, while

the black dots mark OOD features. The dots with the same color

represent the features of the same class. Here, our OSP and the

baseline are trained on CIFAR100 with 100 labeled data per class

and 60% OOD in unlabeled data.

free and acquisition-easy unlabeled data to extend the la-

bel information from limited labeled data and has achieved

promising results in various tasks [38, 50, 51, 54].

Unfortunately, classical SSL relies on a basic assump-

tion that the labeled and unlabeled data are collected from

the same distribution, which is difficult to hold in real-world

applications. In most practical cases, unlabeled data usually

contains classes that are not seen in the labeled data. Exist-

ing works [12, 17, 21, 40] have shown that training the SSL

model with these OOD samples in unlabeled data leads to

a large degradation in performance. To solve this problem,

robust semi-supervised learning (Robust SSL) has been in-

vestigated to train a classification model that performs sta-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23849



bly when the unlabeled set is corrupted by OOD samples.

Typical methods focus on discarding OOD information at

the sample level, that is, detecting and filtering OOD sam-

ples to purify the unlabeled set [12, 17, 21, 57]. However,

these methods ignore the semantic-level pollution caused

by the classification-useless semantics from OOD samples,

which improperly disturbs the feature distribution learned

from ID samples, eventually resulting in weak ID and OOD

discrimination and low classification performance. We pro-

vide an example to explain such a problem in Fig. 1. As we

can see, due to the semantics of Orchid in OOD examples,

the model pays too much attention to the background and

misclassifies the Butterfly as Beetle.

In this paper, we propose Out-of-distributed Semantic

Pruning (OSP) method to solve the problem mentioned

above and achieve effective robust SSL.

Concretely, our OSP approach consists of two main

modules. We first develop an aliasing OOD matching mod-

ule to pair each ID sample with an OOD sample with which

it has feature aliasing. Secondly, we propose a soft orthogo-

nality regularization, which constrains the predictions of ID

samples to keep consistent before and after soft-orthogonal

decomposition according to their matching OOD samples.

We evaluate the effectiveness of our OSP in extensive

robust semi-supervised image recognition benchmarks in-

cluding MNIST [53], CIFAR10 [29], CIFAR100 [29] and

TinyImageNet [15]. We show that our OSP obtains signifi-

cant improvements compared to state-of-the-art alternatives

(e.g., 13.7% and 15.0% on TinyImagetNet with an OOD

ratio of 0.3 and 0.6 respectively). Besides, we also empiri-

cally demonstrate that OSP indeed increases the feature dis-

crimination between ID and OOD samples. To summarize,

the contributions of this work are as follows:

• To the best of our knowledge, we are the first to exploit

the OOD effects at the semantic level by regularization

ID features to be orthogonal to OOD features.

• We develop an aliasing OOD matching module that

adaptively pairs each ID sample with an OOD sample.

In addition, we propose a soft orthogonality regulariza-

tion to restrict ID and OOD features to be orthogonal.

• We conduct extensive experiments on four datasets,

i.e., MNIST, CIFAR10, CIFAR100, and TIN200, and

achieve new SOTA performance. Moreover, we ana-

lyze that the superiority of OSP lies in the enhanced

discrimination between ID and OOD features.

2. Related work
2.1. Semi-Supervised Learning

Semi-supervised learning aims to learn informative se-

mantics from unlabeled data to reduce the dependence on

human annotations. Recently, many efforts have been made

in SSL classification [2,4,5,8,10,11,14,19,24,26,35,43,48].

Powerful methods based on entropy minimization enforce

their networks to make low-entropy predictions on unla-

beled data [3, 27, 32, 32, 34, 42]. Another spectrum of pop-

ular approaches is consistency regularization, whose core

idea is to obtain consistent prediction under various pertur-

bations [31, 38, 50, 51, 54]. VAT [38] enforces prediction

invariance under adversarial noises on unlabeled images.

UDA [54] and FixMatch [50] employ weak and strong aug-

mentation to compute the consistency loss.

The effectiveness of these SSL methods relies on an as-

sumption that the labeled and unlabeled data are drawn from

the same distribution. However, in practice, such an as-

sumption is difficult to satisfy, resulting in severe perfor-

mance degeneration of close-set SSL [18, 40, 57]. Thus,

there is an urgent need to develop SSL algorithms that could

work robustly with an unlabeled dataset that contains OOD

samples.

2.2. Robust Semi-Supervised Learning

Robust SSL aims to train a classification model that per-

forms stably when the unlabeled set is corrupted by OOD

samples [1, 6, 18, 22, 24, 28, 33, 47]. This paper considers

a common case: unlabeled data contains classes not seen

in the labeled data [55]. Current typical approaches focus

on removing the effects of OOD information at the sample-

level [12, 17, 21, 57]. UASD [12] utilizes self-distillation

to detect OOD samples and filter them out later from un-

labeled data. MTC [55] proposes a multi-task curriculum

learning framework, which detects the OOD samples in un-

labeled data and simultaneously estimates the probability

of the sample belonging to OOD. DS3L [17] trains a soft

weighting function to assign small weights to OOD unla-

beled samples and large weights to ID unlabeled samples.

