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Abstract
Face recognition service providers protect face privacy

by extracting compact and discriminative facial features
(representations) from images, and storing the facial fea-
tures for real-time recognition. However, such features can
still be exploited to recover the appearance of the original
face by building a reconstruction network. Although sev-
eral privacy-preserving methods have been proposed, the
enhancement of face privacy protection is at the expense of
accuracy degradation. In this paper, we propose an adver-
sarial features-based face privacy protection (AdvFace) ap-
proach to generate privacy-preserving adversarial features,
which can disrupt the mapping from adversarial features
to facial images to defend against reconstruction attacks.
To this end, we design a shadow model which simulates
the attackers’ behavior to capture the mapping function
from facial features to images and generate adversarial la-
tent noise to disrupt the mapping. The adversarial features
rather than the original features are stored in the server’s
database to prevent leaked features from exposing facial
information. Moreover, the AdvFace requires no changes
to the face recognition network and can be implemented
as a privacy-enhancing plugin in deployed face recogni-
tion systems. Extensive experimental results demonstrate
that AdvFace outperforms the state-of-the-art face privacy-
preserving methods in defending against reconstruction at-
tacks while maintaining face recognition accuracy.

1. Introduction
Face recognition is a way of identifying an individual’s

identity using their face, which has been widely used in
many security-sensitive applications. Undoubtedly, biomet-
ric facial images are private and discriminative information

∗Zhibo Wang is the corresponding author.

to each person that should be protected. Recently, much at-
tention has been paid to privacy protection, such as the Gen-
eral Data Protection Regulation, making the preservation
of face privacy increasingly important. In order to avoid
direct leakage of facial images, mainstream face recogni-
tion systems usually adopt a client-server mode that extracts
features from facial images with a feature extractor on the
client side and stores the facial features rather than facial
images on the server side for future online identification.
As facial features suppress the visual information of faces,
face privacy protection can be realized to some extent.

However, recent studies showed that it is possible to
reconstruct original images from facial features, which is
called reconstruction attack, including optimization-based
[9, 29] and learning-based reconstruction attacks [7, 13, 23,
37]. The former gradually adjusts the pixels of the input
image to make the output of the feature extractor as close
as possible to a particular feature until the facial image (the
input image) corresponding to this feature is reconstructed
[9, 29]. The latter trains a feature-image decoder with a de-
convolutional neural network (D-CNN) to reconstruct im-
ages directly from facial features [7,13,23,37]. These stud-
ies imply that existing face recognition systems suffer from
severe privacy threats once the features in their database
were leaked. Therefore, it is essential to provide approaches
to prevent facial features from being reconstructed.

Several approaches have been proposed to protect face
privacy. [1, 10, 18, 22] transform the features into the
encrypted space and perform face recognition based on
the cryptographic primitives and security protocols, which
however bear prohibitive computation and communication
costs for face recognition systems. [3, 24] utilize differen-
tial privacy to protect face privacy by perturbing features
with noises, which however suffers from a significant accu-
racy drop in face recognition. [19, 34] proposed adversarial
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training-based methods that retrain the main task network
(e.g., gender classification from facial images) using adver-
sarial training between the reconstruction network and the
main task network to generate the privacy-preserving fea-
tures directly. However, [19] demonstrated that facial fea-
tures learned from adversarial training significantly com-
promise accuracy when dealing with face recognition tasks.
Recently, several frequency domain-based methods [15,25]
were proposed, which transform raw images into the fre-
quency domain and remove features’ critical channels used
for visualization to protect face privacy. However, [15]
struggles with the trade-off between accuracy and privacy
protection and our experimental results demonstrate that
[25] actually cannot resist powerful reconstruction attacks.
In addition, both the adversarial learning-based and the fre-
quency domain-based methods require retraining the face
recognition network, which is not applicable to deployed
face recognition systems.

