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Abstract

Dynamic Facial Expression Recognition (DFER) is a
rapidly developing field that focuses on recognizing facial
expressions in video format. Previous research has con-
sidered non-target frames as noisy frames, but we pro-
pose that it should be treated as a weakly supervised prob-
lem. We also identify the imbalance of short- and long-
term temporal relationships in DFER. Therefore, we in-
troduce the Multi-3D Dynamic Facial Expression Learn-
ing (M3DFEL) framework, which utilizes Multi-Instance
Learning (MIL) to handle inexact labels. M3DFEL gen-
erates 3D-instances to model the strong short-term tem-
poral relationship and utilizes 3DCNNs for feature extrac-
tion. The Dynamic Long-term Instance Aggregation Mod-
ule (DLIAM) is then utilized to learn the long-term temporal
relationships and dynamically aggregate the instances. Our
experiments on DFEW and FERV39K datasets show that
M3DFEL outperforms existing state-of-the-art approaches
with a vanilla R3D18 backbone. The source code is avail-
able at https://github.com/faceeyes/M3DFEL.

1. Introduction
Facial expressions are essential in communication [26,

27,45]. Understanding the emotions of others through their
facial expressions is critical during conversations. Thus,
automated recognition of facial expressions is a significant
challenge in various fields, such as human-computer inter-
action (HCI) [25, 34], mental health diagnosis [12], driver
fatigue monitoring [24], and metahuman [6]. While signif-
icant progress has been made in Static Facial Expression
Recognition (SFER) [23, 43, 44, 55], there is increasing at-
tention on Dynamic Facial Expression Recognition.
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Figure 1. In-the-wild Dynamic Facial Expressions. In the first row
of images, the subject appear predominantly Neutral, yet the video
is labeled as happy without specifying the exact moment when the
emotion is expressed. In the second row, the emotion is evident
from the perspective of a few figures, but any single one of them
is noisy and unclear. In the third row, all frames appear Neutral,
but a closer analysis of facial movement over time reveals a rising
of the corner of the mouth, indicating a smile.

With the availability of large-scale in-the-wild datasets
like DFEW [11] and FERV39K [46], several methods have
been proposed for DFER [21, 22, 31, 47, 54]. Previous
works [31, 54] have simply applied general video under-
standing methods to recognize dynamic facial expressions.
Later on, Li et al. [22] observe that DFER contains a large
number of noisy frames and propose a dynamic class token
and a snippet-based filter to suppress the impact of these
frames. Li et al. [21] propose an Intensity Aware Loss to
account for the large intra-class and small inter-class differ-
ences in DFER and force the network to pay extra atten-
tion to the most confusing class. However, we argue that
DFER requires specialized designs rather than being con-
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sidered a combination of video understanding and SFER.
Although these works [21, 22, 47] have identified some is-
sues in DFER, their models have only addressed them in a
rudimentary manner.

Firstly, these works fail to recognize that the existence of
non-target frames in DFER is actually caused by weak su-
pervision. When collecting large-scale video datasets, an-
notating the precise location of labels is labor-intensive and
challenging. A dynamic facial expression may contain a
change between non-target and target emotions, as shown in
Figure 1. Without a location label that can guide the model
to ignore the irrelevant frames and focus on the target, mod-
els are likely to be confused by the inexact label. Therefore,
modeling these non-target frames as noisy frames directly is
superficial, and the underlying weakly supervised problem
remains unsolved.

Secondly, the previous works directly follow to use se-
quence models without a dedicated design for DFER. How-
ever, we find that there is an imbalance between short-
and long-term temporal relationships in DFER. For exam-
ple, some micro-expressions may occur within a short clip,
while some facial movements between expressions may dis-
rupt individual frames, as shown in Figure 1. In contrast,
there is little temporal relationship between a Happy face
at the beginning of a video and another Happy face at the
end. Therefore, neither modeling the entire temporal rela-
tionship nor using completely time-irrelevant aggregation
methods is suitable for DFER. Instead, a method should
learn to model the strong short-term temporal relationship
and the weak long-term temporal relationship differently.

