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Abstract

This paper studies how to keep a vision backbone ef-

fective while removing token mixers in its basic building

blocks. Token mixers, as self-attention for vision transform-

ers (ViTs), are intended to perform information communica-

tion between different spatial tokens but suffer from consid-

erable computational cost and latency. However, directly

removing them will lead to an incomplete model structure

prior, and thus brings a significant accuracy drop. To this

end, we first develop an RepIdentityFormer base on the re-

parameterizing idea, to study the token mixer free model

architecture. And we then explore the improved learn-

ing paradigm to break the limitation of simple token mixer

free backbone, and summarize the empirical practice into 5

guidelines. Equipped with the proposed optimization strat-

egy, we are able to build an extremely simple vision back-

bone with encouraging performance, while enjoying the

high efficiency during inference. Extensive experiments and

ablative analysis also demonstrate that the inductive bias of

network architecture, can be incorporated into simple net-

work structure with appropriate optimization strategy. We

hope this work can serve as a starting point for the explo-

ration of optimization-driven efficient network design.

1. Introduction

The monumental advance in computer vision in the past

few years was partly brought by the revolution of vision

backbones, including convolutional neural networks (Con-

vNets) [13, 17, 25, 30] and vision transformers (ViTs) [14,

38]. Both of them have particular modules in their basic

building blocks that aggregate information between differ-

ent spatial locations, which are called token mixer [46],

such as self-attention for ViTs. Although the effective-
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Figure 1. Latency analysis of different components in ViT-

Base [14]. (a) For token mixer (self-attention), the latency oc-

cupies about 46.3% of the backbone. (b) Our motivation was to

remove the token mixer while striving to keep the performance.

ness of token mixer has been demonstrated on many vision

tasks [5, 6, 24, 45], its computational complexity typically

takes up a significant portion of the network. In practice,

heavy token mixers make the vision backbone limited espe-

cially on the edge-side devices due to the issue of speed and

computation cost.

There have been several attempts in the literature to in-

vestigate efficient token mixers for slimming vision back-

bones [29, 31, 46]. Although those works have already

achieve competitive performance with light-weight design,

they do retain the token mixers, which brings non-negligible

increase in latency, as illustrated in Fig. 1. The recent

work [47] finds that removing the token mixer is possible

but leads to performance degeneration. Those explorations

in efficient token mixers inspire us to think that can we keep

the vision backbone effective but removing the token mixer?

The resulting token mixer free vision backbone is expected

to be efficient and effective for the realistic application.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this work, we first review the current model architec-

tures and learning paradigms. Most of the previous works

concentrate on the improvement of the architecture while

adopting the conventional supervised learning to optimize

the model from scratch. Differently, we propose to adopt

the simplified model architecture, and explore the learning

paradigm design to fully exploit the potential of the simple

model. We aim to simultaneously maintain the efficiency

and efficacy of token mixer free vision backbone (namely

IdentityFormer, in Fig. 1-(b)). To this end, we investigate

the simple and yet effective learning strategy, knowledge

distillation (KD) [18] thoroughly in the following sections.

Our main idea is distilling the knowledge from powerful

teacher model (with token mixer) to the student model (to-

ken mixer free). We instantiate the re-parameterizing idea to

enlarge the modeling capacity of student network but retain

its efficiency, as shown in Fig. 2. Specifically, the simple

affine transformation is introduced into student model, to re-

place the token mixer for training. The parameters of affine

transformation can be merged into LayerNorm [2] during

inference, which makes the student token mixer free finally.

We empirically summarize the our learning strategy as

the following guidelines, hope to shed light on how to learn

the extremely simple model. Concretely, 1) soft distillation

without using ground-truth labels is more effective; 2) using

affine transformation without distillation is difficult to tailor

the performance degeneration; 3) the proposed block-wise

knowledge distillation, called module imitation, helps lever-

aging the modeling capacity of affine operator; 4) teacher

with large receptive field is beneficial to improve receptive

field limited student; 5) loading the pre-trained weight of

teacher model (except the token mixer) into student improve

the convergence and performance.