In this paper, we aim to propose a novel approach to gen-
erate privacy-preserving facial features which are able to
thwart reconstruction attacks as well as maintain satisfac-
tory recognition accuracy. Undoubtedly, it is non-trivial to
realize this objective. The first challenge is how to defend
against reconstruction attacks under the black-box setting.
An attacker may utilize different reconstruction networks,
which are unknown to the face recognition systems in ad-
vance, to reconstruct images from facial features. How to
enable the generated facial features to defend against such
unknown and different reconstruction attacks is very chal-
lenging. The second challenge is how to disrupt the visual
information embedded in facial features while keeping the
recognition accuracy. Since visual information is some-
what critical to face recognition, disrupting visual informa-
tion may incur a reduction in recognition accuracy. The
last challenge is how to generate privacy-preserving fea-
tures without changing the face recognition network. Once
a face recognition network is deployed, it would be expen-
sive to retrain the network and redeploy it to millions of
clients. Therefore, a plug-in module is more welcomed for
the deployed face recognition systems.

To address the above challenges, we propose an ad-
versarial features-based face privacy protection (AdvFace)
method, which generates the privacy-preserving adversar-
ial features against reconstruction attacks. The intuition of
AdvFace is to disrupt the mapping from features to facial
images by obfuscating features with adversarial latent noise
to maximize the difference between the original images and
the reconstructed images from the features. To this end, we
train a shadow model to simulate the behavior of the re-
construction attacks to obtain the reconstruction loss which
denotes the quality of the reconstructed images. Thereafter,
we maximize the reconstruction loss to generate the adver-
sarial features by iteratively adding the adversarial latent

noise to features along the direction of the gradient (loss
w.r.t. the targeted feature). Moreover, to ensure face recog-
nition accuracy, the magnitude of adversarial latent noise
would be constrained during the optimization.

Our main contributions are summarized as follows:

• We propose a novel facial privacy-preserving method
(namely AdvFace), which can generate privacy-
preserving adversarial features against unknown re-
construction attacks while maintaining face recogni-
tion accuracy. Moreover, AdvFace requires no changes
to the deployed face recognition model and thus can be
integrated as a plug-in privacy-enhancing module into
face recognition systems.

• We unveil the rationale of the reconstruction attack
and build a shadow model to simulate the behavior of
the reconstruction attacks and generate adversarial fea-
tures, which can disrupt the mapping from features to
facial images by maximizing the reconstruction loss of
the shadow model.

• Extensive experimental results demonstrate that our
proposed AdvFace outperforms the state-of-the-art fa-
cial privacy-preserving methods in terms of superior
privacy protection performance while only incurring
negligible face recognition accuracy loss. Moreover,
the transferability of AdvFace is validated. That is, it
can effectively resist different reconstruction networks.

2. Related work
This section provides an overview of related works on

face reconstruction attacks and face privacy protection.

2.1. Face Reconstruction Attacks
In earlier works, Mignon et al. [26] used the radial basis

function regression to reconstruct faces from their features.
Mohanty et al. [27] used the inverse of the affine transfor-
mation model, which simulates the face recognition system,
to reconstruct facial images. However, However, regression
and affine transformation-based methods are no longer ap-
plicable when facial features are extracted by complex deep
neural networks. Fredrikson et al. [9] performed the face
reconstruction by solving an optimization problem, which
aims to generate the reconstructed images that minimize
the distance between the targeted features and features from
the reconstructed images. Similarly, Razzhigaev et al. [29]
followed the same optimization objective and transformed
the problem into the linear space of 2D Gaussian functions
for higher efficiency. However, these optimization-based
reconstruction attacks incur large computation costs even
for reconstructing only one facial image. Hence, some re-
cent works [4,7,13,23,37] used the reconstruction network
trained by a large number of (image, feature) pairs to map
the features back to the facial images. In this paper, given

8213



their powerful attacking performance with moderate attack-
ing costs, we choose the reconstruction network-based at-
tacks as our defense target.

