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Abstract

Effective modeling of complex spatiotemporal dependencies
in long-form videos remains an open problem. The recently
proposed Structured State-Space Sequence (S4) model with
its linear complexity offers a promising direction in this
space. However, we demonstrate that treating all image-
tokens equally as done by S4 model can adversely affect
its efficiency and accuracy. To address this limitation, we
present a novel Selective S4 (i.e., S5) model that employs
a lightweight mask generator to adaptively select infor-
mative image tokens resulting in more efficient and accu-
rate modeling of long-term spatiotemporal dependencies in
videos. Unlike previous mask-based token reduction meth-
ods used in transformers, our S5 model avoids the dense
self-attention calculation by making use of the guidance of
the momentum-updated S4 model. This enables our model
to efficiently discard less informative tokens and adapt to
various long-form video understanding tasks more effec-
tively. However, as is the case for most token reduction
methods, the informative image tokens could be dropped in-
correctly. To improve the robustness and the temporal hori-
zon of our model, we propose a novel long-short masked
contrastive learning (LSMCL) approach that enables our
model to predict longer temporal context using shorter in-
put videos. We present extensive comparative results using
three challenging long-form video understanding datasets
(LVU, COIN and Breakfast), demonstrating that our ap-
proach consistently outperforms the previous state-of-the-
art S4 model by up to 9.6% accuracy while reducing its
memory footprint by 23%.

1. Introduction
Video understanding is an active research area where a
variety of different models have been explored including
e.g., two-stream networks [19, 20, 52], recurrent neural net-
works [3, 63, 72] and 3-D convolutional networks [59–61].
However, most of these methods have primarily focused on
short-form videos that are typically with a few seconds in
length, and are not designed to model the complex long-
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Figure 1. Illustration of long-form videos – Evenly sampled
frames from two long-form videos, that have long duration (more
than 1 minute) and distinct categories in the Breakfast [36] dataset
(grayscale frames are shown for better visualization). The video
on top shows the activity of making scrambled eggs, while the
one on the bottom shows the activity of making cereal. These two
videos heavily overlap in terms of objects (e.g., eggs, saucepan
and stove), and actions (e.g., picking, whisking and pouring). To
effectively distinguish these two videos, it is important to model
long-term spatiotemporal dependencies, which is also the key in
long-form video understanding.

term spatiotemporal dependencies often found in long-form
videos (see Figure 1 for an illustrative example). The re-
cent vision transformer (ViT) [14] has shown promising ca-
pability in modeling long-range dependencies, and several
variants [1,4,15,41,45,49,65] have successfully adopted the
transformer architecture for video modeling. However, for a
video with T frames and S spatial tokens, the complexity of
standard video transformer architecture is O(S2T2), which
poses prohibitively high computation and memory costs
when modeling long-form videos. Various attempts [54,68]
have been proposed to improve this efficiency, but the ViT
pyramid architecture prevents them from developing long-
term dependencies on low-level features.

In addition to ViT, a recent ViS4mer [29] method has
tried to apply the Structured State-Spaces Sequence (S4)
model [23] as an effective way to model the long-term
video dependencies. However, by introducing simple mask-
ing techniques we empirically reveal that the S4 model can
have different temporal reasoning preferences for different
downstream tasks. This makes applying the same image to-
ken selection method as done by ViS4mer [29] for all long-
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form video understanding tasks suboptimal.
To address this challenge, we propose a cost-efficient

adaptive token selection module, termed S5 (i.e., selective
S4) model, which adaptively selects informative image to-
kens for the S4 model, thereby learning discriminative long-
form video representations. Previous token reduction meth-
ods for efficient image transformers [37, 42, 50, 66, 70, 71]
heavily rely on a dense self-attention calculation, which
makes them less effective in practice despite their theoret-
ical guarantees about efficiency gains. In contrast, our S5
model avoids the dense self-attention calculation by lever-
aging S4 features in a gumble-softmax sampling [30] based
mask generator to adaptively select more informative im-
age tokens. Our mask generator leverages S4 feature for its
global sequence-context information and is further guided
by the momentum distillation from the S4 model.

To further improve the robustness and the temporal pre-
dictability of our S5 model, we introduce a novel long-short
mask contrastive learning (LSMCL) to pre-train our model.
In LSMCL, randomly selected image tokens from long and
short clips include the scenario that the less informative im-
age tokens are chosen, and the representation of them are
learned to match each other. As a result, the LSMCL not
only significantly boosts the efficiency compared to the pre-
vious video contrastive learning methods [17, 51, 64], but
also increases the robustness of our S5 model when deal-
ing with the mis-predicted image tokens. We empirically
demonstrate that the S5 model with LSMCL pre-training
can employ shorter-length clips to achieve on-par perfor-
mance with using longer-range clips without incorporating
LSMCL pre-training.