Based on the above guidelines, we finally obtain a to-

ken mixer free vision model with competitive performance

enjoying the high efficiency, dubbed as RepIdentityFormer

(RIFormer). RIFormer shares nearly the same macro and

micro design as MetaFormer [46], but safely removing all

token mixers. The quantitative results show that our net-

works outperform many prevailing backbones with faster

inference speed on ImageNet-1K [8]. And the ablative

analyses on the feature distribution and Effective Recep-

tive Fields (ERFs) also demonstrate that the inductive bias

brought by an explicit token mixer, can be implicitly incor-

porated into the simple network structure with appropriate

optimization strategies. In summary, the main contributions

of our work are as the following:

• We propose to explore the vision backbone by develop-

ing advanced learning paradigm for simple model archi-

tecture, to satisfy the demand of realistic application.

• We instantiate the re-parameterizing idea to build a to-

ken mixer free vision model, RIFormer, which owns the

improved modeling capacity for the inductive bias while

enjoying the efficiency during inference.

• Our proposed practical guidelines of distillation strategy

has been demonstrated effective in keeping the vision

backbone competitive but removing the token mixer.

2. Related Work

2.1. Vision Transformer Acceleration

Vision transformer is a inference slow, energy intensive

backbone due to its quadratic computational cost of the self-

attention, and therefore unfriendly to deploy on resource-

limited edge devices, calling for compression techniques.

Various technology route are designed for vision trans-

former slimming, such as distilling an efficient transformer

with fewer depths and embedding dimensions [16,38,39,44,

51], pruning or merging unimportant tokens [3, 21, 28, 29],

applying energy efficient operations [23, 33], or designing

efficient attention alternatives [4,24,31], etc. Different from

these lines, our work propose a novel angle of totally re-

moving the complicated token mixer in a backbone while

keep satisfactory performance.

2.2. Structual Re-parameterization

Structual re-parameterization [12, 13, 49] is a training

technique which decouples the training-time and inference-

time architectures. For example, RepVGG [13] is a plain

VGG-style architecture with attractive performance and

speed during inference, and a powerful architecture with

manually added 1 × 1 branch and identity mapping branch

during training. Similarly, such technique can be further

extended to super large kernel ConvNets [12], MLP-like

models [9], network pruning [11] and special optimizer de-

sign [10]. In this paper, we follow the technique to intro-

duce parameters and equivalently absorb them into LN layer

after training. The extra weights after proper optimization

can help the model learn useful representations.

3. Preliminary and Motivation

In this section, we first briefly recap the concept of token

mixer. Then, we revisit their inevitable side effects on infer-

ence speed through an empirical latency analysis, and thus

introduce the motivation of our paper.

3.1. Preliminary: The Concept of Token Mixer

The concept token mixer is a structure that perform to-

ken mixing functions in a given vision backbone. It al-

lows information aggregation from different spatial posi-

tions [46]. For instance, self-attention module serves as the

token mixer in ViT [14] by performing the attention func-

tion in parallel between components in queries, keys and

values matrices, which are linearly projected from the input

feature. Moreover, ResMLP [37] applies a cross-patch lin-

ear sublayer by treating Spatial MLP as token mixer. The

14444



Affine

Transformation

LN

LN

Channel MLP

Identity

Mapping

LN

LN

Channel MLP

Re-parameterize

𝛾𝛽 𝛾𝛽
(a) RepIdentityFormer Training (b) RepIdentityFormer Inference

Figure 2. Structural re-parameterization of a RIFormer block.

computational and memory costs of the aforementioned to-

ken mixers are quadratic to the image scale.

3.2. Motivation

In this section, we take our eyes on the side effects of

token mixers through a quantitative latency analysis on the

ViT [14] model. We start with a modified 12-layer ViT-Base

model containing only input embedding, without any opera-

tion in each of its basic building blocks. Then we gradually

add the operation component (e.g., LN, Attention, Channel

MLP, etc.) to each basic block, and the model finally comes

to ViT-Base without the global average pooling layer and

the classifier head. For each model, we take a batch size

of 2048 at 2242 resolution with one A100 GPU and calcu-

late the average time over 30 runs to inference that batch.

The whole process is repeated for three times and we take

the medium number as the statistical latency. As shown in

Fig. 1, after stacking the regular number of 12 layers, token

mixer can bring an additional latency of 1433.6ms, occupy-

ing about 46.3% of the backbone.