To address the first issue, we suggest using weakly su-
pervised strategies to train DFER models instead of treating
non-target frames as noisy frames. Specifically, we propose
modeling DFER as a Multi-Instance Learning (MIL) prob-
lem, where each video is considered as a bag containing
a set of instances. In this MIL framework, we disregard
non-target emotions in a video and only focus on the target
emotion. However, most existing MIL methods are time-
independent, which is unsuitable for DFER. Therefore, a
dedicated MIL framework for DFER is necessary to address
the imbalanced short- and long-term temporal relationships.

The M3DFEL framework proposed in this paper is de-
signed to address the imbalanced short- and long-term tem-
poral relationships and the weakly supervised problem in
DFER in a unified manner. It uses a combination of 3D-
Instance and R3D18 models to enhance short-term tem-
poral learning. Once instance features are extracted, they
are fed into the Dynamic Long-term Instance Aggregation
Module (DLIAM), which aggregates the features into a
bag-level representation. The DLIAM is specifically de-
signed to capture long-term temporal relationships between
instances. Additionally, the Dynamic Multi-Instance Nor-
malization (DMIN) is employed to maintain temporal con-

sistency at both the bag-level and instance-level by perform-
ing dynamic normalization.

Overall, our contributions can be summarized as follows:

• We propose a weakly supervised approach to model
Dynamic Facial Expression Recognition (DFER) as
a Multi-Instance Learning (MIL) problem. We also
identify an imbalance between short- and long-term
temporal relationships in DFER, which makes it inap-
propriate to model the entire temporal relationship or
use time-irrelevant methods.

• We propose the Multi-3D Dynamic Facial Expression
Learning (M3DFEL) framework to provide a unified
solution to the weakly supervised problem and model
the imbalanced short- and long-term temporal relation-
ships in DFER.

• We conduct extensive experiments on DFEW and
FERV39K, and our proposed M3DFEL achieves state-
of-the-art results compared with other methods, even
when using a vanilla R3D18 backbone. We also con-
duct visualization experiments to analyze the perfor-
mance of M3DFEL and uncover unsolved problems.

2. Related Work
2.1. Dynamic Facial Expression Recognition

Following the success of DNNs in computer vision
tasks [3, 4, 15–20, 35–38, 50, 51, 56, 57], automatic Facial
Expression Recognition (FER) has been improved via Deep
learning. DFER methods differ from SFER methods as they
need to consider temporal information in addition to spatial
features in each image. Some methods employ CNNs to ex-
tract spatial features from each frame and then use RNNs to
analyze the temporal relationship [28, 52]. 3DCNNs have
been proposed to model 3D data and learn spatial and tem-
poral features jointly. Fan et al. [5] proposed a hybrid net-
work that combines recurrent neural networks (RNN) and
3D convolutional networks (C3D) using late fusion. Lee et
al. [14] proposed a scene-aware hybrid neural network that
combines 3DCNNs, 2DCNNs, and RNNs in a novel way.
Lee et al. [13] presented CAER-Net, a deep network for
context-aware emotion recognition that exploits both hu-
man facial expression and context information in a joint and
boosting manner.

Recently, transformer-based networks have gained pop-
ularity in extracting both spatial and temporal information.
For example, Zha et al. [54] propose a dynamic facial
expression recognition transformer (Former-DFER) which
consists of a convolutional spatial transformer (CS-Former)
and a temporal transformer (T-Former). Ma et al. [31] pro-
pose the spatial-temporal Transformer (STT) to capture dis-
criminative features within each frame and model contex-
tual relationships among frames. The dynamic-static fusion
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module [21, 22] is used to obtain more robust and discrim-
inative spatial features from both static features and dy-
namic features, which can effectively reduce the interfer-
ence of noisy frames on the DFER task. In addition, Wang
et al. [47] propose the Dual Path multi-excitation Collab-
orative Network (DPCNet) to learn critical information for
facial expression representation from fewer key frames.