We summarize our key contributions as the following:
• We propose a Selective S4 (S5) model that leverages
the global sequence-context information from S4 features
to adaptively choose informative image tokens in a task-
specific way.
• We introduce a novel long-short masked contrastive learn-
ing approach (LSMCL) that enables our model to be tol-
erant to the mis-predicted tokens and exploit longer dura-
tion spatiotemporal context by using shorter duration input
videos, leading to improved robustness in the S5 model.
• We demonstrate that two proposed novel techniques (S5
model and LSMCL) are seamlessly suitable and effective
for long-form video understanding, achieving the state-of-
the-art performance on three challenging benchmarks. No-
tably, our method achieves up to 9.6% improvement on
LVU dataset compared to the previous state-of-the-art S4
method, while reducing the memory footprint by 23%.

2. Related Work

We discuss the literature with respect to the three most rel-
evant fields: video understanding with long-form format,

efficient token selection for vision transformer training, and
self-supervised learning with videos.

a. Long-Form Video Modeling: Transformers have shown
excellent performance in modeling long-term dependen-
cies, e.g., in natural language processing (NLP) [5, 12, 13].
But the high computational cost caused by dense self-
attention calculation becomes a bottleneck to apply in not
only NLP but also computer vision. Much subsequent
work [11, 31, 33, 40, 41, 48, 65] focuses on improving the
transformer efficiency. However, they are not designed for
dealing with plethora of spatial and temporal image to-
kens that are common in long-form video scenarios. LF-
VILA [54] develops a hierarchical feeding architecture to
include more frames in the model, thus capturing longer
temporal information. Similarly, MeMViT [68] better
utilizes temporal information by emerging the previously
cached “memory” from the past. The pyramid structure
leveraged by LF-VILA and MeMViT shows efficiency im-
provements, but may lose low-level spatial-temporal con-
textual information. Gu et al. [23] proposed a Structured
State-Space Sequence (S4) model, a novel alternative to
CNNs or transformers, to model the long-range dependen-
cies by simulating a linear time invariant (LTI) system. Sub-
sequently, S4ND [46] and ViS4mer [29] extend S4 model
to the video classification task. ViS4mer [29] stacks mul-
tiple S4 layers with different scales in modeling long-form
videos, and S4ND [46] substitutes the traditional convolu-
tional layer with the proposed S4ND layer in image and
short-form video classification tasks. The equal importance
assumption to all the image tokens by ViS4mer and S4ND
can be further improved by introducing suitable token se-
lection mechanisms, especially when dealing with the long-
form input sequences. Consequently, we propose a token
Selection S4 (S5) model to further enhance the efficiency
while maintaining the long-form representation power.

b. Adaptive Token Selection: Adaptive token selection is
widely used to improve model efficiency. Traditional CNN
methods such as SCsampler [34] filter informative clips by
using motion and audio embeddings. Adaframe [69] uti-
lizes memory-augmented LSTMs as agents, which predict
where to look in the next time step. AR-NET [43] uses
LSTM as decision maker to select useful frames and their
resolutions. [37, 42, 50, 66, 70] apply this selection idea to
transformers to adaptively select tokens for increased effi-
ciency. For instance, STTS [66] leverages a token selection
module, the named scorer network, to provide the impor-
tance score for each token and select the top-K frames with
the highest scores. AdaViT [42] extends this idea to develop
instance-specific policies, guiding the activation of patches,
self-attention heads and transformer blocks. All of the
above methods demonstrate how a light-weight token se-
lection module can improve inference efficiency. However,
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these methods are essentially designed for images, and may
require non-trivial adaptation to the long-form video sce-
narios, i.e., the video-level long-range reasoning and com-
putationally expensive self-attention calculation. To avoid
this dense self-attention calculation, our proposed S5 model
leverages S4 features to model the long-term dependencies
and adaptively pick informative tokens.

c. Video Self-Supervised Learning (SSL): Previous work
on token reduction rarely considers the negative impact of
mis-dropped tokens. EViT [37] simply fuses the unattended
tokens and concatenates with the remaining ones. From
the recent successful image SSL works [8, 9, 21, 25, 26],
many follow-up works [16, 18, 51, 58, 64] learn discrimina-
tive video features with great generalization ability in down-
stream tasks. Specifically, LSTCL [64] and BraVe [51]
utilize long and short clips in the concept of SSL, which
enables the model to learn an effective representation by
predicting temporal context captured from a longer tempo-
ral extent. This essentially broadens the temporal horizon
of the model for predicting longer temporal context with
fewer from shorter input frames. In this paper, we adopt
this idea with an additional random masking strategy to in-
crease the efficiency of contrastive learning in long-form
videos, and to further improve the robustness and the tem-
poral predictability of our S5 model in downstream tasks.

