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Figure 1. Visual comparisons between state-of-the-art harmonization methods IHT [9], Harmonizer [14], and ours. Our model is
fully parametric. This gives artists full posterior control over the final composite, makes runtime efficient for high-resolution real-world
inputs and regularizes training. Our model predicts global RGB curves and a local shading map (right). Benefiting from the novel dual-
stream semi-supervised training strategy, our method (right) produces more realistic harmonized images on real-world composites (left).
This new training strategy, together with the shading map, makes it the first harmonization method to address local tonal adjustments, such
as shading the face according to the sun’s direction (top) or selectively darkening the part of the dog inside the cave (bottom).

Abstract
Learning-based image harmonization techniques are usu-
ally trained to undo synthetic random global transforma-
tions applied to a masked foreground in a single ground
truth photo. This simulated data does not model many of
the important appearance mismatches (illumination, object
boundaries, etc.) between foreground and background in
real composites, leading to models that do not generalize
well and cannot model complex local changes. We propose
a new semi-supervised training strategy that addresses this
problem and lets us learn complex local appearance harmo-
nization from unpaired real composites, where foreground
and background come from different images. Our model is
fully parametric. It uses RGB curves to correct the global
colors and tone and a shading map to model local vari-
ations. Our method outperforms previous work on estab-
lished benchmarks and real composites, as shown in a user

study, and processes high-resolution images interactively.
Code, and project page available at:
https://kewang0622.github.io/sprih/.

1. Introduction
Image harmonization [12, 22, 23, 26, 28, 32] aims to iron

out visual inconsistencies created when compositing a fore-
ground subject onto a background image that was captured
under different conditions [18, 32], by altering the fore-
ground’s colors, tone, etc., to make the composite more re-
alistic. Despite significant progress, the practicality of to-
day’s most sophisticated learning-based image harmoniza-
tion techniques [3, 4, 9, 10, 13, 14, 16, 32] is limited by a se-
vere domain gap between the synthetic data they are trained
on and real-world composites.

As shown in Figure 2, the standard approach to generat-
ing synthetic training composites applies global transforms
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Figure 2. Domain Gap between synthetic and real-world com-
posites. The existing synthetic composites [4] (left), generated by
applying global transforms (e.g., color, brightness), are unable to
simulate many of the appearance mismatches that occur in real
composites (right). This leads to a domain gap: models trained on
synthetic data do not generalize well to real composites. In real
composites (right), the foreground and background are captured
under different conditions. They have different illuminations, the
shadows do not match, and the object’s boundary is inconsistent.
Such mismatches do not happen in the synthetic case (left).

(color, brightness, contrast, etc.) to a masked foreground
subject in a ground truth photo. This is how the iHarmony
Dataset [2, 4] was constructed. A harmonization network is
then trained to recover the ground truth image from the syn-
thetic input. While this approach makes supervised training
possible, it is unsatisfying in simulating the real composite
in that synthetic data does not simulate mismatch in illu-
mination, shadows, shading, contacts, perspective, bound-
aries, and low-level image statistics like noise, lens blur, etc.
However, in real-world composites, the foreground subject
and the background are captured under different conditions,
which can have more diverse and arbitrary differences in
any aspects mentioned above.

We argue that using realistic composites for training is
essential for image harmonization to generalize better to
real-world use cases. Because collecting a large dataset
of artist-created before/after real composite pairs would
be costly and cumbersome, our strategy is to use a semi-
supervised approach instead. We propose a novel dual-
stream training scheme that alternates between two data
streams. Similar to previous work, the first is a supervised
training stream, but crucially, it uses artist-retouched image
pairs. Different from previous datasets, these artistic adjust-
ments include global color editing but also dodge and burn
shading corrections and other local edits.

The second stream is fully unsupervised. It uses a
GAN [8] training procedure, in which the critic compares

our harmonized results with a large dataset of realistic im-
age composites. Adversarial training requires no paired
ground truth. The foreground and background for the com-
posite in this dataset are extracted from different images so
that their appearance mismatch is consistent with what the
model would see at test time.