The methods mentioned above approach DFER as a
general video understanding task and do not consider the
weakly supervised nature of the problem due to inexact
crowd-sourced annotation. Moreover, they overlook the is-
sue of imbalanced short- and long-term temporal relation-
ships in DFER and rely solely on a sequence model. By
contrast, the proposed M3DFEL framework addresses these
challenges at their root by tackling the weakly supervised
problem and modeling the imbalanced short- and long-term
temporal relationships in a unified manner.

2.2. Multi-Instance Learning

MIL is a technique designed to address the inexact la-
beling problem [8]. Traditionally, each sample is treated as
a bag of instances, where the bag is labeled negative only
when all instances are negative. Otherwise, the bag is con-
sidered positive. MIL is commonly used in scenarios where
there are a large number of samples with only one label. In
these situations, the methods must accurately identify and
recognize positive instances within a dataset that contains a
significant proportion of negative instances.

MIL has been applied in various fields, such as WSOD
(weakly supervised object detection) [9,39], action location
[30], and WSI (whole slide image) classification [49, 53].
Although there is no research that formulates in-the-wild
DFER as a MIL problem, we can draw insights from WSOD
methods, which also solve the MIL problem in video-based
tasks. For instance, Feng et al. [7] propose an end-to-end
weakly supervised Rotation-Invariant Aerial Object Detec-
tion Network to tackle object rotations without correspond-
ing constraints. Meanwhile, Tang et al. [39] introduce a
novel online instance classifier refinement algorithm to in-
tegrate MIL and the instance classifier refinement procedure
into a single deep network, and train the network end-to-end
with only image-level supervision.

The use of MIL has been explored in recognizing emo-
tions. Romeo et al. [33] explores the usage of some existing
MIL-based SVMs in detecting the emotion using physiolog-
ical signals. Chen et al. [2] mainly focuses on Action Unit
encoding for pain detection, and applies clustering-based
maximum operation for instance fusion in MIL. Wu et al.
[48] employ a differentiable OR operation for MIL with
Hidden Markov Model as the classifier in lab-controlled
DFER, using facial landmark as input feature. All of these
methods use handcrafted features and employ conventional
machine learning MIL methods on their tasks. Moreover,

the samples of lab-controlled DFER are more unambigu-
ous and the environment and facial expression dynamics are
fixed, while the in-the-wild samples are more complex and
challenging. Their ways of applying the MIL method are
not applicable to our situation with in-the-wild DFER.

With high-level hypotheses and observations to DFER,
we design our novel MIL framework through fusing the
modeling of the imbalanced temporal relationship within
the MIL pipeline. In contrast to using existing MIL meth-
ods to fuse the handcrafted feature, we model the strong
short-term temporal relationship during feature extraction
and learn the long-term relationship during instance fusion.

3. Method
3.1. Overview

The MIL pipeline typically involves four steps: Instance
Generation, Instance Feature Extraction, Instance Aggre-
gation, and Classification. In the case of DFER, the pro-
posed M3DFEL framework follows this pipeline and uti-
lizes 3DCNNs to extract features from the generated 3D-
instances and learn the short-term temporal relationship.
The DLIAM is used to model the long-term temporal rela-
tionship while dynamically fusing the instances into a bag.
To maintain temporal consistency on both the bag-level and
instance-level, the DMIN is introduced. An overview of the
proposed M3DFEL framework is illustrated in Figure 2.