3. Approach
We start by summarizing Structured State-Space Sequence
(S4) [23] model and ViS4mer [29] (§ 3.1), followed by em-
pirical analysis of S4 model in various long-form video un-
derstanding tasks (§ 3.2), and then providing the details of
our proposed approach to address these limitations (§ 3.3
and § 3.4).

3.1. Preliminaries

3.1.1 S4 Model

Recall that a simple State-Space Model i.e., a linear time
invariant (LTI) system can be written as:

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).
(1)

Under deep learning setting, A, B and C are learned via
gradient descent while +Du(t) is replaced by a resid-
ual connection. This formulation projects an input sig-
nal u(t) from one-dimensional space to an N-dimensional
latent space x(t), which is then mapped back to a one-
dimensional output signal y(t). Similar to RNNs, it has
been found in previous work that Equation 1 also suffers
from gradient vanish or exploding issues when modeling
longer sequences. To tackle this issue, the work in [23]
leveraged HiPPO theory [22] to initialize the A matrix.

HiPPO specifies a certain expression of A ∈ RN×N (see
Equation 2), which allows the hidden state to memorize the
input u(t) 1.

HiPPO: An,k = −


(2n+ 1)0.5(2k + 1)0.5 if n > k

n+ 1 if n = k

0 if n < k,
(2)

where n and k indicate the row and column indices of A. To
implement Equation 1 using discrete inputs such as word or
image tokens, the work in [23] leverages the bi-linear dis-
cretization method [62] and a discretized version of Equa-
tion 1 using a step size ∆ is rewritten as:

xk = Āxk−1 + B̄uk

yk = C̄xk,
(3)

where Ā = (I+ ∆·A
2 )/(I− ∆·A

2 ), B̄ = ∆ ·B/(I − ∆·A
2 )

and C̄ = C. Equation 3 can be solved using a discrete
convolution [23]:

y = K̄⊛ u, (4)

where u = {u0, u1, . . . , uk−1, uk} and K̄ ∈ RL :=
{C̄B̄, C̄ĀB̄, . . . , C̄ĀL−1B̄} is a structured convolutional
kernel and L is the sequence length. Equation 4 is the core
formulation of S4 model whose computational cost is linear
to the input length and can be efficiently computed using
fast Fourier transform (FFT) and inverse FFT. Moreover, to
control the convolution kernel width, the work in [24] set ∆
as a learnable parameter.

3.1.2 ViS4mer Model

By utilizing the S4 model, the ViS4mer [29] achieves
promising results in the long-form video understanding
tasks. We start with defining some notations to help summa-
rize the adaptation of S4 model in computer vision. Given a
video clip X ∈ RH×W×3×T consisting of T RGB frames
sampled from the video, we convert it into a sequence
of S · T image tokens xt

s ∈ RD for s = 1, . . . ,S and
t = 1, . . . ,T. The tokens zts are obtained by decompos-
ing each frame into S patches which are then projected to
a D-dimensional space through a learnable linear transfor-
mation. This tokenization can be implemented by linearly
mapping the RGB patches of each frame [4, 45]. Sepa-
rate learnable positional encodings es and et are then ap-
plied to the patch embeddings zts for the spatial and the
temporal dimensions: xt

s = zts + es + et, formulating
xinput = {x0

0, x
0
1, x

0
S, x

1
0, . . . , x

T
S}.

In ViS4mer [29], a multi-scale S4 decoder is introduced
for learning the long-term temporal reasoning. As is men-
tioned in § 3.1.1, S4 model has a linear computation and

1Please refer to [22] for more details and relevant proofs.
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Figure 2. Performance gain/loss of ViS4mer on LVU dataset [67]
with different settings of input frames and random masking ra-
tio, where we conclude: (a). The performance is not substantially
improved with increasing number of input frames. (b). Random
masking strategy cannot effectively reduce redundant tokens.

memory dependency with respect to the input length, which
has significantly lower computational cost than the self-
attention in transformers. The formulation of S4 decoder
can be written as:

xs4 = S4 (LN (xinput))

xmlp = MLP (P (xs4))

xskip = Linear (P (xinput))

xout = xskip + xmlp,

(5)

Where LN(·),MLP(·),Linear(·) and P(·) represent the
layer normalization [2], the multi-layer perception, linear
layer and pooling layer, and xs4 is the y in Equation 4.