To reap the most benefits from our semi-supervised train-
ing, we also introduce a new model that is fully paramet-
ric. To process a high-resolution input composite at test
time, our proposed network first creates a down-sampled
copy of the image at 512 × 512 resolution, from which it
predicts global RGB curves and a smooth, low-resolution
shading map. We then apply the RGB curves pointwise to
the high-resolution input and multiply them by the upsam-
pled shading map. The shading map enables more realistic
local tonal variations, unlike previous harmonization meth-
ods limited to global tone and color changes, either by con-
struction [14, 16, 31] or because of their training data [4].

Our parametric approach offers several benefits. First, by
restricting the model’s output space, it regularizes the adver-
sarial training. Unrestricted GAN generators often create
spurious image artifacts or other unrealistic patterns [36].
Second, it exposes intuitive controls for an artist to adjust
and customize the harmonization result post-hoc. This is
unlike the black-box nature of most current learning-based
approaches [3, 4, 9, 10], which output an image directly.
And, third our parametric model runs at an interactive rate,
even on very high-resolution images (e.g., 4k), whereas sev-
eral state-of-the-art methods [4, 9, 10] are limited to low-
resolution (e.g., 256× 256) inputs.

To summarize, we make the following contributions:
• A novel dual-stream semi-supervised training strategy

that, for the first time, enables training from real com-
posites, which contains much richer local appearance
mismatches between foreground and background.

• A parametric harmonization method that can capture
these more complex, local effects (using our shading
map) and produces more diverse and photorealistic
harmonization results.

• State-of-the-art results on both synthetic and real com-
posite test sets in terms of quantitative results and
visual comparisons, together with a new evaluation
benchmark.

2. Related works
Image harmonization. Traditional image harmonization
methods mainly focus on adjusting the low-level appear-
ance statistics (e.g., color statistics, gradient information)
between the foreground objects and the background [12,22,
23, 26, 28, 32]. Supervised learning-based approaches have
been proposed and shown notable success [3,4,9,10,29,37]
by learning image harmonization from synthetic training
pairs, for instance, iHarmony Dataset [4]. Works as DIH
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Figure 3. Overview of semi-supervised dual-stream training strategy. To bridge the domain gap, our proposed semi-supervised dual-
stream training strategy alternates between two training streams: a) Supervised training with artist-retouched composite image pairs (left).
Artist adjustments include global color editing, shading correction, and other local edits. b) Unsupervised adversarial training with real-
world composite images (right). It uses a GAN [8] training procedure, comparing our harmonized results with a large dataset of composite
”real” images (see § 3.2 for details). The foreground and background for the composite are from different images, so the appearance
mismatch is consistent with what we see at test time.

[29], DovNet [4], IHT [9], Guo et al. [10] consider the
image harmonization task as a pixel-wise image-to-image
translation task, and are limited to low-resolution inputs
(typically 256×256) due to computational inefficiency. Re-
cent work extended image harmonization to high-resolution
images by designing parametric models [3, 14, 16, 31]. To
name a few, Liang et al. learns the spatial-separated RGB
curves for high-resolution image harmonization. Ke et
al. [14] directly predicts the filter arguments of several
white-box filters. In all of those approaches, synthetic train-
ing pairs are generated by applying global transforms to the
masked foreground regions and hence do not simulate mis-
match in illumination, shadows, shading, contact, etc., that
happen in real-world composite images. Therefore, due to
the synthetic training data and model construction [14, 16],
previous works are limited to global tone and color changes.
In contrast, our model is trained on real-world compos-
ite images and artist-retouched synthetic images, which en-
ables us to model richer image edits and produce more com-
pelling results on real composites.