3.2. Proposed Method

Three-Dimensional Instance Generation. Generating
instances by cropping a video into frames is a common
approach for MIL tasks, as they are usually frame-based
tasks such as weakly supervised object detection or action
location. However, in DFER, some frames may not cap-
ture a typical facial expression when the subject is talking.
While such frames appear abnormal on their own, they ac-
tually represent the motion of facial movement. Addition-
ally, compared to other MIL tasks, the differences in facial
movements between classes are subtle, which means that
even small movements can cause changes in the predicted
emotion and features.

The proposed 3D-Instance Generation addresses these
problems with a simple yet effective approach. Given a
video V that contains T frames of images, we crop a video
into N parts in dimension T . Then, the bag can be de-
fined as a sequence of instances I = [I1, I2, ..., IN ], where
In ∈ RC×T×H×W denotes the n-th 3D instance. This de-
sign enables the feature extractor to model the strong short-
term temporal relationship by capturing the motion of fa-
cial movement across the instances, as well as the consis-
tent emotion when the subject is talking. This is crucial in
DFER, where the facial movements and emotional differ-
ences are subtle, and even tiny movements can significantly

17960



(a) Multi-3D-Facial-Expression Learning Framework (M3DFEL)
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(b) Dynamic Long-term Instance Aggregation Module
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Figure 2. An overview of the proposed M3DFEL framework. (a) The pipeline of M3DFEL: Three-Dimensional Instance Generation,
Instance Feature Extraction, Long-term Instance Aggregation and Classification. (b) The structure of the proposed DLIAM. (c) The sketch
of Dynamic Multi-Instance Normalization (DMIN).

impact the predicted emotion.
Instance Feature Extraction. The vanilla R3D18 is

used to extract the feature Fn for each instance In within
the bag. The R3D18 model extracts compressed frame rep-
resentations and incorporates the temporal information of
neighboring frames for each instance. This results in a
bag of feature representations for the instances, denoted as
F ∈ RN×C , where C represents the number of channels.

Dynamic Long-term Instance Aggregation. As afore-
mentioned, there exists an imbalance between long- and
short-term temporal relationships in DFER. As the 3D-
Instance-based MIL setting strengthens the short-term tem-
poral learning, the Dynamic Long-term Instance Aggrega-
tion Module (DLIAM) is proposed to dynamically aggre-
gate the instances while modeling the long-term temporal
relationship. The first step is to use a BiLSTM to capture
the long-term temporal relationship between instances.

After that, to dynamically aggregate the representations
of instances, we first apply the Multi-Head Self-Attention
(MHSA) to learn the inter-instance relationship and obtain
an attention weight A ∈ RN×C .

Moreover, we find out that the recognition results of
the instances are rather unstable, which violates the com-
mon sense that the emotion status is relatively stable and

continuous in a short period of time, such as a few sec-
onds. To address this concern, we draw inspiration from
[29] and design a Dynamic Multi-Instance Normalization
(DMIN) method to maintain temporal consistency at both
the bag and instance levels. We define a set of normalizers
K = bn, in and dynamically adjust the importance weights,
where bn denotes the bag-level normalizer and in denotes
the instance-level normalizer. Let Anc and Ânc be the c-th
channel value of the n-th instance before and after normal-
ization, and the normalization procedure can be presented
as follows,

Ânc =
Anc −

∑
k∈K wkµk√∑

k∈K w′
kσ

2
k + ϵ

∗ γ + β, (1)

where µk and σk are the mean and variance values, re-
spectively, estimated using the normalizer k for the specific
channel value of the instance. ϵ is a small number added for
numerical stability. The learnable affine transform param-
eters are represented by γ and β. The importance weights
of the normalizer k are represented by wk and w′

k, and are
dynamically adjusted.

The difference between the two normalizers is the value
set to estimate the statistics. The bag-level normalization
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computes the statics along the dimension of N and C for
each bag,

µbn =
1

NC

N,C∑
n,c

Anc, σbn =
1

NC

N,C∑
n,c

(Anc − µbn)
2,

(2)
where µbn, σbn ∈ R1, suggesting that the values of the sin-
gle bag share the same bag-level statistics. The instance-
level normalization computes the statics across the dimen-
sion of N ,

µin =
1

N

N∑
n

Anc, σin =
1

N

N∑
n

(Anc − µin)
2, (3)

where µin, σin ∈ RC , suggesting that the instance-level
statistics are shared within the same channel of each bag.