According to the above analysis, token mixer brings sig-

nificant side effects on the latency to the model, which

makes it limited for realistic application. The observation

naturally raises a question: can we keep the backbone ef-

fective but removing token mixer? Specifically, a recent

work [47] introduces the MetaFormer model without any

token mixer in its basic building block and finds that it

raises a non-negligible performance degeneration. Based

on those findings, we propose to exploit the full poten-

tial of the extremely simple model by incorporating the

inductive bias with the advanced optimization strategies,

such as knowledge distillation [18, 38, 51], structural re-

parameterization [12, 13], etc. And we present all the ex-

ploration details in the remaining of this work.

4. Exploring RIFormer: A Roadmap

In this section, we present a trajectory going from a

fully supervised approaches for RIFormer to more advanced

training paradigms. During the journey we investigate and

develop different optimization schemes for transformer-like

models, while maintaining the inference-time model as the

Token Mixer Training recipe ImageNet top-1 acc (%)

Pooling CE Loss 75.01

Identity CE Loss 72.31

Table 1. Results of different token mixers on MetaFormer using

cross-entropy loss.

TM Label Teacher ImageNet top-1 acc (%)

Identity ✓ ✗ 72.31

Identity ✓ hard 73.51

Identity ✗ hard 72.86

Identity ✓ soft 73.64

Identity ✗ soft 74.05

Table 2. Results of different teacher type in normal/label-free

RIFormer-S12 with identity mapping as token mixer.

TM Label KD type ImageNet top-1 acc (%)

Affine ✓ ✗ 72.25

Affine ✓ hard 73.44

Affine ✗ hard 72.77

Affine ✓ soft 72.10

Affine ✗ soft 74.07

Table 3. Results of different distillation type in normal/label-free

RIFormer-S12 with affine transformation as token mixer.

same. The baseline RIFormer we use has exactly the same

macro architecture and model size as recently-developed

MetaFormer [46], the difference only lies in the fact that

no token mixer is used in its basic building blocks dur-

ing inference. We control the computational complex-

ity of RIFormer-S12 models comparable to PoolFormer-

S12 [46], with about 12M parameters and 1.8G MAC. All

RIFormer-S12 models in this section are trained and eval-

uated on ImageNet-1K for 120 epochs. The details of

hyper-parameters are shown in Sec.1 of the appendix. The

roadmap of our exploration is as follows.

4.1. Vision Backbone Without Token Mixer

Our exploration is directed to remove token mixer in

each basic block of a inference-time model vision back-

bone to obtain a higher inference speed while striving to

keep the performance. Thus, we start with a RIFormer-

S12 model with a fully supervised training scheme using

CE loss, mainly follows [46]. As a performance reference,

we compare the results with PoolFormer-S12, since it use

only basic pooling operation as token mixer and the perfor-

mance gap can thus, be attributed to the absence of basic

token mixing function. As shown in Tab. 1, RIFormer-S12

with a trivial supervised training can lead to an unaccept-

able performance drop (2.7% top-1 accuracy) compared to

PoolFormer-S12. The results show that without token mixer

in each building block, it is limited for regular supervised

learning in helping the model learn useful information from

images, calling for advanced training procedure.

We then investigate and modify a series of training

paradigms to improve the inferior baseline performance,
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Figure 3. (a) Overall training procedure of RIFormer. Following the macro and micro design of [46], RIFormer removes token mixer

in each block. (b) Module imitation technique aims to mimic the behavior of token mixer via a simple affine transformation.

which can be summarized as 1) knowledge distillation, 2)

teacher type influence, 3) structural re-parameterization, 4)

the proposed module imitation technique, 5) load partial pa-

rameters from teacher. Since we aim at exploring the influ-

ence of different advanced training recipes instead of net-

work architecture, inference-time model architecture is al-

ways kept the same at intermediate steps. Next, we share 5

useful guidelines for training RIFormer.

4.2. Distillation Paradigm Design

We now study the knowledge distillation [18, 38] of a

RIFormer student by a general vision backbone teacher with

token mixer, and summarize how to effectively utilize the

ºsoftº labels coming from the strong teacher network.

Guideline 1: soft distillation without using ground-truth

labels can be effective for student without token mixer.