2.2. Face Privacy Protection
Several face privacy protection methods have recently

been proposed, which can be divided into four categories.
The encryption-based methods, such as homomorphic en-
cryption [10], matrix encryption [18], functional encryp-
tion [1], and randomized CNN with user-specific keys [22],
encrypted facial images or features, and then performed
face recognition in the encrypted space to protect face pri-
vacy. However, the high computational overhead of ex-
changing and processing data is not suitable for face recog-
nition networks that already consume a lot of computational
resources. In [3, 24], differential privacy-based methods
were incorporated to add carefully crafted noises to fea-
tures or images to prevent leaking information that can dis-
tinguish faces. However, these methods suffer from a sig-
nificant accuracy drop in face recognition tasks. The ad-
versarial training-based methods [19, 34] strengthened face
privacy by directly generating a facial feature that could re-
sist reconstruction attacks through the adversarial training
between the reconstruction network and the feature extrac-
tor. However, researchers in [19] revealed that the accuracy
of face recognition decreased significantly (from 99.97% to
30.38%) when dealing with the driver identity recognition
task. Researchers in [15, 25] proposed face privacy protec-
tion methods based on the frequency domain segmentation,
which transforms the facial images into the frequency fea-
tures and removes parts of the features that are important
for image reconstruction but secondary to face recognition
to thwart the reconstruction attacks while ensuring the ac-
curacy of face recognition. However, [15] struggled with
the tradeoff between accuracy and privacy protection and
our experimental results demonstrate that [25] cannot resist
powerful reconstruction attacks. In addition, the frequency
domain-based methods require retraining and redeploying
the face recognition network leading to significantly in-
creased costs. In summary, the aforementioned methods are
either incapable of defending against reconstruction attacks
while maintaining recognition accuracy or incurring large
computation overhead or redeployment costs.

3. Preliminary
In this section, we first introduce a typical architecture of

face recognition systems and then present a realistic threat
model considered in this paper.

3.1. Face Recognition Systems
For face protection, existing face recognition systems

usually use the client-server architecture [8, 17]. As shown
in Fig. 1, the face recognition network is partitioned and de-
ployed as two sequential modules, i.e., the feature extractor
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Figure 1. The typical architecture of face recognition systems.

E(·) (the front layers of the network) on the client side and
the remaining layers Ψ(·) on the server side. In particular,
each client uses E(·) to extract features from facial images
and submits them to the server, where Ψ(·) is employed to
recognize the identities of the received facial features.

Rather than original facial images, the server stores fa-
cial features that do not visually disclose facial informa-
tion. However, as previously mentioned, once stolen from
the server’s database, the facial features can still be ex-
ploited to reconstruct facial images via the reconstruction
attack. Therefore, effective face privacy-preserving meth-
ods that can protect the original facial images from being
reconstructed from the facial features, are highly desired.

3.2. Threat Model
In this paper, we consider that the server in the face

recognition system is trusted. However, there may exist ex-
ternal attackers, who tend to steal the facial features from
the server’s database and launch reconstruction attacks to
obtain clients’ original facial images.
Attacker’s Knowledge: We consider that the attacker is
powerful, and it has the following knowledge:

• Facial features: The attacker can obtain the facial fea-
tures stored in the server’s database.

• The Feature Extractor: The attacker can access the
clients’ black-box feature extractor of the face recog-
nition model. Note that this can be easily achieved by
purchasing a client device from the face recognition
service provider.

This powerful attacker also makes it difficult for us to
design an effective facial privacy-preserving approach.
Attacker’s Strategy: Following existing reconstruction at-
tacks [4,7,13,23,37], we consider that the attacker tends to
reconstruct facial images from facial features by building a
reconstruction network, denoted by R(·). The attacker can
train R(·) by minimizing the reconstruction loss function
LR, which is defined as the L1-norm distance between the
original and reconstructed images. Formally, we have:

LR(Z,X) =

N∑
i=1

∥xi −R (zi)∥1 , (1)
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Figure 2. The pipeline of AdvFace in the deployed face recognition system. In the client, the original image is converted to a facial feature
which will be uploaded to the server. In the server, the facial feature is reconstructed to a shadow image by the shadow model built by
the server, and the shadow feature is extracted and further converted to the reconstructed image. Finally, the generation of the adversarial
feature depends on the loss of the shadow image and the reconstructed image. The server stores adversarial features rather than original
facial features uploaded from the client against reconstruction attacks.

where xi denotes a facial image in a public face dataset X =
{x1, . . . , xN} and Z = {z1, . . . , zN} (where zi = E(xi))
represents the corresponding features extracted by the fea-
ture extractor. Here, N represents the total number of facial
images in the public dataset.

With the trained reconstruction network R(·), the at-
tacker can easily reconstruct facial images from the facial
features via only one step of forward propagation on R(·).