For the importance weights wk and w′
k, we use the soft-

max operation to ensure
∑

k∈K wk = 1,
∑

k∈K w′
k = 1 and

the scalars are restricted between 0 and 1,

wk =
eλk∑
j∈K eλj

, (4)

where λ is the learnable parameter to adjust the weights for
different normalization approaches.

For the final aggregation of the instances, the weights are
first multiplied with the instances after a sigmoid function.
Then, a Conv1D layer is utilized to aggregate the instance-
level features X into bag-level feature Z ∈ RN×C ,

Z = Conv1D(X ∗ Sigmoid(Â)). (5)

The bag-level feature is then fed into a fully connected
layer to obtain the prediction result, and a Cross Entropy
Loss is used to supervise the results.

4. Experiments
4.1. Datasets

DFEW [11] is a large-scale in-the-wild dataset intro-
duced in 2020, which contains over 16,000 video clips
with dynamic facial expressions. These clips are collected
from more than 1,500 movies worldwide, and they contain
various challenging interferences, such as extreme illumi-
nations, self-occlusions, and unpredictable pose changes.
Each video clip is annotated individually by ten well-trained
annotators under professional guidance and assigned to one
of the seven basic expressions, including Happy, Sad, Neu-
tral, Angry, Surprise, Disgust, and Fear. We adopt the 5-
fold cross-validation setting provided by DFEW to ensure a
fair comparison among different methods.

FERV39K [46] is currently the largest in-the-wild DFER
dataset, comprising 38,935 video clips collected from 4 sce-
narios, which are further subdivided into 22 fine-grained

scenes. It is the first DFER dataset with a large-scale num-
ber of 39K clips, scenario-scene division, and cross-domain
supportability. Each video clip in FERV39K is annotated
by 30 professional annotators to ensure high-quality labels
and assigned to one of the seven primary expressions as in
DFEW. We use the training and testing sets provided by
FERV39K for fair comparison.

4.2. Implementation Details

Our entire framework is implemented using PyTorch-
GPU and trained on Tesla V100 GPUs. For feature extrac-
tion, we employ the vanilla R3D18 model and utilize its
pre-trained weights provided by Torchvision. The models
are trained for 300 epochs with 20 warm-up epochs using
the AdamW optimizer and cosine scheduler. The learning
rate is set to 5e-4, the minimum learning rate is set to 5e-6,
and the weight decay is set to 0.05. We use a batch size of
256 and apply label smoothing with a value of 0.1. Our aug-
mentation techniques consist of random cropping, horizon-
tal flipping, and 0.4 color jitter. For each video, we extract
a total of 16 frames as our sample. In all experiments, we
use weighted average recall (WAR) and unweighted aver-
age recall (UAR) as evaluation metrics, with more empha-
sis placed on the WAR as it is considered to be the critical
metric. In the following experiments, we focus on using
DFEW [11] for further analysis and discussion.

4.3. Comparison with the State-of-the-art Methods

We compare our method with the state-of-the-art meth-
ods on two in-the-wild datasets DFEW and FERV39K.

DFEW. The results, obtained under 5-fold cross-
validation, are presented in Table 1. It can be observed
that the proposed M3DFEL achieves the best performance
in terms of both WAR and UAR, using vanilla R3D18 as the
backbone. The results are better than those obtained with
NR-DFERNet [22], with a difference of 1.06% in terms
of WAR and 1.89% in terms of UAR. The performance of
M3DFEL on each expression is also shown in Table 1, and
more detailed analysis is presented in Section 4.5.