Basically, most of the existing KD methods are designed for

models with token mixer. For example, it is common prac-

tice to help a student convnet by learning from both ground-

truth labels and the soft labels predicted by a teacher con-

vnet. Moreover, some observations from DeiT [38] show

that using the hard labels instead of soft labels as a super-

vised target, can improves transformer significantly. In con-

trast, the token mixer free backbone do not have explicit

patch aggregating modules in its basic block. The distilla-

tion of it is should be thus, different from that of conven-

tional backbones. Specifically, although RIFormer shares

the same macro structure as transformer, it still cannot be

treated as a student transformer because we have deliber-

ately removed the token mixer from each building block.

However, we also do not prefer viewing it as a pure con-

vnet since RIFormer bears a resemblance to transformer in

terms of macro/micro-level architecture design. Therefore,

we are motivated to explore a suitable KD method for RI-

Former with promising performance.

Typically, the cross-entropy objective is to assist a stu-

dent network reproduce the hard accurate label, and we

argue that the process may be unsuitable for RIFormer.

First, the ground-truth hard label can be transformed to

a soft distribution by label-smoothing regularization [35],

with weights 1 − ε for the true label and ε shared each

classes. The unlearned uniform distribution across the neg-

ative classes is less informative, and may interfere with the

learned soft distribution given by teacher. Second, 1×1

convolutions actually dominate basic building block in RI-

Former, ºmixingº only the per-location features but not

spatial information. Such a simplified design may require

richer information in the supervised labels. To demonstrate

this, Tab. 2 compare the performance of four different set-

tings. The default teacher is a GFNet-H-B [31] (54M pa-

rameters). Hard distillation with true labels improve the ac-

curacy from 72.31% to 73.51%. It shows that a teacher

with token mixer has a positive effect on a student without

token mixer. In fact, the combination of using a soft distil-

lation without true labels performs the best, improving the

network performance to 74.05%.

Remark 1. Supervised learning with true label does not

seem to be the most suitable way for a crude model without

token mixer. A teacher with token mixer can help to guide

the training, but still fails to fully recover the performance

gap from removing token mixer, calling for other strategies.

4.3. Re-parameterization for Identity Mapping

Guideline 2: using affine transformation without tai-

lored distillation, is hard to recover the performance de-

gredation. In this part, we adopt the idea of Structural

Reparameterization [9, 12, 13] methodology, which usu-

ally takes a powerful model for training and equivalently

converts to a simple model during inference. Specifically,

the inference-time token mixer module in RIFormer can be
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TM Feat Rel Layer ImageNet top-1 acc (%)

Affine 0 0 - 74.07

Affine 40 0 6 74.49

Affine 60 0 6 74.77

Affine 80 0 6 74.81

Affine 80 10 6 75.08

Affine 80 20 6 74.82

Affine 80 40 6 75.00

Affine 80 20 4 75.13

Table 4. Results of different module imitation setting.

viewed as an identity mapping following a LN layer. Thus,

the training-time module should satisfy at least two basic

requirements: 1) per-location operator for allowing equiva-

lent transformation; 2) parametric operator for allowing ex-

tra representation ability. Accordingly, we apply an affine

transformation operator to replace the identity mapping dur-

ing training, which only performs channel-wise scaling and

shifts, as shown in Fig. 2. The affine operator and its pre-

ceding LN layer can be converted into a LN with modified

weights, thus it can be equivalently converted into an iden-

tity mapping during inference. Denote the input feature as

M ∈ R
N×C×H×W , the affine operator can be expressed as:

Affine(M, s, t):,i,:,: = siM:,i,:,: + ti −M:,i,:,:, (1)

where s ∈ R
C and t ∈ R

C are learnable weight vectors. We

follow [46] to add a subtraction of the input during imple-

mentation due to the residual connection, and thus does not

merge the first and third terms in Eq. 1. Then, we describe

how to merge the affine transformation into its preceding

LN layer, so the training-time model can be equivalently

converted to model for deploy but no longer has token mixer

in its blocks. We use µ,σ,γ,β as the mean, standard devia-

tion and learned scaling factor and bias of the preceding LN

layer. Denote T(a) ∈ R
N×C×H×W , T′(a) ∈ R

N×C×H×W

respectively as the input and output of an affine residual

sub-block in Fig. 2-(a). During the training time, we have:

T′(a) = Affine(LN(T(a),µ,σ,γ,β), s, t)− T(a) (2)

where LN is the LN function, which is implemented by

GroupNorm API in PyTorch (setting the group number as

1) following [46]. During inference time, there only exists

an identity mapping followed by a LN layer in the residual

sub-block. Thus, we have:

