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Abstract

Semantic Scene Completion (SSC) transforms an image
of single-view depth and/or RGB 2D pixels into 3D vox-
els, each of whose semantic labels are predicted. SSC is a
well-known ill-posed problem as the prediction model has
to “imagine” what is behind the visible surface, which is
usually represented by Truncated Signed Distance Func-
tion (TSDF). Due to the sensory imperfection of the depth
camera, most existing methods based on the noisy TSDF
estimated from depth values suffer from 1) incomplete vol-
umetric predictions and 2) confused semantic labels. To
this end, we use the ground-truth 3D voxels to generate a
perfect visible surface, called TSDF-CAD, and then train
a “cleaner” SSC model. As the model is noise-free, it
is expected to focus more on the “imagination” of un-
seen voxels. Then, we propose to distill the intermediate
“cleaner” knowledge into another model with noisy TSDF
input. In particular, we use the 3D occupancy feature and
the semantic relations of the “cleaner self” to supervise
the counterparts of the “noisy self” to respectively address
the above two incorrect predictions. Experimental results
validate that our method improves the noisy counterparts
with 3.1% IoU and 2.2% mIoU for measuring scene com-
pletion and SSC, and also achieves new state-of-the-art ac-
curacy on the popular NYU dataset. The code is available
at https://github.com/fereenwong/CleanerS.

1. Introduction

3D scene understanding is an important visual task for
many practical applications, e.g., robotic navigation [16]
and augmented reality [55], where the scene geometry and
semantics are two key factors to the agent interaction with
the real world [24, 64]. However, visual sensors can only
perceive a partial world given their limited field of view
with sensory noises [49]. Therefore, an agent is expected to
leverage prior knowledge to estimate the complete geome-
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try and semantics from the imperfect perception. Semantic
Scene Completion (SSC) is designed for such an ability to
infer complete volumetric occupancy and semantic labels
for a scene from a single depth and/or RGB image [49, 52].

Based on an input 2D image, the 2D→3D projection is
a vital bond for mapping 2D perception to the correspond-
ing 3D spatial positions, which is determined by the depth
value [6]. After this, the model recovers the visible surface
in 3D space, which sheds light on completing and labeling
the occluded regions [31, 52], because the geometry of the
visible and occluded areas is tightly intertwined. For exam-
ple, you can easily infer the shapes and the semantic labels
when you see a part of a “chair” or “bed”. Thus, a high-
quality visible surface is crucial for the SSC task.

However, due to the inherent imperfection of the depth
camera, the depth information is quite noisy, what follows
is an imperfect visible surface that is usually represented by
Truncated Signed Distance Function (TSDF) [52]. In gen-
eral, the existing depth noises can be roughly categorized
into the following two basic types:
1) Zero Noise. This type of noise happens when a depth
sensor cannot confirm the depth value of some local regions,
it will fill these regions with zeroes [14,43]. Zero noise gen-
erally occurs on object surfaces with reflection or uneven-
ness [41]. Based on zero noise, the visible surface will be
incomplete after the 2D-3D projection via TSDF [49], so
the incomplete volumetric prediction problem may occur in
the final 3D voxels. For example, as shown in the upper-half
of Figure 1, for the input RGB “kitchen” image, the depth
value of some parts of the “cupboard” surface (marked with
the red dotted frames) (in (b)) is set to zero due to reflec-
tions. Based on this, both the visible surface (in (d)) and the
predicted 3D voxels (in (f)) appear incomplete in reflective
regions of this “cupboard”. Our method uses the perfect vis-
ible surface (in (e)) generated by the noise-free ground-truth
depth value (in (c)) as intermediate supervision in training ,
which helps the model to estimate “cupboard” 3D voxels in
inference even with the noisy depth value as input.
2) Delta Noise. This type of noise refers to the inevitable
deviation of the obtained depth value due to the inherent
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(1) Zero Noise Leads to Incomplete Volumetric Predictions

(b) Noisy Depth (c) Depth-CAD (d) Noisy TSDF(a) RGB

(2) Delta Noise Leads to Confused Semantic Labels

(b) Noisy Depth (c) Depth-CAD (d) Noisy TSDF(a) RGB

(f) Prediction with (a, d) (g) Our Prediction

(f) Prediction with (a, d) (g) Our Prediction

table✓chair×furniture×

(e) TSDF-CAD

(e) TSDF-CAD

/ noisy / noise-free depth value to visible surface / incomplete / complete visible surface / visible surface with class label