Efficient and high-resolution image enhancement. There
has been a wide range of research focusing on designing ef-
ficient and high-resolution image enhancement algorithms
[6,7,17]. Gharbi et al. [6] introduced a convolutional neural
network (CNN) that predicts the coefficients of a locally-
affine model in bilateral space from down-sampled input
images. The coefficients are then mapped back to the full-
resolution image space. Zeng et al. [34] directly learns 3D
Lookup Tables (LUTs) for real-time image enhancement. In
our application, image harmonization can be considered as
a background-guided image enhancement problem. Thus,
inspired by [6, 34], we design a network that directly pre-

dicts the coefficients of RGB curves (piece-wise linear func-
tion) from down-sampled composite inputs. We then apply
the RGB curves pointwise to the high-resolution input with-
out introducing extra computation costs.
Image-based relighting Image-based relighting ap-
proaches [19, 21, 25, 33] focus on modifying the input
lighting conditions and local shading to generate convinc-
ing composite results. However, recent relighting methods
mainly focus on portraits and struggle to generalize to other
objects, as Light-stage capture is limited to portraits and
not diverse objects [5]. With a similar idea of incorporating
local shading edits but a different approach, our method
embeds the shading layer into a network and trains on
composite image datasets without explicitly leveraging
scene representations (geometry, materials, lighting) and
using full relighting models.

3. Method

Our image harmonization method corrects the fore-
ground subject in a rough composite to make the overall
image look more realistic using a new parametric model
(§ 3.1) that can be applied to real-world high-resolution im-
ages efficiently. Previous harmonization techniques train
on synthetically-generated composite pairs [4], where the
model’s input is a global transformation of a ground truth
image within a foreground subject mask. The colors are of-
ten unnatural, the mask boundary is close to perfect, and
there is no mismatch in appearance, illumination, or low-
level image statistics since both foreground and background
come from the same image. As a result, models trained on
such data generalize poorly. Our method addresses this cru-
cial issue using a novel dual-stream semi-supervised train-
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Figure 4. Illustration of our parametric model design. Our
framework consists of a low-resolution branch and a high-
resolution branch. At test time, we down-sample the given high-
resolution image and predict the global RGB curves and shading
map through a two-stage network. Those parametric outputs are
then executed at the original resolution to produce the final harmo-
nized image. Our model can scale to any resolution.

ing strategy (§ 3.2) that leverages high-quality artist-created
image pairs and unpaired realistic composites to bridge the
training-testing domain gap. See Figure 3 for an overview.

3.1. Parametric image harmonization

Our network design is inspired by real-world composite
harmonization workflows1. An artist typically applies sev-
eral image corrections sequentially, each dedicated to har-
monizing a specific composite element, such as luminos-
ity, color, or shading. Accordingly, our image transforma-
tion model consists of two modules, applied sequentially:
a pointwise global RGB color correction module and a lo-
cal shading correction using a low-frequency multiplicative
map. For efficiency, our model operates at two resolutions.

Pipeline overview. As illustrated in Figure 4, our harmo-
nization pipeline takes as input a foreground image F ∈
R3hw with dimensions h,w ∈ N, a background image im-
age B ∈ R3hw, and a compositing alpha mask M ∈ Rhw.
We define the unharmonized composite image as C :=
M · F + (1 −M) ·B. At test time, we start by downsam-
pling the inputs to a fixed resolution 512×512, denoting the
low-resolution images by Clr, Blr, Mlr respectively. We
concatenate these maps and pass them to a neural network
f that predicts the parameters [θ1, θ2] := f(Clr,Blr,Mlr)
of our two-stage parametric image transformation. Finally,
we apply the parametric transformation t1, t2 sequentially
on the high-resolution input to obtain the final harmonized
composite O := t2(t1(C,M; θ1),M; θ2), where M is used
to ensure only foreground mask area is altered. We describe
the two stages in the parametric transformation next.

1https://youtu.be/g3qe4rDw1XU

Global color correction curves. In our first high-resolution
processing stage t1, we apply the predicted global RGB
curves for color correction. These curves are parameter-
ized as 3 piecewise linear curves with 32 control points and
are applied independently to each color channel, resulting
in a set of 2D coordinates, θ1 ∈ R32×2×3. The output color
for each channel is interpolated between adjacent control
points. We employ a ResNet-50-based network [11] to pre-
dict these parameters from [Clr,Blr,Mlr]. The curve ap-
plication, a per-pixel operation, allows for efficient compu-
tation at any resolution.