3.2. S4 Model in Long-form Video Understanding

To better understand the S4 model and long-form video un-
derstanding tasks, we re-implement ViS4mer [29] with dif-
ferent settings on LVU dataset [67] and demonstrate the
result in Figure 2. From the observation that short-form
video understanding tasks often benefit from longer input
clips [4, 15, 41, 64], we wonder if the performance of S4
model on different long-form video tasks would also be
substantially improved with the increasing number of input
frames. In Figure 2 (a), we gradually increase the temporal
extent from 60 seconds to 120 seconds. Compared to the
performance of using 60 second input, we report the im-
pact ratio of using 80, 100, 120 second inputs in each task.
From this Figure, we realize that not all long-form video
tasks benefit from longer input context, and for those im-
proved tasks, the performance is not necessarily improved
with the longer input content. As a result, we raise the hy-
pothesis that capturing long-term relationships is task- and
data-dependent, and that additional performance improve-
ments for those temporally-intensive tasks would also be
hindered by the redundant spatiotemporal tokens produced
by longer input content. Recalling Equation 3 and 4, each

output token from S4 model is the result of structured dis-
crete convolution for all previous inputs. Thus, we argue
that treating all input token equally as ViS4mer [29] does is
not appealing for S4 model to capture effective long-term
dependencies, as not all tokens have the temporal relations
and each task may also favor tokens in different space-time
locations. To naively reduce the redundant tokens, we gen-
erate random masks on the 60 second input clips to drop
tokens and increase the masking ratio from 20% to 80%.
Compared to the performance of un-masked input, we re-
port the impact ratio of using random mask with masking
ratio of 20%, 50% and 80% in Figure 2 (b). Despite the
minor improvement in some tasks, random masking degen-
erates the performance of most tasks, so it is not an effective
method for reducing the redundancies. To this end, we are
motivated to propose a selective S4 model which adaptively
pick discriminative image tokens for the S4 model in differ-
ent long-form video understanding tasks.

3.3. Adaptive Token in Long-form Videos

To pick out discriminative image tokens from the long-form
videos among various tasks, we extend the concept of adap-
tive token learning, formulating our Selective S5 (i.e., se-
lective S4) model. Unlike previous image-based adaptive
token learning works [37, 42, 50, 70] that rely on dense
self-attention for capturing token-wise relationships, our S5
model avoids the self-attention computation in long-form
videos by leveraging S4 features generated from the simu-
lated linear time-invariant (LTI) system. Inherited from the
linear complexity of the S4 model, our S5 model can re-
ceive long-form video token dependencies with low cost,
thus making the adaptive token learning possible in long-
form videos. In addition, we propose a momentum updated
S4 model to dynamically produce S4 features from the long-
form video data in different tasks. Figure 3 (a) demonstrates
the pipeline of our S5 model, where the momentum updated
S4 model is the moving average of the S4 model.

Specifically, we cast our selective module in the S5
model as an adaptive mask learning problem. Given a mask
generator MG(·) and its input xs4 , the mask generator is a
lightweight architecture, which will be ablated in the Sec-
tion 4. It will be trained for a classification task on prede-
fined category space C = {C1, . . . , CST}, where S · T is
the total number of image tokens in the video. Let’s denote
p(c|xs4) ∈ [0, 1] be the normalized probabilistic output of
MG(xs4), so that

∑c=CST
c=C1

p(c|xs4) = 1. Then, we sam-
ple K categories without replacement from the probabilis-
tic outputs of the mask generator. Finally, the kth selected
image tokens can be written as:

xk
in = XTck (6)

Where X ∈ RST×D represents S · T D-dimensional image
tokens and ck is a one-hot vector that select kth token from

6390



Figure 3. (a) A visualization of our proposed S5 model. Compared to the S4 model, we introduce a selective token picking strategy “mask
generator”, leverageing the S4 feature from the momentum S4 model. The momentum S4 model is updated by the S4 model in the moving
average manner. Both S4 model and momentum S4 model are consisted of a S4 layer [23,29] and a LN layer [2]. (b) An illustration of the
proposed LSMCL pretraining framework, that initializes our S5 model to enrich the robustness.