T′(a) = LN(T(a),µ,σ,γ′,β′), (3)

where γ′ and β′ are the weight and bias parameters of the

merged LN layer. Based on the equivalence of Eq. 2 and

Eq. 3, for ∀1 ≤ i ≤ C, we have:

γ′

i = γi(si − 1), β′

i = βi(si − 1) + ti, (4)

The proof and PyTorch-like code of the affine transforma-

tion and re-parameterization process is shown in Sec.2 and

Teacher (T) T.acc (%) MI
ImageNet

top-1 acc (%)

PoolFormer-M48 [46] 82.5 ✗ 73.63

Swin-B∗ [24] 85.2 ✗ 73.12

Pyramid ViG-B [15] 83.7 ✗ 73.25

GFNet-H-B [31] 82.9 ✗ 74.07

PoolFormer-M48 [46] 82.5 ✓ 74.83

Swin-B∗ [24] 85.2 ✓ 74.52

Pyramid ViG-B [15] 83.7 ✓ 74.25

GFNet-H-B [31] 82.9 ✓ 75.13

Table 5. Results of different teachers on RIFormer-S12 w/ or w/o

module imitation (MI). ∗ indicates ImageNet-22K pre-training.

Sec.3 of the appendix, respectively. Since the LN layer does

not have a pre-computed mean and standard deviation dur-

ing inference time, their specific values are input adaptive,

which do not affect the equivalence of transform.

Remark 2. Compare Tab. 3 with Tab. 2, directly apply-

ing structural re-parameterization method shows no advan-

tages. We attribute this phenomenon to the fact that the

affine transformation in the LN layer is a linear transfor-

mation that can be directly merged with the extra affine op-

erator we introduced (if do not add any nonlinear function

in between). Therefore, if both are supervised only by the

output of the model, the potential of the additional parame-

ters may not be fully exploited. Meanwhile, the isomorphic

design of teacher and student inspires us to explore suitable

methods for knowledge transfer of modules at each layer.

4.4. Module Imitation

Guideline 3: the proposed block-wise knowledge dis-

tillation, called module imitation, helps leveraging the

modeling capacity of affine operator. The previous KD

methods we tried only focus on the output of between

teacher and student networks. We propose module imita-

tion (MI) method, which present to utilize the useful infor-

mation in the teacher’s token mixer. Specifically, a pre-

trained PoolFormer-S12 [46] is utilized as a teacher net-

work. As shown in Fig. 3, we expect the simple affine op-

erator (with its preceding LN layer) to approximate the be-

havior of that of a basic token mixer during training. Denote

f(·),T(a),m ∈ R
N×C×H×W ,m ∈ M as the affine opera-

tor and the input of the m-th layer of RIFormer in which M
is the intermediate layers set we used, and g(·),T(t),m ∈
R

N×C×H×W ,m ∈ M are that of the teacher network, re-

spectively. We abbreviate LN(·,µ,σ,γ,β) as LN(·) for

simplicity. The mean squared error (MSE) of the inputs be-

tween the LN layer of affine operator and token mixer can

be calculated as:

Lin = α1∥LN(T(a),m)− LN(T(t),m)∥2F , (5)

where α1 = 1/NCHW . Note that the input feature of

the current layer is the output feature of the previous one.

Therefore, we propose to match the output features of this
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block (i.e., the input features of the next subsequent block)

in practice, which can be seen as a hidden state distillation

in transformers [16, 19, 40, 41, 51].

L′

in = α1∥T
(a),m+1 − T(t),m+1∥2F , (6)

The hidden-state distillation based on relation matrices [16,

51] is then applied on the output feature:

Lrel = α2∥R(T(a),m+1)−R(T(t),m+1)∥2F , (7)

where α2 = 1/NH2W 2, R(T ) = T̃ T̃T, T̃ denotes nor-

malize T at the last dimension. Considering the MSE of the

outputs between affine operator and token mixer:

Lout = α1∥f(LN(T(a),m))− g(LN(T(t),m))∥2F , (8)

Combining Eq. 6, Eq. 7 and Eq. 8, the final loss function

with module imitation is defined as:

L = Lsoft + λ1L
′

in + λ2Lout + λ3Lrel, (9)

where Lsoft is the soft logit distillation target in Sec. 4.2,

λ1, λ2, λ3 is the hyper-parameter for seeking the balance

between loss functions. In Tab. 4, Feat and Rel are num-

ber of epochs of using (L′

in,Lout) and Lrel, Layer repre-

sents the number of intermediate layers we used. The re-

sults show positive effect of module imitation on the student

RIFormer in different circumstances. With a 4 layer setting

and the usage of affine operator, we get the best result of

75.13%, already surpassing the PoolFormer-S12’s result of

75.01% in Tab. 1. From now on, we will use this setting.