More recently, some works have proposed utilizing OOD

samples to improve the feature representation capacity of

their models [23, 37]. Simultaneously, they also inherited

the idea of previous work to filter out OOD samples in clas-

sification supervision. [37] extracts style features of ID

samples and transfers OOD samples to ID style. T2T [23]

employs an agent self-supervised task on both ID and OOD

samples to enhance representation learning. Different from

existing methods, we propose to prune the harmful OOD se-

mantics out from ID features by regularizing ID and OOD

features to be orthogonal, resulting in accurate ID classifi-

cation and OOD detection.

3. Method
3.1. Preliminaries

Give a small set of labeled data Dl = {(xl
i, y

l
i)}Nl

i=1 and

a large set of unlabeled data Du = {(xu
i )}Nu

i=1 (Nl � Nu),

where xl
i, y

l
i and xu

i are the image and label of the i-th la-
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Figure 2. The overall architecture of our proposed OSP for robust semi-supervised classification. The core modules are aliasing OOD

matching (AOM) and soft orthogonality regularization (SOR). The training process of our OSP consists of two-stage. At the pre-training

stage, we pre-train the model with rotation prediction and K-ways predictor (Sec. 3.5). At the fine-tuning stage, we utilize the pre-trained

OOD detection module to detect OOD samples in unlabeled data and store them in a class-wise memory bank, named recyclable OOD

bank. To prune harmful OOD semantics out from ID features, the AOM selects an OOD sample with semantic overlap for each ID feature

and composes ID-OOD pairs. Then the SOR applies a Soft Orthogonal Transform on ID-OOD pairs and generates pruned ID features.

Finally, our proposed Orthogonality Regularization Loss constrains the predictions of ID features and corresponding pruned ID features to

be consistent. During inference, the encoder and classifier are applied to K-ways ID classification. The details are shown in Sec. 3.

beled data and the image of the i-th unlabeled data. The

label space of labeled data contains K labels, that is, yli ∈
Cl = {1, ...,K}. The difference from classic SSL is that

there exist OOD samples of unseen classes in the unlabeled

training set. Formally, Cl ⊂ Cu and COOD = Cu \Cl. Ro-

bust SSL aims to train a classification model that performs

stably when the unlabeled set is corrupted by OOD samples.

3.2. Overview

The architecture of our OSP is summarized in Fig. 2. The

previous state-of-the-art robust SSL method T2T [23] is se-

lected as our baseline. Following T2T, OSP has a shared

encoder G(·), a K-ways classifier F(·), a rotation predic-

tion head H(·) and an OOD detection module M(·). Dif-

ferent from T2T [23], we design two novel modules, named

aliasing OOD matching (AOM) and soft orthogonality reg-

ularization (SOR) respectively, to prune out-of-distributed

semantic and obtain a robust classifier simultaneously. The

AOM module and SOR module are elaborated in Sec. 3.3

and Sec. 3.4, respectively. Inheriting the training paradigm

of current robust SSL methods [21, 23, 55], our OSP con-

tains two training stages: the pre-training stage and fine-

tuning stage, where the detailed descriptions are as follows.

Pre-training stage. The purpose of this stage is to obtain

a pre-trained model that could detect OOD samples reason-

ably. Following T2T [23], we carry out a K-way classifica-

tion on Dl and a self-supervised task [39] [9] (i.e., rotation

recognition [16]) on Du to pre-train the encoder G(·), the

classifier F(·), and the rotation predictor H(·). Given a la-

beled input xl
i ∈ Dl and an unlabeled input xu

j ∈ Du, we

denote their representations as zli = G(xl
i) and zuj = G(xu

j ).

The training of model parameters is optimized by minimiz-

ing a supervised cross-entropy loss Lce and a rotation loss

Lrot. Details are described in Sec. 3.5.

Meanwhile, we pre-train the OOD detection module

M(·) on Dl to calculate OOD scores S(xu) for unlabeled

samples, which is used to distinguish ID samples and OOD

samples in unlabeled data. Formally, we define the classifier

as follows:

g(xu) =

{
ID, if S(xu) ≥ γ,

OOD, if S(xu) < γ,
(1)

where γ is calculated by the Ostu algorithm [41] in our ex-

periments [23]. Additionally, we enforce our model to pre-

dict consistent predictions before and after adding Gaussian

noises on feature maps G(·), which helps to obtain more

robust features.

Fine-tuning stage. The fine-tuning stage aims to refine

the pre-trained model to obtain an accurate and robust clas-

sifier, which is achieved by the proposed AOM and SOR.

As illustrated in Fig. 2, we first utilize the OOD detec-

tion module M(·) to periodically split unlabeled data into

subsets: ID unlabeled set and OOD unlabeled set, referring

to [23]. The ID unlabeled set is then used to learn seman-

tics from unlabeled data. Due to OOD samples having con-

flicting targets with the classification, the compared base-

line T2T [23] drops the OOD unlabeled set. In contrast,

we argue that the dropped set still contains useful informa-

tion, which needs to be pruned in optimization. To this end,

we propose the AOM and SOR to achieve such a purpose.