4. Adversarial Features Based Face Protection
In this section, we first provide an overview of AdvFace

and then elaborate on the design of the shadow model de-
sign and the adversarial features generation. Finally, we
present the application scenarios of AdvFace.

4.1. Overview of AdvFace
The key to the success of reconstruction attacks is that

they can learn the mapping from features to images by op-
timizing Eq. (1). Although attackers may use different re-
construction network structures, similar mappings could be
learned given the image-feature pairs extracted from the
same feature extractor. Therefore, our basic idea is to learn
the mapping function by building a shadow model of the
reconstruction network and then disrupt the mapping from
features to facial images along the opposite direction of
training the reconstruction network. To this end, we craft
the adversarial features with the adversarial latent noise by
solving a constrained optimization problem, which aims
to maximize the difference between the original images
and the reconstructed images from the adversarial features
through the shadow model.

Fig. 2 shows the workflow of AdvFace, which takes the
original facial features uploaded from a client as the in-
put and outputs the corresponding adversarial features that
will be stored in the server’s database for future online face
recognition. It is worth noting that the original facial fea-
tures would not be stored in the database. Thus, when the

database is breached, only these adversarial features would
be leaked, which could prevent the attacker from recon-
structing the facial images.

Specifically, AdvFace consists of the following phases:
1) converting the original facial features uploaded from the
client to shadow images with the shadow model; 2) extract-
ing shadow features from shadow images with the feature
extractor; 3) reverting the shadow features to the recon-
structed images by the same shadow model, and calculating
the gradients of LS w.r.t. shadow features, which indicates
the direction where LR increases most quickly; 4) generat-
ing adversarial latent noise by gradient ascent; 5) perturbing
the shadow features with the adversarial latent noise to gen-
erate the adversarial features, which will be stored in the
database of the server for future face recognition.

4.2. Shadow Model Building
Despite being exploited by attackers to reconstruct facial

images, the visual information contained in facial features
is essential for face recognition. This, however, has been
largely neglected in existing obfuscation-based privacy pro-
tection methods, which usually choose to distort facial fea-
tures indiscriminately. Consequently, these methods sacri-
fice face recognition accuracy for privacy protection. To
strike a desirable balance between privacy protection and
face recognition, we need to craft adversarial features that
maximize the reconstruction loss while minimizing the face
recognition accuracy loss. Specifically, for a well-trained
face recognition network, one feasible way of mitigating
recognition accuracy loss is to maximize the reconstruction
loss while enforcing a constraint on the magnitude of the
disturbance on the features.

In particular, AdvFace aims to find an Lp-norm bounded
noise δ to distort features such that the reconstruction loss
LR is maximized, which is formulated as the following con-
strained optimization problem:
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argmax
δ

∥R(z + δ)− x∥1, s.t. ∥δ∥p < ξ, (2)

where x is an original facial image, z represents the facial
features extracted from x, δ denotes the adversarial latent
noise, and ξ represents the noise bound. Intuitively, the opti-
mization problem (2) can be easily solved by adding noises
along the direction of the gradient of LR.

However, it is rather challenging or even impossible to
directly solve (2) as the reconstruction network employed
by the attacker is unknown beforehand. Since different re-
construction networks learn a similar mapping from facial
features to images, given the image-feature pairs extracted
by the same feature extractor, the solution to problem (2)
is actually reconstruction model-agnostic. Hence, we advo-
cate building a powerful shadow model S(·) at the server,
which can be any reconstruction network, to learn the cor-
responding mapping and compute the reconstruction loss
(then the corresponding gradients). Similar to (1), we can
train the shadow model S(·) on a public face dataset by min-
imizing the following loss function:

LS(Z,X) =

N∑
i=1

∥xi − S (zi)∥1 . (3)

However, without accessing the original facial images,
the server can not derive the reconstruction loss regarding
the stored facial features. To address this issue, as shown in
Fig. 2, we first convert the features submitted by the client
to shadow images through the shadow model and extract
shadow features using the feature extractor. Then, we can
compute the reconstruction loss and gradient based on the
shadow images and images reconstructed from shadow fea-
tures. The above process can be formally represented as

x̃ = S(z), z̃ = E(x̃), (4)

where x̃ is the shadow image reconstructed by the shadow
model from the facial feature z submitted by the client, and
z̃ is the shadow feature extracted from the shadow image x̃
using the feature extractor.