Remark 3. We deem a reason for that phenomenon might

be that module imitation helps the affine operator implicitly

benefit from the supervision of the teacher’s token mixer,

while not losing the convenience of explicitly merging the

preceding LN layer. Besides, we find module imitation can

effectively shift the feature distribution closer to the teacher

network and show larger Effective Receptive Fields (ERFs).

Please refer to Sec. 5.3 for details.

Guideline 4: teacher with large receptive field is ben-

eficial to improve student with limited receptive field.

Tab. 5 compares student performance with different teacher

architectures. Although GFNet-H-B [31] does not show the

highest ImageNet top-1 performance among teachers, it can

still serves as a better choice, no matter whether module im-

itation is used or not.

Remark 4. The fact is probably attributed to the recep-

tive field gap between teacher and student. As explained

by [1], inductive bias can be transferred from one model to

another through distillation. According to this study, model

with large receptive field (e.g., GFNet with learnable global

filters in the frequency domain) can be better teacher for

student RIFormer with limited receptive field.

Guideline 5: loading the pre-trained weight of teacher

model (except the token mixer) into student improve the

convergence and performance. Our method can be cat-

egorized as a model compression technique that aims at re-

moving the token mixer in basic blocks for acceleration.

Inspried by previous methods, including knowledge distil-

lation [32, 34], quantization [22, 26], and model accelera-

tion [29] that initialize the weights of the light-weight net-

work using (or partly using) the corresponding weights of

the pre-trained heavy network, we explore a suitable initial-

ization method. Since our goal is to remove only the token

mixer, the weights of the remaining part still remain and are

not paid enough attention in the previous journey. We ob-

serve that initializing the weights of RIFormer (except the

affine operator) with the corresponding teacher network fur-

ther boost the performance from 75.13% to 75.36%. This

brings us to the final paradigm for training RIFormer.

Closing remarks. So far, we have finished our explo-

ration and discovered a suitable paradigm for training the

RIFormer. It has the approximately the same macro de-

sign with MetaFormer [46], but does not require any token

mixer. Equipped with the propsoed optimization methods,

RIFormer can outperform complicated models with token

mixers for ImageNet-1K classification. These encouraging

findings inspire us to answer the following questions in the

next section. 1) The scaling behavior of such extremely

simple architecture with our training paradigm. 2) The gen-

eralizability of the paradigm on different teachers.

5. Experiments

5.1. Image classification

Setup. For ImageNet-1K [8] with 1.2M training images

and 50000 validation images, we generally apply the train-

ing scheme in [46] while following the guidelines in Sec. 4.

The data augmentation contains MixUp [50], CutMix [48],

CutOut [52] and RandAugment [7]. As a model compres-

sion work on removing token mixer, bridging the perfor-

mance gap caused by removing the token mixer is definitely

our first priority, instead of proposing a strong baseline.

Therefore, we use a prolonged the training epochs of 600.

We also finetune the pre-trained models for 30 epochs with

input resolution of 3842. More details are in the appendix.

Main results. Tab. 6 shows the results of RIFormer on

ImageNet classification. We pay main attention to the

throughput metrics since our primary consideration is to

satisfy latency requirements for edge devices. As expected,

favorable speed advantage is achieved since RIFormer does

not contain any token mixer in its building block, com-

pared with other type of backbones. Surprisingly, with

such fast inference, RIFormers successfully remove all to-

ken mixers using our training approach without affecting

the performance. For example, RIFormer-M36 can pro-
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Token Mixer Outcome Model Image Size Params (M) MACs (G) Throughput (images/s) Top-1 (%)