Specifically, the AOM pairs each ID sample with an OOD

sample with which it has feature aliasing. And then, the
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SOR constrains the predictions of ID samples to keep con-

sistent before and after soft-orthogonal decomposition ac-

cording to their matching OOD samples.

3.3. Aliasing OOD Matching

In this section, we introduce our aliasing OOD matching

(AOM) Module and discuss how to select anchor ID sam-

ples and pair them with OOD samples with which they have

feature aliasing.

Anchor ID features. During training, we sample anchor

ID images (queries) for each target category that appears in

the current mini-batch. We denote the feature set of labeled

candidate anchor images for category c as Al
c, which con-

tains features of labeled images with high confidence. For-

mally,

Al
c = {zli|zli = G(xl

i), y
l
i = c, pli[c] > δ}, (2)

where yli, z
l
i and pli are the ground-truth label, feature repre-

sentation, and class probability for the labeled image xl
i, re-

spectively. Here, δ denotes the positive threshold and is set

to 0.8 following [23], and pli[c] is the predicted probability

of class c. For unlabeled data, counterpart Au
c is computed

as:

Au
c = {zui |zui = G(xu

i ), ŷ
u
i = c,maxc(p

u
i [c]) > δ}, (3)

where yui = argmaxc(p
u
i [c]) is the pseudo label of the im-

age xu
i . This Au

c is similar to Al
c, the only difference is that

it uses the pseudo-label for class determination. Based on

Al
c and Au

c , we obtain the set of all qualified ID anchors Ac:

Ac = Al
c ∪ Au

c . (4)

Recyclable OOD samples. We define a binary variable

ni(c) to identify whether an unlabeled image xu
i ∈ Du is

qualified to be a recyclable OOD sample of category c. For a

target category c, a qualified recyclable OOD sample should

highly probably belong to OOD samples and share class-

agnostic features with ID samples belonging to the category

c. Therefore, ni(c) is formalized as follows:

ni(c) = [ŷui = c] · [g(xu
i ) = OOD] · [pui [c] < γOOD],

(5)

where γood is a threshold set as 0.2, which prevents us from

selecting some ID samples that are wrongly classified as

OOD. Considering that each minibatch contains ID samples

and not necessarily OOD samples, we store the recyclable

OOD samples of each category in a category-wise first-in-

first-out memory queue B(·).
Aliasing OOD Matching. In training iterations, we first

collect the Ac of the current minibatch and then match each

ID feature in it with a random OOD feature in B(c) as ID-

OOD pairs {ti}:

ti = (zi; oi), zi ∈ Ac, oi ∈ B(c). (6)

Element-wise multiplicationMatrix addition

Anchor ID Feature

Paired OOD Feature

𝐷 𝐿
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Figure 3. The pipeline of the soft orthogonal decomposition

(SOD). The input of SOD is ID-OOD pairs, and its output is

pruned ID features. Here, the function G1 calculates the cosine

of the angle between two vectors, while the function F(·) cal-

culates the l2-norm of a vector. First, we obtain the cosine of

the angle of f ID and fOOD, named as C1 by G1. Then we get

the l2-norm lID of anchor ID feature f ID by F(·). We normalize

anchor ID feature f ID and obtain fn. Then we get the projector

of f ID to fOOD, named as f proj. Finally, we get the pruned ID

featuref out = f ID − αf proj.

At the end of each iteration, we update each B(c) by de-

termining whether there are qualified OOD samples (i.e.,

ni(c) = 1) in this minibatch.

3.4. Soft Orthogonality Regularization

In this section, we introduce our proposed SOR in detail,

which includes two parts, as follows:

• We perform a soft orthogonal decomposition (SOD) on

ID-OOD pairs to generate pruned ID features.

• We design two losses Lu
odc and Ll

odc, which regular-

ize prediction invariance on original ID features and

pruned ID features generated by soft orthogonal de-

composition.

Proposition 1 Feature Orthogonal Decomposition (FOD).
Any vector V in the high-dimensional space can be trans-

formed into two mutually orthogonal vectors Va and Vb

along a certain basis vector U direction, formally:

�V = �Va + �Vb,

�Va = �ε ∗ ||�V ∗ sin < �U , �V > ||,
Vb = �σ ∗ ||�V ∗ cos < �U , �V > ||,
s.t. �ε ⊥ �U , �σ ‖ �U , ||�ε|| = ||�σ|| = 1,

(7)

where ε and σ both are unit vectors, and < ·, · > denotes the
angle between two vectors, ∗ denotes scalar multiplication
of vectors.