Local low-frequency shading map. Our second stage t2
multiplies the image with a low-frequency grayscale shad-
ing map, to model local tonal corrections. It is applied
to the output of the first stage. We constrain the shading
map to only model low-frequency change by first generat-
ing θ2 at a low resolution 64 × 64, then upsampling, and
passing a single convolution layer at 512 × 512 to cor-
rect upsampling artifacts. It is produced by a modified U-
Net [24] with large receptive field, given the low-resolution
buffers [Clr,Blr,Mlr], together with the output of the
color-correction stage at low-resolution t1(C

lr,Mlr; θ1).
At test time, we upsample the low-resolution shading map
to the original high-resolution and multiply it pointwise
with the color-corrected image to obtain our final harmo-
nized composite:

O = t1(C,M; θ1) · upsample(θ2). (1)

3.2. Dual-stream semi-supervised training

Our semi-supervised training strategy aims to alleviate
the generalization issues that plague many state-of-the-art
harmonization models, as shown in Figure 2. During a sin-
gle training stage, our approach equally samples two data
streams and optimizes a distinct objective for each of them.
The first stream uses input/output composite pairs similar
to previous work, except that we only use artist-created im-
age transformations instead of random augmentations. The
second is unsupervised. This allows us to use more realis-
tic images obtained by compositing foreground and back-
ground from unrelated images, for which no ground truth is
easily obtainable. For the supervised stream, the objective
combines ℓ1 loss and adversarial loss, while the unsuper-
vised stream solely utilizes adversarial loss.

Supervised training using retouched images. The first
stream is fully supervised. Unlike previous work, we use
images retouched by artists rather than mostly relying on
random augmentations. We refer to this dataset as Artist-
Retouched in the rest of the paper. Artists were allowed
to use common image editing operations such as global lu-
minosity or color adjustments, but also local editing tools
like brushes, e.g., to alter the shading. Specifially, we
collected n = 46173 before/after retouching image pairs
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{Ii,Oi}i=1,...,n, with the mask for one foreground object
Mi for each pair. From each triplet, we can create 2 input
composites for training: one with only the foreground re-
touched Mi ·Oi+(1−Mi) ·Ii, and the other with only the
background is retouched Mi · Ii+(1−Mi) ·Oi. Since our
harmonization model only alters the foreground, we use the
unedited image Ii, and the retouched image Oi as ground
truth targets for these input composites, respectively.

When sampling training data from this stream, we opti-
mize our model’s parameters to minimize the sum of an ℓ1
reconstruction error Lrec between the ground truth and our
model output, and an adversarial objective [8]

λLrec + (1− λ)LG, (2)
with λ balances the two losses. For our experiments, λ is
empirically set to 0.92. The generator, our parametric im-
age harmonization model, is trained to produce outputs that
cannot be distinguished from “real” images. We use a U-
Net discriminator [30] D to make per-pixel real vs. fake
classifications. Since our data formation model assumes the
background is always correct, our discriminator is trained to
predict the inverted foreground mask 1−M. That is when
shown “fake” images, i.e., the background pixels have label
1 and the foreground 0. For the “real” class, the target is all
an all-1s map. So the discriminator loss is given by:

LD =− EIreal
[log(D(Ireal))]

− EIfake
[log((1−M)−D(Ifake))],

(3)

The generator loss is:

LG = −EIfake
[log(D(Ifake))]. (4)

To further increase the training diversity, we randomly
augment the foreground brightness on the fly without re-
touching the color.

Unsupervised training with real composites. Our second
training stream is unsupervised. It uses randomly generated
composites that are representative of real-world use cases
but for which no ground truth is available. To properly re-
produce the appearance mismatch in real applications, we
create these composites as follows. We start from a dataset
of m images {Ii}i=1,...,m, each with a foreground object
mask Mi, from which we derive a foreground Fi = Mi · Ii
and a background Bi = (1 − Mi) · Ii. As preprocessing,
we dilate the foreground mask by 30 pixels and inpaint the
corresponding area in the background image using a pre-
trained inpainting network (we use LaMa [27]). Then dur-
ing, training we sample two images i and j and create a
composite by pasting the foreground j onto the inpainted
background of i:

Cij := Fj ·Mj + inpaint(Bi,Mi) · (1−Mj). (5)
The triplet [Cij , inpaint(Bi,Mi),Mj ] is passed as input to
our model. Figure 3b illustrates the process. Fj is trans-
lated and rotated from the original foreground so that it’s
maximally contained within Fi’s bounding box.