Convolution

RSB-ResNet-34 [17, 43] 224 22 3.7 6653.75 75.5

RSB-ResNet-50 [17, 43] 224 26 4.1 2732.85 79.8

RSB-ResNet-101 [17, 43] 224 45 7.9 1856.48 81.3

RSB-ResNet-152 [17, 43] 224 60 11.6 1308.26 81.8

Attention

DeiT-S [38] 224 22 4.6 3092.02 79.8

DeiT-B [38] 224 86 17.5 1348.76 81.8

PVT-Small [42] 224 25 3.8 1622.53 79.8

PVT-Medium [42] 224 44 6.7 1190.48 81.2

PVT-Large [42] 224 61 9.8 865.33 81.7

Spatial MLP

MLP-Mixer-B/16 [36] 224 59 12.7 1855.45 76.4

ResMLP-S24 [37] 224 30 6.0 3228.75 79.4

ResMLP-B24 [37] 224 116 23.0 298.94 81.0

Swin-Mixer-T/D6 [24] 256 23 4.0 1625.59 79.7

Swin-Mixer-B/D24 [24] 224 61 10.4 1131.60 81.3

2D FFT

■ GFNet-H-Ti [31] 224 15 2.1 1979.56 80.1

■ GFNet-H-S [31] 224 32 4.6 1434.19 81.5

■ GFNet-B [31] 224 43 7.9 1771.07 80.7

■ GFNet-H-B [31] 224 54 8.6 939.20 82.9

Pooling

PoolFormer-S12 [46] 224 12 1.8 4160.18 77.2

PoolFormer-S24 [46] 224 21 3.4 2140.20 80.3

PoolFormer-S36 [46] 224 31 5.0 1440.37 81.4

PoolFormer-M36 [46] 224 56 8.8 1009.45 82.1

PoolFormer-M48 [46] 224 73 11.6 761.93 82.5

None

⋆ RIFormer-S12⋄ 224 12 1.8 4899.80 (↑ 17.8%) 76.9

⋆ RIFormer-S24⋄ 224 21 3.4 2530.48 (↑ 18.2%) 80.3

⋆ RIFormer-S36⋄ 224 31 5.0 1699.94 (↑ 18.0%) 81.3

⋆ RIFormer-M36⋄ 224 56 8.8 1185.33 (↑ 17.4%) 82.6

⋆ RIFormer-M48⋄ 224 73 11.6 897.05 (↑ 17.7%) 82.8

⋆ RIFormer-S12‡ 384 12 5.4 1586.51 78.3

⋆ RIFormer-S24‡ 384 21 10.0 819.40 81.4

⋆ RIFormer-S36‡ 384 31 14.7 552.07 82.2

⋆ RIFormer-M36‡ 384 56 25.9 403.15 83.4

⋆ RIFormer-M48‡ 384 73 34.1 304.43 83.7

Table 6. Results of models with different types of token mixers on ImageNet-1K. ⋄ denotes training with prolonged 600 epochs. ‡

denotes fine-tuning from the ImageNet pre-trained model for 30 epochs.

cess more than 1185 images at 2242 resolution per sec-

ond, with the top-1 accuracy of 82.6%. In comparison,

the recent baseline PoolFormer-M36 [46] with a Pooling to-

ken mixer, can process 1009 images of the same size with

a worse 82.1% accuracy. We also compare with an effi-

cient backbone, GFNet [31]. It conducts token mixing via a

global filter, which consists an FFT, an element-wise multi-

plication, and an IFFT, with a total computational complex-

ity O(N logN). With a 939 throughput, GFNet-H-B gets

82.9% accuracy while our RIFormer-M48 can still reaches a

comparable 82.8% accuracy with on par throughput of 897.

Meanwhile, the body of inference-time RIFormer is domi-

nated by only 1 × 1 conv following LN, without complex

2D FFT or attention, friendly for hardware specialization.

Notably, without token mixer, RIFormer cannot even

perform basic token mixing operation in its building blocks.

However, the ImageNet experiments demonstrate that with

the proposed training paradigm, RIFormer still shows

promising results. We can only deem the reason behind the

fact might be that optimization strategy plays a key role.

RIFormer is readily a starting recipe for the exploration of

optimization-driven efficient network design, and rest as-

sured of the performance with advanced training schemes.

5.2. Ablation studies

Effectiveness of module imitation. As an important way

for the extra affine operator to learn suitable weights, mod-

ule imitation is based on distillation. Therefore, we com-

pare it with the hidden state feature distillation approach

(with relations). Taking the paradigm in Sec. 4.2 by soft dis-

tillation without CE loss, we get the results in Tab. 7. More

details for Sec. 5.2 can be found in Sec.4 of the appendix.