Soft Orthogonal Decomposition. As shown in Fig. 3,

given ID-OOD pairs ti = (zi, oi), SOD applies soft feature

orthogonal decomposition on each ID feature zci along with
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its matching OOD feature oi. Then we obtain the pruned

ID feature zci,r, which has less similarity with paired OOD

features since the OOD semantic component is pruned out

of the original ID feature. According to proposition 1, the

process is formulated as follows:

�zi = �zi,a + �zi,b,

�zi,r = �zi − α�zi,b,

s.t. �zi,a ⊥ �oi, �z
c
i,b ‖ �oi,

(8)

where α (we set α = 0.8) is a hyperparameter to slow down

the drastic changes in the feature space caused by FOT,

which named soft orthogonal decomposition (SOD). With

the pruned ID feature �zi,r for the anchor ID image �zi, we

obtain its corresponding probability vector pi,r as follows:

pi,r = F(�zi,r). (9)

Orthogonality Regularization Loss. Moreover, we de-

sign orthogonality regularization loss Ll
odc and Lu

odc to en-

courage the predictions of our model to be consistent before

and after SOD as:

Ll
odc =

1∑K
c=0 |Al

c|
K∑
c=0

∑
zl
i∈Al

c

KL(pli, p
l
i,r)

− 1

|Al
c|

∑
zl
i∈Al

c

ln(pli,r[c]),

Lu
odc =

1

M

K∑
c=0

∑
zu
i ∈Au

c

KL(pui , p
u
i,r),

(10)

where Ll
odc and Lu

odc are orthogonality regularization losses

for labeled and unlabeled data, respectively. For unlabeled

data, the Lu
odc is formulated as the KL divergence between

pui and pui,r, while for labeled data, we additionally min-

imize the cross-entropy between pli,r and yli to utilize the

label information.

3.5. Total Loss

In this section, we describe the training processing and

loss functions in detail. As mention above, we use T2T [23]

as our plain baseline.

At pre-training stage, our OSP follows baseline, which

learns a K-ways predictor with labeled data and a rotation

recognizer [16] with all unlabeled data to enhance the rep-

resentation capacity. For the K-ways prediction branch, F
calculates a K-dimensional class probability vector pli =
F ◦ G(xl

i). During training, cross entropy is used to regu-

larize the class probability vectors of labeled images:

Lce = − 1

||Dl||
∑

(xl
i,y

l
i)∈Dl

log pli[y
l
i], (11)

For rotation recognition, we denote four counterparts im-

ages xu
j generated via rotating by (k−1)∗90◦ as xu

j,k, then

the rotation prediction head H(·) is responsible for predict-

ing xu
j with rotation label k with cross entropy loss,

Lrot = − 1

4 ∗ ||Du||
∑

(xu
i )∈Du

4∑
k=1

log qli,k[k], (12)

To sum up, the total loss of OSP at the pre-training stage is

described as follows:

Lpre = Lce + Lrot + Ll
ood, (13)

where Ll
ood is used to train the OOD detection module

M(·), referring to [23].

At the fine-tuning stage, we apply our proposed orthog-

onality regularization losses on the baseline, which aims to

prune OOD semantic from ID features. Referring to [23],

the fine-tuning loss of baseline is described as follows:

Lt2t = Lce + Lu︸ ︷︷ ︸
Classic SSL Loss

+ Ll
ood + Lu

ood︸ ︷︷ ︸
OOD Detection Loss

+Lrot. (14)

With our proposed orthogonality regularization losses Ll
odc

and Lu
odc, the total loss of OSP at the fine-tuning stage is

described as follows:

Lft = Lt2t + Ll
odc + Lu

odc︸ ︷︷ ︸
Our OSR Loss

(15)

where Ll
ood and Lu

ood are used to train the OOD detection

model D(·) [23].

4. Experiments
4.1. Experimental Setup

Datasets. Referring to [21] [23] [17], we evaluate the

effectiveness of our OSP on four widely used datasets:

MNIST [53], CIFAR10 [29], CIFAR100 [29] and TinyIma-

geNet [15].

OOD setting. In this paper, we use inter-dataset and intra-

dataset OOD settings to verify the superiority of OSP.

(a) Intra-dataset OOD Setting: Following [21] [23] [17],

we select some categories as ID categories and the

rest as OOD categories in MNIST [53], CIFAR10 [29],

CIFAR100 [29] and TinyImageNet (a subset of Ima-

geNet [15]). During training, we random sample labeled

and unabeled images for ID categories as ID samples and

unlabeled images from OOD categories as OOD samples.

For MNIST and CIFAR10, we select first six classes as ID

categories. For CIFAR100 and TinyImageNet, we select

first 50 classes and 100 classes as ID catrgories, respec-

tively. Moreover, we use the mismatch ratio γ ∈ [0, 1]
to adjust the ratio of OOD samples in the unlabeled data,

which modulates class distribution mismatch. For example,

when the mismatch ratio γ is 0.3, 30% unlabeled samples

come from unseen classes. The details are shown in Tab. 3.

More details about datasets and settings refers to Appendix.