the X. The sampling process is important as it prevents the
bias in the training that is potentially caused by the top-K se-
lection. To make this sampling differentiable, we adopt the
Gumbel-Softmax with Straight-Through tricks [30], which
is widely used in [38, 42]. Specifically, we introduce an
additional gumbel noise g ∈ R1×ST into the predicted prob-
ability distribution p ∈ R1×ST, where g = − log(− log(u+
ϵ) + ϵ) (u ∼ Uniform(0,1) , and ϵ is a small value for arith-
metic robustness consideration). Then, we sample the top-K
tokens from the re-parameterized distribution p + g. Dur-
ing the back-propagation, we estimate the gradient for each
selected token c as:

G ≈ ▽MG
exp((log p(c|xs4) + g(c))/ρ)∑c′=CST

c′=C1
exp((log p(c′|xs4) + g(c′))/ρ)

(7)

where ρ is the temperature factor controlling the sharpness.

3.4. Long-Short Mask Contrastive Learning

Previous token reduction/adaptive learning works rarely
take model robustness into consideration. Informative to-
kens might be incorrectly dropped during training, which
could hurt the performance of the model. In this pa-
per, in addition to our proposed S5 model that explicitly
picks informative tokens for various long-form video un-
derstanding tasks, we also propose Long-Short Mask Con-
trastive Learning (LSMCL) pretraining, which implicitly
learns long-form video representations with better general-
izability. Specifically, we equip the recent video contrastive
learning framework LSTCL [64] with a random masking
strategy on both long and short input clips, which mim-
ics all possible scenarios that the selective module could
produce in the S5 model. As a result, our S5 model with
LSMCL pretraining would be more robust to and tolerant
of errors from the selective module. Moreover, the long-
short contrastive set-up will further improve the temporal
predictability of our S5 model.

Formally, we sample a long clip (xL) and a short
clip (xS) from each video sequence with largely differ-

ent sampling strides τL and τS , where τS < τL. Un-
like LSTCL [64] and BraVe [51] that apply independent
random sampling, in our paper the temporal span of long
clips includes the one of short clips, which prevents dissim-
ilar semantics from two clips in long-form videos. Then,
we independently generate binary random masks with a
masking ratio of η for each clip, which can be written as:
Rmask(x, η), x ∈ {xL, xS}. We set S4 model as the back-
bone of the query encoder (fq) and also adopt a momen-
tum key encoder (fk) in the pipeline, which is widely ac-
cepted in MoCo [26], BYOL [21] and LSTCL [64]. Our
query encoder and key encoder follow the same design
with [21, 26, 64], that consist of the backbone, projection
and prediction heads. Denoting the parameter of fq as θq
and the one of fk as θk, we have: θk = mθk + (1−m)θq ,
where m ∈ [0, 1] is a momentum coefficient. Similarly,
the LSMCL adoptes similar objective as the InfoNCE [47]:

Given: q = fq(Rmask(xS , η)), k = fk(Rmask(xL, η))

LLSMCL =
∑
i

− log
exp(qi

⊤
ki/ρ)

exp(qi
⊤
ki/ρ) +

∑
j ̸=i exp(q

i⊤kj/ρ)

(8)

where ρ is the temperature hyperparameter. As is com-
monly done in [6,9,10,21], we symmetrize the loss function
by switching xS and xL in fq and fk. In our LSMCL, the
S4 model is learned to find the correct step size ∆ and SSM
parameters to match the representation of random masked
long and short clips. Given our S5 model takes adaptively
learned image tokens in the downstream task, we believe
the LSMCL could improve the robustness as well as the
temporal modeling ability of S5 model when dealing with
partially sampled image tokens. In Section 4, our S5 model
with LSMCL empirically shows significantly improved re-
sults in long-form video understanding.
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Mask
Generator

Content (↑) Metadata (↑) User (↓)
Relation Speak Scene Director Genre Writer Year Like View

No Mask (ViS4mer [29]) 57.14 40.79 67.44 62.61 54.71 48.80 44.75 0.26 3.63
Random 54.81 38.22 67.44 63.60 54.97 47.00 42.70 0.25 4.00
Single TX 57.85 40.79 68.66 63.98 55.12 48.85 43.46 0.26 3.82
Single TXS4 60.54 41.21 69.83 66.43 57.55 49.47 44.15 0.25 3.51 +3.4
Stacked TXs 59.51 41.21 69.83 64.91 55.12 51.83 47.55 0.25 3.42
Stacked TXsS4 61.98 41.75 70.94 67.34 59.16 51.83 47.55 0.24 3.42 +2.5
Linear 54.81 40.28 67.44 63.90 54.97 48.17 42.77 0.26 3.95
LinearS4 61.98 41.75 69.88 66.40 58.80 50.60 47.70 0.25 3.51 +6.7

Table 1. Performance of various mask generators in LVU [67] dataset, where we adopt 60 frames per clip and 50% masking ratio. The bold
results demonstrate the performance of using S4 feature (xS4 in Equation 5). We also provide the average improvement ratio (in green) of
nine jobs using S4 features compared to ViT features at the conclusion of each bold row.