Then, we can calculate the gradient grad(S, z̃ + δ, x̃)
of the reconstruction loss of the shadow model w.r.t. the
perturbation δ as follows

grad(S, z̃ + δ, x̃) = ∇δ∥S(z̃ + δ)− x̃∥1, (5)

where z̃ + δ denotes the adversarial feature with δ being
initialized to zero. With noise added, the attacker can not
recover the shadow image x̃ from the adversarial feature.
Since x̃ is highly similar to the original image x, it is also
hard for the attacker to reconstruct the original image.

Furthermore, considering that the facial images used
for training and those encountered after deploying the face
recognition network can be quite different, we update the

parameters of the batch normalization (BN) layer in the
shadow model. Specifically, unlike a typical BN process,
which normalizes inputs during the inference stage using
the parameters learned from the training dataset, we com-
pute the mean µ and variance σ based on the transmitted
testing feature batches to ensure that the noise added to each
feature is more appropriate.

4.3. Adversarial Features Generation

To generate the adversarial features, we inject the ad-
versarial latent noise δ into the shadow features under the
guidance of grad(S, z̃ + δ, x̃) as in (5). Generally, we can
use any gradient-based methods to generate adversarial fea-
tures [6, 11, 21] to break the mapping from the features to
the original facial images such that the face recognition sys-
tem can defend against the reconstruction attack. In this pa-
per, we choose the Project Gradient Descent (PGD) [21],
which iteratively adds noises along the gradient direction
while restricting the perturbation range in each iteration.
Specifically, the generation of adversarial features can be
formulated as:

zt+1 = zt + α · sign(grad(S, zt, x̃)), z0 = z̃,

s.t. ∥zt+1 − zt∥ < ε,
(6)

where α controls the magnitude of noise and ε restricts the
noise level added in each iteration. Here, sign (·) is an
element-wise function that outputs 1 for positive gradient
values, -1 for negative gradient values, and 0 for 0.

Starting from z̃, we update the adversarial feature by it-
eratively adding noises following (6). With the function
sign (·), the noise added in each iteration is not exactly
along the direction of the gradient but an approximate one.
This helps alleviate the negative influences of some extreme
samples, contributing to enhanced robustness of adversarial
features.

4.4. Discussions of Application Scenarios
We would like to strengthen that our proposed AdvFace

can protect facial privacy without changing the face recog-
nition networks. Thus, AdvFace can be easily integrated
into deployed face recognition systems as a plug-in privacy-
enhancing module.

Moreover, AdvFace can work in both online and offline
modes. Specifically, the server of a face recognition system
can employ AdvFace to generate adversarial features from
original facial features in real-time, i.e., online mode. How-
ever, with noises added, the adversarial features inevitably
incur a slight decrease in face recognition accuracy. To
tackle this issue, the server can use the adversarial features
and labels stored in the database to retrain the face recogni-
tion network on the server side, which is the offline mode.
The server-side face recognition network can learn suffi-
cient information about the adversarial features through the
offline mode, thereby improving face recognition accuracy.
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Note that the offline mode does not involve any changes
to the adversarial features themselves. Thus, the privacy
protection performance will not be compromised. Further-
more, the generated adversarial features can be packaged
into privacy-preserving datasets for data sharing and reused
for training other face recognition networks.

5. Experimental Evaluation
In this section, we conduct extensive experiments on var-

ious datasets and models to evaluate the performance of
AdvFace in terms of face recognition accuracy, attack re-
sistance, and transferability.

5.1. Experimental Setup
5.1.1 Datasets
We use the following datasets in our experiments.

• CASIA-WebFace [35] contains 490K facial images
from more than 10k different individuals.

• CelebA [20] contains 202K facial images from more
than 10k celebrities.

• LFW [14] contains 13K facial images from 5.7K dif-
ferent identities and 6K face pairs (i.e., two facial im-
ages) for evaluation.

• CFP-FP [32] contains 7K images from 500 identities
and 7K face pairs for evaluation.

• AgeDB-30 [28] contains more than 12K images from
570 identities and 6K face pairs for evaluation.