(b) Inter-dataset OOD setting: Following [23], we ran-

dom sample ID samples from CIFAR-10 and use other
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Method MNIST CIFAR10 CIFAR100 TinyImagetNet
γ=0.3 γ=0.6 γ=0.3 γ=0.6 γ=0.3 γ=0.6 γ=0.3 γ=0.6

Supervised 93.2 93.2 76.3 76.3 58.6 58.6 36.5 36.5

Classic SSL Methods
UDA† [54] - - 90.7 88.3 67.1 64.5 - -

Pi-Model [48] 92.4 86.6 75.7 74.5 59.4 57.9 36.9 36.4

PL [32] 90.0 86.0 75.8 74.6 60.2 57.5 36.6 35.8

VAT [38] 94.5 90.4 76.9 75.0 61.8 59.6 36.7 36.3

Fixmatch [50] - - 81.5 80.9 65.9 65.2 - -

Robust SSL Methods
DS3L [17] 96.8 94.5 78.1 76.9 - - - -

UASD [12] 96.2 94.3 77.6 76.0 61.8 58.4 37.1 36.9

CL [7] 96.9 95.6 83.2 82.1 63.6 61.5 37.3 36.7

Safe-Students [21] 98.3 96.5 85.7 83.8 68.4 68.2 37.7 37.1

MTC [55] 93.7 88.5 85.5 81.7 63.1 61.1 37.0 36.6

T2T [23] 99.1 98.7 91.6 89.3 70.0 68.2 39.0 35.0

Ours 99.3(+0.2) 99.4(+0.7) 90.5(-1.1) 88.2(-1.1) 72.4(+2.4) 70.9(+2.7) 52.7(+13.7) 52.1(+15.0)

Table 1. Intra-dataset: ID categories classification accuracy (%) of different methods on the four datasets. In this paper, the bold numbers

denote the best results across all approaches. The (+number) denotes the absolute improvements.

Method TIN LSUN Gaussian Uniform
Nl=250 Nl=1000 Nl=250 Nl=1000 Nl=250 Nl=1000 Nl=250 Nl=1000

Classic SSL Methods
UDA [54] 88.8 91.8 88.5 91.1 88.9 89.2 88.7 89.7

MixM [4] 82.4 88.0 76.3 87.0 75.8 85.7 72.9 84.5

Robust SSL Methods
DS3L [17] - 70.1 - 69.7 - 62.9 - 62.9

UASD [12] 83.6 - - 80.9 - - - -

MTC [55] 86.4 89.9 86.7 90.2 87.3 89.8 85.6 89.9

OTCT [36] - 91.1 - 91.3 - 92.3 - 91.8

T2T [23] 91.5 93.3 91.1 94.4 90.8 93.6 90.0 94.1

Ours 92.4(+0.9) 93.7(+0.5) 91.9(+0.8) 94.8(+0.4) 91.0(+0.2) 93.7(+0.1) 90.8(+0.8) 94.2(+0.1)

Table 2. Inter-dataset: ID categories classification accuracy (%) of different methods on CIFAR10 and other four datasets as OOD.

Dataset ID

classes

OOD

classes

labeled

samples Nl

OOD

samples

MNIST 6 4 6×10 30,000×γ
CIFAR10 6 4 6×400 20,000×γ

CIFAR100 50 50 50×100 20,000×γ
TinyImageNet 100 100 100×100 40,000×γ

Table 3. Intra-dataset OOD setting details.

dataset to synthesize OOD samples. Specifically, 10,000

unlabeled images are sampled from each of the TIN dataset,

the Large-scale Scene Understanding (LSUN) dataset,

Guassian noise dataset, and uniform noise dataset, forming

into 4 inter-dataset OOD setting.

Metrics. Following [17] [23] [21], we choose the mean

accuracy (Acc.) to evaluate the classification performance.

For OOD detection, we use the area under the receiver op-

erating characteristic (AUROC) as metrics [23].

Implementation Details. Existing methods including UDA

[54], FixMatch [50], VAT [38], PL [32], Pi-Model [48],

MTC [55], DS3L [17], UASD [12], CL [7], T2T [23] and

Safe-Student [21] are used for comparison. For our method,

SGD is used to optimize network weights. The learning rate

is initially set to 0.03 at the pre-training stage and 0.001

at the fine-tuning stage, which is adjusted via the cosine

decay strategy [50, 54]. The momentum is set to 0.9. In

each training batch, the batch size of labeled data and unla-

beled data are 64 and 320. And the pre-training stage costs

50,000 iterations, and the fine-tuning stage takes 200,000
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Lu
odc Ll

odc AOM TinyImageNet CIFAR100

35.0 68.2

� � 49.5 69.9

� � 48.4 70.4

� � 46.5 70.5

� � � 52.1 69.1

Table 4. Abaltion results on CIFAR100 (γ = 0.6) and TinyIma-

geNet (γ = 0.6)

Method MNIST CIFAR10 CIFAR100 TinyImageNet

T2T [23] 92.6 67.4 64.8 40.5

Ours 99.8 88.3 71.8 54.4

Table 5. The OOD detection performance comparison accross dif-

ferent datasets ( AUROC(%)).

iterations. We set the size of recyclable OOD Bank B(·)
is 5000. For UDA [54] and FixMatch [50], models are

trained with 250,000 iterations for a fair comparison.For

far comparison, when training MTC [55] and T2T [23], we

follow their original settings in [55] and [23], respectively.

In MNIST, we adopt a simple two-layer CNN model as a

backbone network [21] [17], while in CIFAR10, CIFAR100

and TinyImageNet, we use the Wide-ResNet28-2 [56] as the

backbone model.