4. Experiments
4.1. Dataset

LVU dataset [67]: is constructed from Movie Clip
dataset [55]. It contains ∼ 30K videos from ∼ 3K
movies. Each video lasts one to three minutes. The bench-
mark contains nine tasks covering a wide range of long-
form video understanding tasks, which are further folded
into three main categories: (i) content understanding, con-
sisting of (‘relationship’, ‘speaking style’, ‘scene/place’)
prediction, (ii) metadata prediction, including (‘director’,
‘genre’, ‘writer’, and ‘movie release year’) classification,
and (iii) user engagement, predicting (‘YouTube like ratio’,
and ‘YouTube popularity’). For classification and regres-
sion tasks, we report accuracy (for content understanding
and metadata prediction) and mean-squared error (MSE)
(for user engagement) as the evaluation metrics.

COIN [56, 57]: consists of 11,827 videos with 180 distinct
procedural tasks, which are all collected from YouTube.
These videos cover 12 domains, such as nursing & car-
ing, vehicles, leisure & performance, gadgets, electric ap-
pliances, household items, science & craft, plants & fruits,
snacks & drinks dishes, sports, and housework. The average
length of a video is 2.36 minutes.

Breakfast [36]: contains 1,712 videos of 10 complex cook-
ing activities, which are performed by 52 different individ-
uals in 18 different kitchens, resulting in over 77 hours of
video footage. The averaged length of video in this dataset
is around 2.7 minutes. Ten cooking activities include: mak-
ing coffee, chocolate milk, juice, tea, cereals, fried egg, pan-
cakes, fruit salad, sandwich and scrambled egg.

4.2. Implementation Details

Following [29, 67], we stack three structure blocks, which
share similar structure to that described in Equation 5, and
sample video frames at 1 fps. Unlike previous work, we
include an adaptive mask generator to effectively pick im-
age tokens before feeding the input into S4 model. As

the advantages of our S5 model will naturally be dimin-
ished on less redundant sequences, we follow the same ar-
chitecture of ViS4mer [29] but adopt the S5 model as the
first block. For data argumentation, we resize each video
frame to the spatial resolution of 224× 224 and use a patch
size of 16 × 16. In addition, we use ViT-L [14] pretrained
on ImageNet-21K [35] as the feature extractor in the LVU
dataset; Swin-B [40] pretrained on Kinetics-600 [32] as the
feature extractor in COIN and Breakfast datasets. The size
of the input in each dataset is also the same as [29]: we
adopt 60-second input for the LVU dataset and 64-second
input for the COIN and Breakfast datasets. In the LSMCL,
we adopt the setting from LSTCL [64] and apply indepen-
dent global random masking on long and short clips, which
share the same masking ratio with the adaptive mask gen-
erator. Unless otherwise noted, we conduct our ablation
studies on the LVU dataset due to its diverse tasks in the
long-form video understanding. Finally, we report the best
performance of our model on all three datasets and compare
with the previous state-of-the-art works.

4.3. Ablation Study

a. Our S5 is better than S4 and random masking: To
demonstrate the effectiveness of our proposed S5 model, we
compare the performance of S4 models with no mask, ran-
dom mask, and mask generators of different architectures.
Specifically, we utilize one Transformer (TX), two stacked
Transformers (TXs), and one linear layer as the mask gen-
erator and evaluate on 9 tasks on the LVU dataset (Table 1).
In addition, we also evaluate the effectiveness of using S4
features from the momentum-updated S4 model. For each
architecture, we compare the result of using ViT features
and S4 features as the mask generator input. As can be
seen from the Table 1, the performance of each task sub-
stantially increases with the computational complexity of
the mask generator. Results show our design significantly
outperforms ViS4mer [29] and the random masking strat-
egy, and the performance of each task is further improved
by using S4 features. Notably, the mask generator with one
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Figure 4. Efficiency evaluation of each method in Table 1, which
demonstrates the GPU memory usage as well as throughput. Our
proposed S5 model with linear mask generator saves 25% memory
cost and achieves on par throughput with ViS4mer [29].