With no ground truth available when sampling compos-
ites from this data stream, we only optimize the adversarial
loss (1 − λ)LG, as defined in Eq. (4), where again the fake
samples Ifake are the outputs of our model.

The discriminator is trained with Eq. (3), where Ireal is
not a real composite, but is obtained by masking the fore-
ground subject Fi, inpainting the background Bi, and past-
ing the foreground back onto the same image, i.e.

Ireal := Fi ·Mi + inpaint(Bi,Mi) · (1−Mi). (6)

This is similar to how we produce a composite of two im-
ages i and j, expect that we only use one image, i. This
alteration of the “real” class is to prevent the discriminator
from using the inpainting boundary region as a strong cue
to discriminate between our model output and real images,
which leads to collapse in the GAN training.

GAN training is known to be unstable or cause image
artifacts [36], but because our parametric harmonization
model adjusts color curves and adds low-resolution shad-
ows, instead of predicting pixels directly, it has a strong reg-
ularizing effect, which prevents the GAN training to degen-
erate and cause spurious artifacts in the output image. We
use the same discriminator (and generator) in both streams.

4. Experiments
We compare our parametric image harmonization model

with state-of-the-art methods on established benchmarks
(§ 4.1), as well as a test subset of Artist-Retouched dataset.
Furthermore, we demonstrate our superior performance on
real-world harmonization tasks via a user study and qualita-
tive comparisons on real composites (§ 4.2). Ablation stud-
ies highlight the advantages of our semi-supervised training
approach and our parametric model’s components (§ 4.3).
More results can be found in the supplementary.
Evaluation metrics: For quantitative comparisons with
ground truth, we report performances by Mean Square Er-
ror (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) [35]. PSNR is measured in dB and cal-
culated as: PSNR = 10 log10

2552

MSE .
Implementation details: Our models are implemented in
PyTorch [20] and trained on an NVIDIA A100 GPU using
the Adam optimizer [15] for 80 epochs, with a batch size of
8 and an initial learning rate of 4×10−5, decayed by a factor
0.2 every 20 epochs. Our model has 93M parameters (23M
for stage t1, 70M for stage t2). Our model can run at an
interactive rate where inference at 512×512 resolution takes
on average (100 independent runs) 377 ms on an Apple M1
CPU, and 48.6 ms on an NVIDIA A100 GPU.

4.1. Quantitative comparisons on paired data

We compare our method with three recent meth-
ods, DovNet [4], Image Harmonization with Transformer
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Figure 5. Representative visual comparisons between state-of-the-art harmonization results. We compared our method with compos-
ite, DovNet [4], IHT [9], and Harmonizer [14], and ground truth on both a) Artist-Retouched synthetic dataset and b) RealHM real-world
composite dataset. Red boxes indicate the foreground subject in the composite image. The ground truth for RealHM benchmark [13] is
expert-annotated harmonization results. Our results show better visual agreements with the ground truth in terms of color harmonization
(rows 1,2 and 4) and shading correction (row 3).

(IHT) [14], and Harmonizer [14], using the pre-trained
model released publicly by the authors. We first evaluate
the synthetic iHarmony benchmark [4]. For fairness, our
method uses the same setup as theirs for this comparison.
In particular, we train our model exclusively on the same
training set as the baselines, using only our fully-supervised
stream, deactivating the adversarial loss, and only pass-
ing the composite C and foreground mask M as inputs.
We report metrics at both at 256 × 256 resolution and at
2048 × 2048 on the HAdobe5k high-resolution subset of
iHarmony. Like our parametric approach, Harmonizer can
process high-res images, but the other two methods are lim-
ited to 256×256 inputs. So, for high-res comparison, we bi-
linearly downsample the input to DovNet and IHT, process
the image, then bilinearly upsample the result before com-
puting the metrics. Despite its simplicity, our parametric
model consistently outperforms or matches the more com-
plex baselines. Results are summarized in Table 1.