× ∆𝑑𝑑×

Figure 1. The existing depth noises can be roughly categorized into: 1) zero noise and 2) delta noise. By zero noise, we mean that
when the depth camera cannot confirm the depth value of some local regions, it fills these regions with zeroes, leading to the problem
of incomplete volumetric predictions. By delta noise, we mean the inevitable deviation (i.e., ∆d) of the obtained depth value due to the
inherent quality defects of the depth camera, which leads to the problem of confused semantic labels in the final 3D voxels. In the above
blocks, the pairwise subfigures (e.g., (d) and (e)) show the cases of “with noise” and “without noise” on the left and right, respectively.

quality defects of the depth camera [41], i.e., the obtained
depth value does not match the true depth value. Delta noise
shifts the 3D position of the visible surface, resulting in the
wrong semantic labels, such that the final 3D voxels will
suffer from the problem of confusing semantic labels [52].
A real delta noise case is shown in the bottom half part of
Figure 1. For the input RGB “classroom” image, the depth
camera mistakenly estimates the depth value of the “table”
as the depth value of “furniture” (in (b)). Therefore, the vis-
ible surface represented by TSDF shifts from the class of
“table” (marked with blue points) to the class of “furniture”
(marked with orange points in (d)). Based on this, the final
estimated 3D voxels (in (f)) also mistakenly estimate the
part of the “table” as the “furniture”. In comparison, when
our SSC model is trained on the visible surface in (e), which
is generated by the correct depth value in (c), as the interme-
diate supervision, semantic labels for both the “table” and
the “furniture” can be estimated correctly in (g).

In practice, these two types of noise are randomly mixed
together to form a more complex noise [14, 65]. To handle
these two noise types, although some recent SSC attempts
have been made by rendering the noise-free depth value
from 3D voxel ground-truth [12, 51], they are not of practi-

cal use as the 3D voxels ground-truth is still needed in infer-
ence. However, they indeed validate the potential that more
accurate recognition performance can be achieved using the
noise-free depth value [4, 56, 66]. To the best of our knowl-
edge, no prior work focuses on mitigating the noisy depth
values in SSC without the use of ground-truth depth val-
ues in inference. Therefore, the crux is to transfer the clean
knowledge learned from ground-truth depth into the noisy-
depth pipeline only during training. So, in inference, we can
directly use this pipeline without the need for ground-truth.

In this paper, we propose a Cleaner Self (CleanerS)
framework to shield the harmful effects of the two depth
noises for SSC. CleanerS consists of two networks that
share the same network architecture (that is what “self”
means). The only difference between these two networks is
that the depth value of the teacher network is rendered from
ground-truth, while the depth value of the student network
is inherently noisy. Therefore, the depth value of the teacher
network is cleaner than the depth value of the student net-
work. In the training stage, we make the teacher network
to provide intermediate supervision for learning of the stu-
dent network via knowledge distillation (KD), such that the
student network can disentangle the clean visible surface
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reconstruction and occluded region completion. To pre-
serve both the detailed information and the abstract seman-
tics of the teacher network, we adopt both feature-based
and logit-based KD strategies. In inference, only the stu-
dent network is used. Compared to the noisy self, as shown
in Figure 1, CleanerS achieves more accurate performance
with the help of ground-truth depth values in training but
not in testing.

The main contributions of this work are summarized as
the following two aspects: 1) we propose a novel Clean-
erS framework for SSC, which can mitigate the negative
effects of the noisy depth value in training; 2) CleanerS
achieves the new state-of-the-art results on the challenging
NYU dataset with the input of noisy depth values.