FERV39K. The results are shown in Table 2. FERV39K
is a challenging DFER dataset, resulting in lower over-
all accuracy compared to DFEW. M3DFEL outperforms
NR-DFERNet [22] by 1.70%/1.95% of WAR/UAR. No-
tably, using vanilla R3D18 and LSTM, M3DFEL signifi-
cantly surpasses 3DResNet18 [10] and R18+LSTM [46] by
10.10%/9.27% and 4.72%/5.02% of WAR/UAR, which in-
dicates the effectiveness of the framework.

4.4. Ablation Study

Evaluation of different bag sizes. We conduct ablation
studies on DFEW to demonstrate the impact of bag size in
the MIL setting. When the bag size is set to 16, the same as
the number of sampled frames, the 3DMIL setting degrades
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Method Accuracy of Each Emotion(%) Metrics(%) FLOPs(G)Hap. Sad Neu. Ang. Sur. Dis. Fea. WAR UAR

C3D [40] 75.17 39.49 55.11 62.49 45.00 1.38 20.51 53.54 42.74 38.57
P3D [32] 74.85 43.40 54.18 60.42 50.99 0.69 23.28 54.47 43.97 -
I3D [1] 78.61 44.19 56.69 55.87 45.88 2.07 20.51 54.27 43.40 6.99

R(2+1)D18 [41] 79.67 39.07 57.66 50.39 48.26 3.45 21.06 53.22 42.79 42.36
3D ResNet18 [10] 73.13 48.26 50.51 64.75 50.10 0.00 26.39 54.98 44.73 8.32

ResNet18+LSTM [11] 78.00 40.65 53.77 56.83 45.00 4.14 21.62 53.08 42.86 7.78
EC-STFL [11] 79.18 49.05 57.85 60.98 46.15 2.76 21.51 56.51 45.35 8.32

FormerDFER [54] 84.05 62.57 67.52 70.03 56.43 3.45 31.78 65.70 53.69 9.11
STT [31] 87.36 67.90 64.97 71.24 53.10 3.49 34.04 66.45 54.58 -

DPCNet [47] - - - - - - - 66.32 55.02* 9.52
NR-DFERNet [22] 88.47 64.84 70.03 75.09 61.60 0.00 19.43 68.19 54.21 6.33

M3DFEL(Ours) 89.59 68.38 67.88 74.24 59.69 0.00 31.63 69.25 56.10 1.65

Table 1. Comparison(%) of our M3DFEL with the state-of-the-art methods on DFEW. * indicates the result is calculated according to the
confusion matrix reported in the paper. (Bold: Best result, Underline: Second best)

Method WAR UAR

C3D [40] 31.69% 22.68%
P3D [32] 33.39% 23.20%
I3D [1] 38.78% 30.17%

R(2+1)D18 [41] 41.28% 31.55%
3D ResNet18 [10] 37.57% 26.67%
R18+LSTM [46] 42.95% 30.92%
2R18+LSTM [46] 43.20% 31.28%
NRDFERNet [22] 45.97% 33.99%

M3DFEL(Ours) 47.67% 35.94%

Table 2. Comparison(%) of our M3DFEL with the state-of-the-art
methods on FERV39K.

Bag size WAR UAR

1 68.04% 55.36%
2 68.55% 55.92%
4 69.25% 56.10%
8 68.24% 55.32%

16 66.36% 53.56%

Table 3. The ablation Study of different bag sizes. The video sam-
ple rate is 16. Bag size 1 indicates that the entire sampled video is
fed into the feature extractor, rendering the MIL pipeline and in-
stance aggregation module inapplicable. Bag size 16 denotes that
each instance consists of a single frame.

to 2D, where ResNet18 is used as the backbone. Setting the
bag size to 1 represents feeding all frames into the feature
extractor at once, leading to a normal supervised learning
paradigm where the aggregation module fails. The results