Following the preprocessing operation adopted in prior
works [5, 22], we crop all facial images with the multi-
task convolutional neural network (MTCNN) [36], which
can detect faces and facial landmarks in images. Besides,
for each cropped image, we resize it to 160 × 160 for a
fair comparison. Moreover, each pixel in RGB format (i.e.,
[0,255]) is normalized to [0,1] before being fed into the neu-
ral network.

5.1.2 Models and Implementation Details
Face Recognition Model: We employ the FaceNet [31]
with a pre-trained Inception-ResNet-v1 [12] as the back-
bone for face recognition. We select the first three convo-
lutional layers of the backbone as the feature extractor E(·)
deployed on the client-side, while the remaining layers are
deployed on the server-side. We fine-tune the classifier of
FaceNet for 50 epochs with the backbone frozen using the
CASIA-WebFace dataset, and then fine-tune the entire net-
work for 50 epochs. We use the Adam optimizer [16] with
a scheduler, where the period and multiplicative factor of
learning rate decay are set to 1 and 0.94. The entire model
is trained with triplet loss [2] and cross-entropy loss.
Face Reconstruction Model: As summarized in the ap-
pendix, three types of reconstruction networks can be em-
ployed by the attacker. Specifically, the URec is built based

on the U-net [30] architecture and the ResRec is imple-
mented with the ResNet [12] architecture. The TransRec
is an exactly mirrored reconstruction network by perform-
ing a layer-to-layer reversion. All reconstruction networks
are trained on the CelebA dataset.
AdvFace Model: To implement AdvFace, we also train
three types of shadow models S(·), including URec,
ResRec, and TransRec on the CASIA-WebFace dataset. We
adopt the Adam optimizer with a learning rate of 1e-4. In
the PGD process, we implement 40 iterations with α = 0.2.
Unless otherwise specified, the noise bound is ε = 0.2.

5.1.3 Baseline Defense Methods
We compare AdvFace with the following three widely used
face privacy protection methods.
Random Perturbation: This method iteratively adds ran-
domly generated noises to the original facial features. To
ensure a fair comparison, the total number of iterations is
40 and the noise bound in each iteration is 0.2.
Differential Privacy (DP) [19]: This method adds noises
generated from the Laplace mechanism to the original facial
features. The privacy budget is set to 1.0 to ensure the same
noise bound as our method.
DuetFace [25]: This is the latest face privacy protection
method based on frequency domain segmentation. It splits
the frequency channels into two parts according to their im-
portance for visualization and mainly use the non-crucial
part for transmission and face recognition.

5.1.4 Evaluation Metrics
To evaluate the performance of privacy protection methods
against reconstruction attacks, we use SSIM [33], PSNR,
and MSE to measure the quality of reconstructed images.
Specifically, a larger MSE or a smaller SSIM and PSNR,
indicates a lower similarity between the reconstructed im-
age and the original facial image, which implies a stronger
defense. For replay attacks which use the reconstructed im-
ages to cheat the face recognition system, we use the suc-
cess rate of replay attacks (SRRA) to measure the perfor-
mance of the protected features. A lower SRRA indicates
that the protected facial feature has a stronger defense abil-
ity against the replay attack. Moreover, we characterize the
utility of face recognition using the accuracy (ACC) of iden-
tifying whether two face features (from face pairs in LFW,
CFP-FP, and AgeDB-30) belong to one person.

5.2. Trade-off between Privacy and Utility
We first evaluate the effectiveness of AdvFace in terms

of the trade-off between face privacy protection and face
recognition accuracy. To this end, we perturb the features
with different noise bounds, i.e., ε varies from 0.00 to 0.30
with a step size of 0.05, where ε = 0.00 indicates no pro-
tection for the shadow features. We conduct experiments on
three datasets, i.e., LFW, AgeDB-30, and CFP-FP, where
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Table 1. Performance comparison results among privacy protection methods in terms of SSIM, PSNR, MSE, and SRRA.