With feature distillation, the accuracy is 0.46% lower than

that of module imitation, showing module imitation’s posi-

tive effect on the optimization of the extra weights.

Comparisons of different acceleration strategy. Next,

we discuss whether the token removing is better than other

sparsification strategies. Based on the PoolFormer [46]

14449



(a) PoolFormer-S12 (b) RIFormer-S12 (c) RIFormer-S12 (MI)

Figure 4. The Effective Receptive Field (ERF) of PoolFormer-S12

and RIFormer-S12 with/without using module imitation.

Token Mixer Feature distillation scheme Top-1 (%)

Identity None 74.05

Identity Feature distill 74.90

Affine Module imitation 75.36

Table 7. Ablation study of the effectiveness of module imitation.

baseline, we first construct a slim PoolFormer-S9 and

PoolFormer-XS12 by reducing the depth to 9 and by main-

taining about 5
6 of its width, i.e., embedding dimension,

to obtain comparable inference speed with our RIFormer-

S12. We also follow the soft distillation paradigm in

Sec. 4.2. Tab. 8 shows the results. Directly pruning depths

or width cannot render a better performance than ours with-

out latency-hungry token mixer.

Generalization to different teachers. In order to ver-

ify the proposed training paradigm a general compression

technique, we adopt the architecture modifications in [47]

for student and change teacher to the other 4 MetaFormer

baselines [47], with teacher token mixer as rand matrices,

pooling, separable depthwise convolutions, and attention,

respectively. Tab. 9 shows that our method has a positive

effect in different depth settings and teacher circumstances.

5.3. Analysis of Module Imitation.

Module imitation (MI) shifts the feature distribution of

the RIFormer model to be closer to the teacher. The

effect of the module imitation is explicitly shown in Fig. 5.

It can be observed that PoolFomer-S12 and RIFormer-S12

show a clear difference in feature distribution of Stage 1

and Stage 4. After applying the proposed module imita-

tion, the distribution of RIFormer-S12 are basically shifted

toward that of the PoolFomer-S12, demonstrating its effect

on helping student learn useful knowledge from the teacher.

Module imitation helps showing larger Effective Recep-

tive Field (ERF). ERF [27] reflects how large an area of

the image the trained model can respond to or capture in-

formation about how large an object. We follow [12, 20] to

visualize the ERF via measuring the aggregated contribu-

tions of each pixel of the input to the central points of the

output feature. Since RIFormer removes all token mixers, it

exhibits an expectedly much smaller ERF than PoolFormer,

as shown in Fig. 4. There is only a square of pixels emerg-

(a) Stage 1 (b) Stage 4

Figure 5. Visualization of the feature distribution of the first and

last stage of PoolFormer-S12 and RIFormer-S12.

Model Type Throughput Top-1 (%)

PoolFormer-S12 None 4160.18 75.01

PoolFormer-S9 Depth 5025.71 74.78

PoolFormer-XS12 Width 4780.28 75.11

RIFormer-S12 TM 4899.80 75.36

Table 8. Results of comparison with depth or width slimming.

Token Mixer Teacher Top-1 (%)

Affine (12 layers) None 72.75

Affine (12 layers) RandFormer-S12 [47] 75.62

Affine (12 layers) PoolFormer V2-S12 [47] 75.87

Affine (18 layers) None 75.01

Affine (18 layers) ConvFormer-S18 [47] 77.53

Affine (18 layers) CAFormer-S18 [47] 77.26

Table 9. Results of generalization to other teachers.

ing with red color in the whole region, much smaller than

PoolFormer. However, surprisingly, we can observe that

red color widely distributed in all locations after training

with module imitation. It seems that although there’s no ex-

plicit structural change, module imitation still help change

the learned weights and show larger ERF.

6. Limitations and Conclusion

This paper investigates removing token mixer of the ba-

sic building block in a vision backbone, motivated by their

considerable latency cost. To keep the remaining structure

still effective, we thoroughly revisits the training paradigm.

We observe that appropriate optimization strategy can effec-

tively help a token mixer-free model learn useful knowledge

from another model, boosting its performance and bridge

the gap caused by incomplete structure. Limitations are that

more vision tasks, including detection, deblurring, etc. are

not discussed, and we will work on them in the future.
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