Setting Module WAR UAR

a baseline 68.23 55.44
b w/o LSTM 68.63 55.62
c w/o DMIN 68.91 56.03
d w/o MHSA 69.13 56.21
e M3DFEL 69.25 56.10

Table 4. Ablation Study of the proposed Dynamic Long-term In-
stance Aggregation Module. DMIN is the abbreviation of Dy-
namic Multi-Instance Normalization. MHSA is the abbreviation
of Multi-Head Self-Attention.

are shown in Table 3. When the 3DMIL setting degrades
to 2D with the bag size of 16, the model achieves a WAR
of 66.36% and a UAR of 53.56%. This setting has a large
margin compared to the others, probably because DLIAM
only learns a weak temporal relationship and lacks model-
ing the strong temporal relationship. Although it is essential
to learn a strong temporal relationship, the experiment with
a bag size of 1 shows that it is not always the best solution.
With a WAR of 68.04% and a UAR of 55.36%, using the
whole video as input falls behind the other 3DMIL settings.
The results show that, with a sample rate of 16, setting the
bag size to 4, where each instance contains four frames, is
an appreciable choice.

We conduct additional experiments to analyze the clas-
sification performance on a single instance. As depicted
in Figure 3, when the subject expressed emotions through
subtle facial movements, the 3D-instance-based MIL model
was able to capture these movements and make accurate
predictions. In contrast, the 2D-instance-based MIL model
only succeeded in a few frames.
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Figure 3. Evaluation of 2D-instance-based MIL and 3D-instance-
based MIL. The target emotion is Sad.

(a) 2D Instance based MIL

(b) 3D Instance based MIL

(c) M3DFEL

Correct Prediction Wrong Prediction

Figure 4. Visualization results of different MIL methods.

Evaluation of the DLIAM. We conduct an experi-
ment to study the effectiveness of the proposed DLIAM on
DFEW, using Average Pooling as the baseline method. The
results are presented in Table 4. The comparison shows that
using an attention-based method to aggregate the instances,
as done in existing MIL methods, performs worse than the
BiLSTM-based settings. Furthermore, the results demon-
strate that the proposed plug-and-play DMIN improves per-
formance at a fraction of the cost. The complete DLIAM
setting (e) outperforms the baseline by 1.02%/0.66% of
WAR/UAR on DFEW, fully indicating the effectiveness of
DLIAM and the importance of long-term temporal relation-
ship modeling in DFER.

4.5. Visualization

To further evaluate the effectiveness of our method, vi-
sualization studies are conducted.

Visualization of different MIL methods. To inves-
tigate how M3DFEL works, we obtain the classification
result on a single instance in a sample with strong facial
movements. As shown in Figure 4, the 2D-instance-based
MIL is greatly influenced by the facial movements when
the subject is talking. At the same time, a simple 3D-
instance-based MIL captures the information that the sub-
ject is talking happily in the second instance, but it still
predicts the other instances as other non-target emotions.
With the DLIAM, M3DFEL can further recognize the con-

fusing expressions with the confidence given by the second
instance, and then successfully predicts the emotional status
of these confusing samples.

T-SNE Visualization. We utilize t-SNE [42] to visu-
alize the distribution of dynamic facial expression features
extracted by our baselines and M3DFEL. The t-SNE plot in
Figure 5 illustrates that the features obtained by the base-
lines lack discriminative power, with a significant overlap
between categories. In contrast, our proposed M3DFEL
method shows a clearer boundary between categories, with
more concentrated clusters. Nonetheless, the t-SNE fig-
ure indicates that many instances of the Neutral expres-
sion are present in other emotions, and some other emo-
tions may also be classified as Neutral. In DFER, many
expressions have lower intensity than in SFER, and anno-
tators may have access to more information and be more
confident with these micro-expressions. However, recog-
nizing these low-intensity expressions is a challenging task
for the model, leading to difficulty in distinguishing Neutral
and low-intensity expressions.