LFW CFP-FP AgeDB-30
Methods SSIM↓ PSNR↓ MSE↑ SRRA↓ SSIM↓ PSNR↓ MSE↑ SRRA↓ SSIM↓ PSNR↓ MSE↑ SRRA↓
Unprotected 0.93 27.87 0.002 97.40% 0.83 22.89 0.006 89.71% 0.87 23.96 0.005 84.53%
Random 0.90 22.81 0.005 94.73% 0.79 20.73 0.009 87.26% 0.86 21.68 0.007 77.47%
DP 0.90 23.12 0.005 93.97% 0.79 20.89 0.009 84.94% 0.86 21.86 0.007 78.07%
DuetFace 0.85 20.92 0.009 95.17% 0.66 14.38 0.043 70.23% 0.76 14.65 0.040 87.27%
Ours 0.28 6.97 0.206 4.03% 0.23 5.98 0.261 18.43% 0.24 5.85 0.269 16.67%

Figure 3. Reconstructed images from adversarial features with dif-
ferent noise bounds on datasets LFW, CFP-FP, and AgeDB-30.
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Figure 4. Performance of AdvFace in terms of the trade-off be-
tween PSNR and Accuracy with different noise bounds.

the ResRec is used as the reconstruction network and the
shadow model in AdvFace.

Fig. 3 shows that the strength of privacy protection is
proportional to ε. That is, a larger ε always provides a
stronger privacy protection. Moreover, we can see that face
privacy can be well protected when ε ≥ 0.2. Fig. 4 shows
the accuracy and PSNR values under different ε. We can see
that the accuracy decreases as ε increases, which is opposite
to the changing trend of privacy protection (i.e., decreasing
PSNR means improving privacy protection). The bottom
left of Fig. 4 presents a good performance on both face pri-
vacy protection and face recognition accuracy. It can be
seen that the point of ε = 0.2 is closest to the bottom left,
and thus we set ε as 0.2 for the following evaluation.

5.3. Defense against Privacy Attacks
We now compare AdvFace with baselines to evaluate its

defense performance against privacy attacks (including re-
construction attacks and replay attacks) on the datasets of
LFW, CFP-FP, and AgeDB-30. Both the reconstruction net-
work and the shadow model adopt the ResRec architecture.
Defense against Reconstruction Attacks: Fig. 5 shows the

Figure 5. Reconstructed images from facial features generated by
different privacy protection methods.

reconstructed images from facial features protected by dif-
ferent methods. As shown in the third column, the recon-
structed images from the generated adversarial features by
our proposed AdvFace are hard to distinguish, while those
protected by other methods (columns 4-6) undergo much
information leakage about the original images, which can
identify the person. Tab. 1 summarizes the average values
of SSIM, PSNR, and MSE of the reconstructed images and
original images. We can see that our method always has a
lower SSIM/PSNR and a higher MSE, which demonstrates
that our AdvFace outperforms other protection methods on
the defense performance against the reconstruction attacks.
Defense against Replay Attacks: These attacks input the
reconstructed facial image to the face recognition system
for malicious face authentication, where we use the SRRA
to measure the defense effectiveness. Tab. 1 shows the out-
standing performance of AdvFace in preventing attackers
from launching replay attacks. Specifically, the value of
SRRA significantly decreases (from 97.40% to 4.03%) af-
ter using AdvFace for privacy protection. In contrast, other
protection methods fail to resist the replay attacks, with the
SRRA being 94.73%, 93.97%, and 95.17% for Random
Perturbation, DP, and DuetFace, respectively.

5.4. Accuracy of Face Recognition
In this subsection, we compare AdvFace with baseline

methods to evaluate its performance in face recognition ac-
curacy. As mentioned in Sec. 4.4, AdvFace can work in the
online mode or offline mode according to whether the face
recognition network is retrained or not. Note that, unless
specifically marked as offline mode, the AdvFace works in
the online mode.

As shown in Tab. 2, the online AdvFace integrated into
the unprotected methods causes a small drop in accuracy
(i.e., 1.7%, 2.57%, and 2.47% lower than the unprotected
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Table 2. The performance of privacy protection methods in terms
of face recognition accuracy (note that Ours (online) represents
that AdvFace is employed as a plug-and-play privacy-enhancing
module and Ours (offline) indicates that we use the adversarial fea-
tures to retrain the downstream face recognition network to further
improve the accuracy).