4.2. Main Results.

OOD proportion of datasets. Here, we report the pro-

portion of OOD samples in different datasets to help un-

derstand the performances of OSP. As Tab. 3 shows, hard

datasets like TinyImageNet contain more OOD classes and

samples, for which obtaining a clear ID/OOD discrimina-

tion is very hard. In other words, the ‘feature aliasing’ prob-

lem corrupts learning more heavily on hard datasets (e.g.,

TinyImageNet) than on easy ones (e.g., CIFAR10).

Performance on intra-dataset setting. As shown in

Tab. 1, our OSP achieves the best performance on MNIST,

CIFAR100, and TinyImageNet with various class mismatch

ratios γ. Prominently, on TinyImageNet, most existing

methods have low accuracy but our OSP improves the best

baseline by 13.7% and 15.0% when the class mismatch ra-

tio γ = 0.3 and 0.6, respectively. This is because our OSP

is designed to tackle the ”feature aliasing” problem, and

this problem matters heavily in hard datasets like TinyIm-

ageNet as mentioned above. While for easy datasets, our

OSP also obtains competitive performances to SOTA al-

ternatives. These comparisons highlight the superiority of

OSP in addressing the corruption from OOD data.

Performance on inter-dataset setting. As shown in

Tab. 2, OSP outperforms previous methods on CIFAR10

with various OOD datasets (e.g. TIN, LSUN, Gaussian, and

Uniform). This indicates the good versatility of OSP for dif-

ferent OOD sources, reflecting its potential in real complex

dataset settings.

Results on various class mismatch ratio. To verify

the robustness of our OSP to corruption of unlabeled data,

we illustrate the performance of our model under various

mismatch ratios in CIFAR100 with 100 labeled data per

class. The results are shown in Fig. 4(a). We see that our

OSP achieves SOTA in all settings. Moreover, most base-

lines display significant performance degradation as γ in-

creases, whereas OSP remains competitive. These observa-

tions clearly validate the superiority of OSP.

Results on different labeled data amount. Moreover,

we further verify the effectiveness of our OSP under dif-

ferent labeled data amounts. Here, we carry out all experi-

ments on CIFAR100 with γ = 0.6. As shown in Fig. 4(b),

our OSP obtains the best performances on all labeled data

amount settings, reflecting the broad applicability of our ap-

proach. A notable point is that the advantages of previous

robust SSL methods [23] [55] gradually fade away with the

increase in the amount of labeled data.

4.3. Ablation Studies

Effect of Soft Orthogonality Regularization. To verify

the effectiveness of our SOR, we compare four variants: (1)

Row 1: the baseline without our proposed AOM and SOR

and use Eq.14 as finetuning loss function. (2) Row 2: only

applies SOR on labeled ID anchor features Al
c. (3) Row

3: only applies SOR on unlabeled ID anchor features Au
c .

(4) Row 5: our OSP which applies SOR on all ID anchor

features Au
c ∪ Al

c. As shown in Tab. 4, our SOR module

outperforms baseline obviously and our proposed regular-

ization loss Al
c and Au

c both contribute to performance im-

provements.

Effect of Aliasing OOD Matching. To quantify the im-

pact of AOM, we compare two variants: (1) Row 4: ran-

dom selects OOD features to pair ID features (2) Row 5:

our OSP which matches each ID sample with an OOD sam-

ple that has a large semantic overlap with it, as described

in Sec. 3.3. From Tab. 4, the results indicate that our ID-

OOD pairs procedure (AOM) is beneficial to pruning OOD

semantic and further improves performance.

4.4. Further Analysis

OOD detection. In Tab. 5, we compare our method

against T2T [23] under combinations of ID and OOD

datasets, to validate the efficacy of our OSP . The AUROC

is used as the metric here. We see that our OSP outperforms

T2T [23] under all settings with a large margin. reflecting

the superority of OSP in ID/OOD discrimination.

Visualization of class activation map. We use Grad-

CAM [49] to visualize the class activation map. As shown

in Fig. 5, we notice that the baseline (row 2) is distracted

and even focuses on non-foreground object regions, thus

23855



Class mismatch ratio
(a)
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Figure 4. (a) Effect of the class mismatch ratio. (b) Effect of the labeled data amount. All these results are obtained on the CIFAR100

dataset with 100 labeled data per class.
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Figure 5. Activation maps of baseline [23] and OSP using Grad-CAM [49]. The red (blue) color represents more (less) attention from the

model. Rows 1-4 represent input images, CAMs from baseline [23], paired OOD features in OSP, and CAMs from OSP, respectively.

has wrong predictions. In contrast, OSP focuses on the ob-

ject regions more accurately and comprehensively (row4),

indicating the superiority of OSP in learning semantic

structure. This is because OSP encourages our model to

only reserve classification-related ID semantics by pruning

classification-useless OOD semantics, which is mostly acti-

vated in the background region (row 3).

More results on real-world dataset. STL-10 [13] is

a dataset for real-world image recognition, while each class

has fewer labeled training examples (ID samples) and a very

large set of unlabeled OOD examples. The unlabeled OOD

samples comes from a similar but different distribution from

the labeled data. The primary challenge is to make use of

the unlabeled data to improve recognition for the ID sam-

ples. Here, we resize the images as 32×32. We applied

our OSP on STL-10 with 20,000 OOD samples, 100 labeled

and 200 unlabeled ID samples per class. Our OPS improves

T2T [23] by 3.1% (Acc.78.0% v.s. 74.9%).