2. Related Work
Semantic Scene Completion. SSCNet [52] is the pioneer-
ing work to predict both volumetric occupancies and seman-
tic labels for completing 3D scenes. Follow-up works can
be divided into four categories: 1) Volume-based methods.
With TSDF as input [9, 52], these methods use 3D CNNs
for volumetric and semantic predictions. The disadvantage
is the high computational cost of 3D CNNs [7,11]. 2) View-
volume-based methods. With RGB image and depth value
as inputs, these methods use 2D CNNs to extract features,
and then reshape the features to 3D features by a 2D-3D
projection layer for predicting 3D voxels [20,31,33,36,38].
These methods are less effective in extracting 3D geometry
information due to the limitations of 2D CNNs. 3) Point-
based methods. SPCNet [70] is a classic method in this cat-
egory. It particularly resolves the problem of discretization
in voxels and predicts SSC by using points as input. How-
ever, it is sensitive to point-label misalignment (i.e., delta
noise). 4) Hybrid methods. Many recent works [3,46,47,54]
take at least two kinds of inputs from the set of RGB im-
age, depth value, TSDF, and points. They use dual-branch
network architectures for feature fusion and achieve state-
of-the-art performance. Our work belongs to this category
using RGB image and TSDF as input. We highlight that our
key difference with the above works is that we are the first
to particularly resolve the problem of noisy TSDF estimated
from noisy depth values.
Learning with Noises. Both image collection and image
annotation bring data noise and label noise to computer vi-
sion datasets, respectively [2, 50]. Specifically, data noises
are usually caused by the defects of sensors (e.g., limited
visual fields [22] and inaccurate cameras [41]) or data col-
lection environments (e.g., fog [17], rain [5], and night-
time [48]). To reduce the negative effects on the learn-
ing of models, the mainstream idea is to learn clean [58]
and robust [1, 32] feature representations [63, 65]. Existing
methods can be divided into two categories: noise-cleaning
based methods [35,44,69] and robust-modeling based meth-

ods [42,60,61]. In particular, the existing models tend to re-
sult in unsatisfactory performance when the noises are un-
predictable. Our method aims to address the problem of
noisy data for SSC. We propose to transfer the clean knowl-
edge learned from the ground-truth depth value into the
noisy-depth pipeline during training. In the inference phase,
we can directly use this pipeline without ground-truth.
Knowledge Distillation (KD). KD is proposed in [23] to
transfer the knowledge from a teacher model (a stronger
or larger model) to a student model (a weaker or smaller
model). The original motivation is model compression. Af-
ter KD, the student can achieve a competitive or even supe-
rior performance [34, 64]. KD can be roughly categorized
into 1) feature-based [26, 27], logit-based [28, 68], and hy-
brid [18, 25]. In this work, we leverage KD for a new pur-
pose: denoising in the SSC task. The teacher model learns
cleaner knowledge than the student model with noisy input.
This enables the teacher model to provide intermediate su-
pervision for learning the student model via KD.

3. Depth Noises in SSC
In this section, we first compute the percentage of the

two noise types: zero noise and delta noise, taking the stan-
dard datasets NYU [51] and NYUCAD [13] as examples.

Then, we show the performance gap between the learned
models with and without these noises. The aim is to quanti-
tatively demonstrate that these two kinds of noises ignored
by the existing work of SSC are unfortunately making se-
vere negative effects on the learning of SSC models.
The Quantity of Depth Noises. In Figure 2 (b) and Fig-
ure 2 (a), we show the class-wise quantities of zero noises
and delta noises, respectively, on NYU [51] (including both
training and test sets). Each class is represented by a unique
color, and the correspondence between colors and class la-
bels is given in Figure 2 (c). The way of calculating the
percentage of the zero noise on each semantic class of the
depth value is expressed as:

Zero(c) =

P
1(Y (d)=c,d̸=0,d′=0)P
1(Y (d)=c,d ̸=0)

, (1)

where 1 is an indicator (i.e., when conditions in the right
parentheses are all satisfied, the current value is incre-
mented by one). d′ and d denote the noisy and the noise-
free depth value, respectively. Y (d) is the class label of the
corresponding visible surface whose 3D position is decided
by d. c denotes a certain semantic class. The zero noise rate
of each class is shown as a pie chart in Figure 2 (b). The
way of calculating the percentage of delta noise between c
(class of the clean visible surface) and c′ (class of the noisy
visible surface) is formulated as:

Delta(c, c′) =

P
1(Y (d)=c,(d·d′ )̸=0,Y (d′)=c′,c ̸=c′)P

1(Y (d)=c,(d·d′ )̸=0)
. (2)
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