Confusion matrix. We visualize the confusion matrix of
our proposed M3DFEL evaluated on DFEW Fold 1 5 to an-
alyze the results. From Figure 6, we observe that the model
struggles to predict the emotion of videos labeled as Dis-
gust. This is due to the severe label imbalance in DFEW,
where the proportion of Disgust videos is only 1.22%. As
a result, the model is more likely to ignore videos with la-
bel Disgust during training, leading to poor performance on
this emotion. A similar situation occurs for the Fear la-
bel, which has a proportion of 8.14%. The model tends to
predict some videos with label Fear as other emotions, due
to the lack of sufficient training examples for this emotion.
Additionally, we observe that the model tends to predict the
label Neutral more frequently. This is because predicting
these samples as any other emotion is more risky than pre-
dicting them as Neutral.

5. Discussion
It is clear that there are still many unresolved issues in

DFER, despite the proposed M3DFEL framework. Our
analysis of the failure cases reveals that most of them occur
during the classification stage rather than instance fusion in
MIL. For example, if the majority of the video frames are
neutral, the fusion result of the whole bag is the non-neutral
emotion, as expected. However, the model often misclas-
sifies the non-neutral emotion, e.g. classifying a Fear as
a Surprise. This indicates that the current performance is
largely limited by the model’s classification ability.

One major issue is the imbalanced label problem, where
the accuracy on Disgust and Fear is sacrificed due to the
lack of samples with these labels in the dataset. This prob-
lem is more severe in DFER than in SFER, indicating that
solely utilizing DFER datasets may be insufficient. Possi-
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(a)  2D-instance-based MIL (b) 3D-instance-based MIL (c) M3DFEL

Happy Sad Neutral Angry Surprise Disgust Fear

Figure 5. 2D t-SNE visualization [42] of dynamic facial expression features obtained by different MIL methods, including 2D-instance-
based MIL, 3D-instance-based MIL and M3DFEL. The features are extracted from the DFEW dataset.

(a) Fold 1 (b) Fold 2 (c) Fold 3 (d) Fold 4 (e) Fold 5

Figure 6. The confusion matrix of our proposed M3DFEL evaluated on DFEW Fold 1-5.

ble solutions to this issue include transfer learning or self-
supervised pre-training methods. Another issue is that some
expressions in DFER have much lower intensity than static
expressions, which is similar to the key problem in micro-
expression recognition (MER). Utilizing MER techniques
such as optical flow may help to solve this problem. Ad-
ditionally, some prior knowledge like landmarks or Ac-
tion Units may provide useful hints to the model. Except
for these issues, the noisy label problem, the uncertainty
problem and the hard sample problem all influence DFER
greatly. More importantly, it is difficult for us to distinguish
if we should emphasize or weaken the learning of the sam-
ples. Beyond the existing problems, we hope that the model
should not overfit on the dataset itself. As FERV39K pro-
vides cross-domain supportability, domain-generalization is
an important research direction.

6. Conclusion

In this study, we conduct a thorough analysis of the
DFER problem and proposed a new learning paradigm. We
utilize the Multi-Instance Learning (MIL) pipeline and de-

velop the M3DFEL framework to address the weakly super-
vised problem and imbalanced short- and long-term tem-
poral relationships in a unified manner. The M3DFEL
framework includes the 3D-Instance Generation module,
which learns the strong short-term temporal relationship,
and the Dynamic Long-term Instance Aggregation Module
(DLIAM), which models weak long-term temporal relation-
ships. The proposed framework also implements dynamic
normalization to maintain temporal consistency at both bag-
level and instance-level. Our extensive experiments support
our perspective on the DFER problem and demonstrated the
effectiveness of the proposed M3DFEL framework. In addi-
tion, we have identified several research directions that may
guide future studies in this field, such as the imbalanced la-
bel problem, the uncertainty problem, and others.
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