5. Conclusion

In this paper, we introduce a novel method named OSP

for robust semi-supervised learning [18, 57], which first ex-

ploits the value of OOD at the semantic level. Our OSP

mitigates the corruption from OOD samples by pruning

OOD semantics out from ID features at the semantics level.

Specifically, we propose an aliasing OOD matching module

to pair each ID sample with an OOD sample with which it

has semantic overlap. We then develop a soft orthogonal-

ity regularization to regularize the ID and OOD features to

be orthogonal. Further, we will extend our OSP to more

challenging open-set scenarios [22, 28, 33].

Acknowledgements. This work was supported in

part by the National Key R&D Program of China

(No.2022ZD0118201), Natural Science Foundation of

China (No.61972217, 32071459, 62176249, 62006133,

62271465), and the Natural Science Foundation of Guang-

dong Province in China (No.2019B1515120049).

23856



References
[1] Maximilian Augustin and Matthias Hein. Out-distribution

aware self-training in an open world setting. arXiv: Learn-
ing, 2020.

[2] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Ku-

rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-

match: Semi-supervised learning with distribution alignment

and augmentation anchoring. arXiv: Learning, 2019.

[3] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-

rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-

match: Semi-supervised learning with distribution alignment

and augmentation anchoring. In ICLR, 2019.

[4] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas

Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A

holistic approach to semi-supervised learning. In NeurIPS,

2019.

[5] Zhaowei Cai, Avinash Ravichandran, Paolo Favaro,

Manchen Wang, Davide Modolo, Rahul Bhotika, Zhuowen

Tu, and Stefano Soatto. Semi-supervised vision transformers

at scale. In NeurIPS, 2022.

[6] Kaidi Cao, Maria Brbic, and Jure Leskovec. Open-world

semi-supervised learning. In ICLR, 2021.

[7] Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente

Ordonez. Curriculum labeling: Revisiting pseudo-labeling

for semi-supervised learning. In AAAI, pages 6912–6920,

2021.

[8] Dong-Dong Chen, Wei Wang, Wei Gao, and Zhi-Hua Zhou.

Tri-net for semi-supervised deep learning. In IJCAI, pages

2014–2020, 2018.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey E. Hinton. A simple framework for contrastive learn-

ing of visual representations. In ICML, pages 1597–1697,

2020.

[10] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad

Norouzi, and Geoffrey E. Hinton. Big self-supervised mod-

els are strong semi-supervised learners. In NeurIPS, 2020.

[11] Yanbei Chen, Massimiliano Mancini, Xiatian Zhu, and

Zeynep Akata. Semi-supervised and unsupervised deep vi-

sual learning: A survey. In TPAMI, 2022.

[12] Yanbei Chen, Xiatian Zhu, Wei Li, and Shaogang Gong.

Semi-supervised learning under class distribution mismatch.

In AAAI, pages 3569–3576, 2020.

[13] Adam Coates, Andrew Ng, and Honglak Lee. An analysis

of single-layer networks in unsupervised feature learning. In
AISTATS, pages 215–223, 2011.

[14] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay K. Va-

sudevan, and Quoc V. Le. Autoaugment: Learning augmen-

tation strategies from data. In CVPR, pages 113–123, 2019.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255, 2009.

[16] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. In ICLR, 2018.

[17] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li,

and Zhi-Hua Zhou. Safe deep semi-supervised learning for

unseen-class unlabeled data. In ICML, pages 3897–3906,

2020.

[18] Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. Robust deep semi-

supervised learning: A brief introduction. arXiv: Learning,

2022.

[19] Zhongyi Han, Xian-Jin Gui, Chaoran Cui, and Yilong Yin.

Towards accurate and robust domain adaptation under noisy

environments. In IJCAI, pages 2269–2276, 2020.

[20] Zhongyi Han, Benzheng Wei, Xiaoming Xi, Bo Chen, Yi-

long Yin, and Shuo Li. Unifying neural learning and sym-

bolic reasoning for spinal medical report generation. Medical
Image Analysis, 67:101872, 2021.

[21] Rundong He, Zhongyi Han, Xiankai Lu, and Yilong Yin.

Safe-student for safe deep semi-supervised learning with

unseen-class unlabeled data. In CVPR, pages 14585–14594,

2022.

[22] Dan Hendrycks and Kevin Gimpel. A baseline for detect-

ing misclassified and out-of-distribution examples in neural

networks. In ICLR, 2016.

[23] Junkai Huang, Chaowei Fang, Weikai Chen, Zhenhua Chai,

Xiaolin Wei, Pengxu Wei, Liang Lin, and Guanbin Li. Trash

to treasure: Harvesting ood data with cross-modal match-

ing for open-set semi-supervised learning. In CVPR, pages

8310–8319, 2021.

[24] Zhuo Huang, Chao Xue, Bo Han, Jian Yang, and Chen

Gong. Universal semi-supervised learning. In NeurIPS,

pages 26714–26725, 2021.