linear layer achieves on par performance to one of the more
complex transformer architectures.

b. Our S5 reduces up to 25% memory usage: In Figure 4,
we also demonstrate the efficiency of our S5 model with
the different masking architectures mentioned previously.
Compared to ViS4mer (the one without masking strategies)
using same number of input frames, our S5 model with lin-
ear mask generator reduces the memory footprint by 25%
while maintaining the same level of throughput. Memory
consumption and throughput are not improved by the intri-
cate transformer mask generators. Since the linear mask
generator has a smaller memory footprint and performs
tasks more effectively overall, we use it in our S5 model
in the following experiments.

c. Impact of Masking Ratio and Sequence Length:
In Figure 5a and 5b, we study the effect of masking ra-
tio and sequence length with our S5 model. We set
ViS4mer [29] (60 frames without mask generator) as base-
line and report the average improvement percentage of 9
tasks on LVU dataset by using S5 model with variant mask-
ing ratio/sequence length. To demonstrate the effective-
ness of our S5 model, we also compare the performance
of ViS4mer [29] with different settings in these two fig-
ures. Figure 5a clearly shows that the performance of our
S5 model increases initially as the masking ratio increases,
which indicates that our selective model effectively picks
informative image tokens for the S4 model. However, the
performance starts to drop dramatically when the masking
ratio is over 50%. This is because when the masking ra-
tio increases to be above certain level, the informative to-
kens are forced to be dropped. As a result, we adopt 50%
masking ratio in our following experiments. In Figure 5b,
we observe substantial improvement of S5 model with in-
creasing number of input frames. In contrast to the perfor-
mance of ViS4mer [29], our proposed S5 model is indeed
able to capture longer term dependencies while reducing the
spatial-temporal redundancy in the input.

d. Effect of Multiple S5 models: As shown in Figure 3,
multiple S5 models can be stacked in the pipeline, similar

to what is commonly done in Transformer [4, 14, 68] and
ViS4mer [29]. In the previous setup, we only adopt one
S5 model, leaving the remaining blocks as S4 models. By
stacking multiple S5 models, we find a further 0.5% aver-
age improvement on the LVU dataset. Less redundant se-
quences will inevitably reduce the performance gain from
our S5 model, decreasing the benefit from stacking addi-
tional S5 blocks. As a result, we utilize only one S5 model
after the video encoder for maximum memory efficiency
gain and throughput.

e. Ablation on LSMCL: In Figure 5c and 5d, we evalu-
ate the effectiveness of our proposed LSMCL with different
sampling strides and random masking ratios. For both fig-
ures, we set the performance of ViS4mer [29] as the base-
line and report the average improvement ratio (in percent-
age) of 9 tasks from LVU with different settings. From Fig-
ure 5c, our S5 model with LSMCL can achieve better per-
formance even when τL = τS , which suggests that LSMCL
can increase the robustness of our S5 model and help it han-
dle incorrectly picked tokens. When we gradually increase
the τL

τS
, the performance of S5 model is further improved as

the model is able to capture longer temporal context via the
proposed LSMCL. Indeed, the performace using LSMCL
approaches the performance without LSMCL with 66%
more input frames (shown in Figure 5b both around 6%
boost). In Figure 5d, we further ablate the random masking
ratio used in LSMCL. When the masking ratio of LSMCL
is over 50%, the benefit from LSMCL is insignificant as
the input does not provide sufficient information. Thus, we
consider 50% masking ratio in LSMCL for better efficiency
in the long-form video contrastive learning.

4.4. Comparison with the State-Of-The-Arts

In Table 2, we compare our method on LVU dataset
with previous state-of-the-art methods. Specifically, the
LST [29] adopt the same architecture with ours, but sub-
stitutes the S5/S4 model to the transformer architecture.
Whereas the Performer [11] and Orthoformer [49] apply
the efficient attention in the transformer architecture, that
do not require quadratic complexity w.r.t. the input length.
When compared to baseline ViS4mer [29], we achieve up
to 9.6% improvement. When compared to other methods,
ours outperforms by an even more significant margin. This
shows that our method is consistently more effective in un-
derstanding the long-form videos.