Mehods LFW CFP-FP AgeDB-30
Unprotected 98.13% 93.16% 87.57%
Random 97.20% 91.67% 86.60%
DP 96.27% 90.84% 85.12%
DuetFace 98.02% 84.37% 87.10%
Ours(online) 96.43% 90.59% 85.10%
Ours(offline) 97.78% 92.04% 86.35%

Figure 6. Transferability of AdvFace on defending against recon-
struction attacks. Ours(Trans), Ours(Res), and Ours(Unet) repre-
sent that we adopt the transpose, resnet, and unet network as the
shadow model, respectively. TransRec, ResRec, and URec repre-
sent that the transpose, resnet, and unet network is employed as
the reconstruction network, respectively.

method on the three datasets). However, we would like
to clarify that such a slight decrease in accuracy is accept-
able given the outstanding privacy protection performance
of AdvFace. Furthermore, when AdvFace works in the of-
fline mode, it achieves comparable accuracy with other pro-
tection methods. For instance, the accuracy of offline Adv-
Face is only 0.35%, 1.12%, and 1.22% lower than the un-
protected benchmark.

5.5. Transferability of AdvFace
This subsection investigates the impact of the shadow

model structure on AdvFace and the transferability of ad-
versarial features generated by AdvFace. To this end, we
first evaluate the performance of AdvFace on face recogni-
tion accuracy with different shadow model structures. Then,
we evaluate the performance of AdvFace with different
shadow model structures regarding the defense effective-
ness against different reconstruction networks.

Tab. 3 shows that similar face recognition accuracies are
achieved by AdvFace with different shadow models, imply-
ing that the shadow model structure has only a slight in-
fluence on the performance of AdvFace. Thus, AdvFace is
easy to implement.

In Fig. 6, we show the facial images reconstructed from

Table 3. The performance of AdvFace in the face recognition ac-
curacy with different shadow models.

Protect Method LFW CFP-FP AgeDB-30
Ours(Trans) 96.53% 90.77% 85.13%
Ours(Res) 96.43% 90.59% 85.10%
Ours(Unet) 96.42% 90.13% 84.58%

Table 4. The performance of AdvFace in terms of SSIM and PSNR
under different reconstruction networks.

Metric Protect Method Attack Method LFW CFP-FP AgeDB-30

SSIM

Ours(transpose)
TransRec 0.20 0.16 0.19
ResRec 0.27 0.20 0.23
UReC 0.26 0.20 0.22

Ours(resnet)
TransRec 0.23 0.19 0.21
ResRec 0.28 0.23 0.24
UReC 0.29 0.24 0.24

Ours(Unet)
TransRec 0.24 0.20 0.23
ResRec 0.27 0.21 0.23
UReC 0.28 0.23 0.23

PSNR

Ours(transpose)
TransRec 6.93 7.40 5.92
ResRec 6.84 5.96 5.59
UReC 7.33 6.81 6.14

Ours(resnet)
TransRec 6.90 7.01 5.92
ResRec 6.97 5.98 5.85
UReC 7.47 6.70 6.20

Ours(Unet)
TransRec 6.73 7.36 5.88
ResRec 6.57 6.17 5.48
UReC 7.01 6.94 5.95

the adversarial features by three different reconstruction
networks. In Tab. 4, we quantitatively describe the average
quality of reconstructed images with SSIM and PSNR on
three datasets. We can see the defense effectiveness of Ad-
vFace is maintained when encountering different attack net-
works, which validates the transferability of the adversarial
features generated by AdvFace. Specifically, the adversar-
ial features generated by AdvFace (based on any shadow
model) can defend against different reconstruction attacks.

6. Conclusions
In this work, we proposed an adversarial features-

based face privacy protection (AdvFace) method to generate
privacy-preserving adversarial features against the recon-
struction attack while maintaining face recognition accu-
racy. Extensive experimental results show the superior per-
formance of AdvFace in defending against reconstruction
attacks compared to those state-of-the-art methods. At the
same time, AdvFace can be easily integrated into deployed
face recognition systems as a plug-in privacy-enhancing
module. Moreover, the experiments also validate that Ad-
vFace can achieve a desirable tradeoff between accuracy
and utility and generate adversarial features with excellent
transferability, promising its practicality and applicability.
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