[25] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej

Chum. Label propagation for deep semi-supervised learning.

In CVPR, pages 5070–5079, 2019.

[26] Juho Kannala, Alex Lamb, Kenji Kawaguchi, Vikas Verma,

Yoshua Bengio, David Lopez-Paz, Vikas Verma, Kenji

Kawaguchi, Alex Lamb, Juho Kannala, Yoshua Bengio, and

David Lopez-Paz. Interpolation consistency training for

semi-supervised learning. arXiv: Machine Learning, 2019.

[27] Rihuan Ke, Angelica I. Aviles-Rivero, Saurabh Pandey,

Saikumar Reddy, and Carola-Bibiane Schönlieb. A three-

stage self-training framework for semi-supervised semantic

segmentation. In TIP, 31:1805–1815, 2022.

[28] Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang,

Sung Ju Hwang, and Jinwoo Shin. Distribution aligning re-

finery of pseudo-label for imbalanced semi-supervised learn-

ing. In NeurIPS, 2020.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Communications of the ACM, 60(6):84–90, 2017.

[31] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. In ICLR, 2016.

[32] Dong-Hyun Lee. Pseudo-label: The simple and efficient

semi-supervised learning method for deep neural networks.

In ICML Workshops, pages 1163–1171, 2022.

[33] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A

simple unified framework for detecting out-of-distribution

samples and adversarial attacks. In NeurIPS, 2018.

23857



[34] Yu-Feng Li and De-Ming Liang. Safe semi-supervised learn-

ing: a brief introduction. Frontiers of Computer Science,

pages 669–676, 2019.

[35] Yu-Feng Li and Zhi-Hua Zhou. Towards making unlabeled

data never hurt. In TPAMI, pages 175–188, 2015.

[36] Huixiang Luo, Hao Cheng, Yuting Gao, Ke Li, Mengdan

Zhang, Fanxu Meng, Xiaowei Guo, Feiyue Huang, and

Xing Sun. On the consistency training for open-set semi-

supervised learning. arXiv preprint arXiv:2101.08237, 3(6),

2021.

[37] Huixiang Luo, Hao Cheng, Fanxu Meng, Yuting Gao, Ke

Li, Mengdan Zhang, and Xing Sun. An empirical study

and analysis on open-set semi-supervised learning. arXiv
preprint, 2021.

[38] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and

Shin Ishii. Virtual adversarial training: a regularization

method for supervised and semi-supervised learning. In
TPAMI, 41(8):1979–1993, 2018.

[39] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of

visual representations by solving jigsaw puzzles. In ECCV,

pages 69–84, 2016.

[40] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus

Cubuk, and Ian Goodfellow. Realistic evaluation of deep

semi-supervised learning algorithms. In NeurIPS, 31:3239–

3250, 2018.

[41] Nobuyuki Otsu. A threshold selection method from gray

level histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 1979.

[42] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta

pseudo labels. pages 11557–11568, 2021.

[43] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and

Alan L. Yuille. Deep co-training for semi-supervised image

recognition. In ECCV, pages 142–159, 2018.

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision. In ICML, pages

8748–8763, 2021.

[45] Zhongzheng Ren, Raymond A. Yeh, and Alexander G.

Schwing. Not all unlabeled data are equal: Learning

to weight data in semi-supervised learning. In NeurIPS,

33:21786–21797, 2020.

[46] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat,

and Mubarak Shah. In defense of pseudo-labeling: An

uncertainty-aware pseudo-label selection framework for

semi-supervised learning. In ICLR, 2021.

[47] Kuniaki Saito, Donghyun Kim, and Kate Saenko. Open-

match: Open-set consistency regularization for semi-

supervised learning with outliers. arXiv: Computer Vision
and Pattern Recognition, 2021.

[48] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.

Regularization with stochastic transformations and perturba-

tions for deep semi-supervised learning. In NeurIPS, pages

1163–1171, 2016.

[49] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek

Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-

tra. Grad-cam: Visual explanations from deep networks via

gradient-based localization. In IJCV, 2016.

[50] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao

Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin,

Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-

supervised learning with consistency and confidence. arXiv
preprint arXiv:2001.07685, 2020.

[51] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In NeurIPS, pages

1195–1204, 2017.

[52] Laurens Van Der Maaten. Learning a parametric embed-

ding by preserving local structure. In PMLR, pages 384–391,

2009.

[53] Hayden Walles, Anthony Robins, Alistair Knott, Hayden

Walles, Anthony Robins, and Alistair Knott. the mnist

handwritten digit database. In IEEE Signal Process. Mag.,
29(6):141–142, 2012.

[54] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,

and Quoc V Le. Unsupervised data augmentation for consis-

tency training. In NeruIPS, page 6256–6268, 2019.

[55] Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Multi-

task curriculum framework for open-set semi-supervised

learning. In ECCV, pages 438–454, 2020.

[56] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016.

[57] Xujiang Zhao, Killamsetty Krishnateja, Rishabh Iyer, and

Feng Chen. Robust semi-supervised learning without of dis-

tribution data. arXiv preprint arXiv:2010.03658, 2020.

23858