To demonstrate the generalizability of our method, we
evaluate our S5 model on COIN [56,57] and Breakfast [36]
datasets, which are challenging long-range procedural ac-
tivity classification datasets. Our proposed method achieves
2.4% and 5.5% over the ViS4mer [29] and outperforms
the other state-of-the-arts by 0.81% and 0.80% respec-
tively. Notice that D-Sprv. [39] leverages HowTo100M
dataset [44] for pretraining, which volume is much larger
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Figure 5. Compared to the baseline performance, average improvement performance of our method on LVU dataset. Unless otherwise
noted, the default number of input frame and masking ratio is 60 and 50%. (a). We compared our S5 model and S4 model with random
masking with increasing masking ratio; (b). We compare our S5 model and S4 model with increasing number of input frames; (c). We
show the effect of LSMCL pretraining with different long-short sampling stride ratio. In addition, we provide the performance of S5 model
without LSMCL and S5 model with 100 input frames; (d). We show the impact of the increasing masking ratio in the LSMCL pretraining.

Model
Content (↑) Metadata (↑) User (↓) GPU Usage

(GB) (↓)Relation Speak Scene Director Genre Writer Year Like View
Obj. T4mer [67] 54.76 33.17 52.94 47.66 52.74 36.30 37.76 0.30 3.68 N/A
Performer [11] 50.00 38.80 60.46 58.87 49.45 48.21 41.25 0.31 3.93 5.93
Orthoformer [49] 50.00 38.30 66.27 55.14 55.79 47.02 43.35 0.29 3.86 5.56
VideoBERT [53] 52.80 37.90 54.90 47.30 51.90 38.50 36.10 0.32 4.46 N/A
LST [29] 52.38 37.31 62.79 56.07 52.70 42.26 39.16 0.31 3.83 41.38
ViS4mer [29] 57.14 40.79 67.44 62.61 54.71 48.80 44.75 0.26 3.63 5.15
Ours60 frames 61.98 41.75 69.88 66.40 58.80 50.60 47.70 0.25 3.51 3.85
Ours60 frames+LSMCL 61.98 41.75 72.53 66.40 61.34 50.60 47.70 0.24 3.51 3.85
Ours100 frames 66.71 41.78 73.28 66.64 63.65 50.60 47.85 0.25 3.51 3.95
Ours100 frames+LSMCL 67.11 42.12 73.49 67.32 65.41 51.27 47.95 0.24 3.51 3.95

Table 2. Comparison to the state-of-the-art methods on LVU dataset testing set.

Method P.T. Dataset P.T. Samples Accuracy
TSN [57] Kinetics-400 306K 73.40
D-Sprv. [39] HowTo100M 136M 90.00
ViS4mer [29] Kinetics-600 495K 88.41
Ours Kinetics-600 495K 90.42
Ours+LSMCL Kinetics-600 495K 90.81

Table 3. Comparison to the state-of-the-art methods on COIN
dataset. P.T. stands for pretraining.

Method P.T. Dataset P.T. Samples Accuracy
VideoGraph [28] Kinetics-400 306K 69.50
Timeception [27] Kinetics-400 306K 71.30
GHRM [73] Kinetics-400 306K 75.50
D-Sprv. [39] HowTo100M 136M 89.90
ViS4mer [29] Kinetics-600 495K 85.10∗

Ours Kinetics-600 495K 90.14
Ours+LSMCL Kinetics-600 495K 90.70

Table 4. Comparison to the state-of-the-art methods on Breakfast
dataset. P.T. stands for pretraining. ∗We were not able to repro-
duce the 88.17% baseline result reported in [29], but our proposed
S5 model still largely improves from 85.10%, and achieves the
new state-of-the-art result.

than our pre-training dataset (Kinetics-600 [7]). Putting
together the aforementioned performance gain and mem-

ory efficiency gain, our S5 model successfully demonstrates
its efficiency and effectiveness in learning discriminative
representation via selecting informative image tokens from
long-form video sequences.

5. Conclusion

In this paper, we proposed a selective structured state-space
sequence (S5) model for long-form video understanding,
where we adopt a lightweight mask generator to adaptively
pick informative tokens from long-form videos. Our mask
generator avoids dense self-attention computation as what is
applied in previous works. It leverages the sequential output
of the simulated linear time invariant (LTI) system, and ben-
efits from the momentum distillation of S4 model, enabling
our S5 model to dynamically learn from informative tokens
for different long-form video tasks. To mitigate the negative
impact of picking less informative tokens, we also propose
a LSMCL pretraining to improve the robustness and further
broaden the temporal horizon of our model. Through exten-
sive experiments, we demonstrate the effectiveness of each
proposed component in our S5 model, achieving the new
state-of-the-art performance in three challenging long-form
video understanding benchmarks.
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