The iHarmony dataset is dominated by unrealistic syn-
thetic image augmentations (71%), so we also evaluate our
results on more realistic retouches from human experts. The
two datasets we use for evaluation are a testing split of our
Artist-Retouched dataset, introduced in Section 3.2, con-
taining 1000 before/after pairs, and the RealHM [13] bench-
mark, containing 216 real-world high-resolution compos-

Size Method MSE ↓ PSNR ↑ SSIM ↑
×10−2

LPIPS ↓
×10−3

256

Composite 172.3 31.74 97.48 16.46
DovNet [4] 51.33 34.97 98.12 9.734
IHT [9] 30.46 37.33 98.77 7.347
Harmonizer [14] 24.24 38.25 99.09 7.349
Ours 20.57 38.30 98.91 7.270

2048∗

Composite 352.9 28.39 96.36 14.52
DovNet [4] 66.37 34.01 96.35 21.45
IHT [9] 47.34 35.12 96.53 20.65
Harmonizer [14] 23.30 38.33 98.77 7.148
Ours 20.31 38.29 98.82 7.123

Table 1. Quantitative comparison on iHarmony benchmark
[4] at both 256 × 256 and 2048 × 2048. (∗) We only calculate
the metrics on the Adobe5k dataset (a subset of iHarmony4) for
high-resolution images. Red, and Blue correspond to the first and
second best results. ↑ means higher the better, and ↓ means lower
the better.

ites with expert annotated harmonization results as ground
truth. We compared the performance of their pre-trained
models and ours trained with the full dual-stream pipeline
at 2048×2048 resolution. Table 2 shows our method consis-
tently outperforms the baselines, with around 30% relative
MSE improvements compared to Harmonizer [14] on both
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Dataset Method MSE ↓ PSNR ↑ SSIM ↑
×10−2

LPIPS ↓
×10−3

Artist-
Retouched

Composite 603.20 23.41 91.19 40.18
DovNet [4] 352.4 26.42 90.83 56.47
IHT [9] 369.3 26.36 90.87 55.80
Harmonizer [14] 239.1 29.42 93.84 33.75
Ours 170.1 29.79 94.56 29.18

RealHM

Composite 404.4 25.88 94.70 29.32
DovNet [4] 225.1 26.72 92.00 47.50
IHT [9] 264.0 26.48 92.46 48.48
Harmonizer [14] 231.4 27.40 94.86 27.62
Ours 153.3 28.34 95.51 23.09

Table 2. Quantitative Comparison on RealHM benchmark and
Artist-Retouched dataset. Our approach outperforms other meth-
ods in all four metrics.

datasets. As shown in Figure 5, our method produces more
realistic results, closer to the ground truth.

4.2. Evaluation on real composite images

Our semi-supervised training procedure allows us to
train on realistic composites, where foreground and back-
ground come from different sources. Just like it limits the
training potential of harmonization methods, using paired
data created from a single ground truth image for evaluation
is unsatisfying because it is not representative of real-world
use cases (Fig. 2). So, we demonstrate the practical effec-
tiveness of our method in a user study with real composites.
For qualitative evaluation, we also created a set of 40 high-
resolution real composite images with reference images.
User Study. Our user study follows a 2 alternatives
forced choice protocol [35], comparing our model with
DovNet [4], IHT [9], and Harmonizer [14]. We selected 60
real composites from the RealHM dataset [13], making sure
there were no duplicate foregrounds or backgrounds. Since
RealHM primarily focuses on portrait images, we also cre-
ated 40 non-portrait real composites using free-to-use im-
ages from Unsplash 2, giving us a total of 100 real compos-
ite images. Each of our results is compared with the unal-
tered input composite and the three baseline results, which
gives 100× 4 = 400 image pairs to compare in total, which
we submitted for evaluation to a pool of subjects on Ama-
zon Turk 3. Each participant was shown 50 image pairs and,
for each pair, they were asked to “select which image looks
more plausible”. To ensure the quality of the responses,
each subject was also shown 10 ‘sentinel’ testing pairs com-
posed of a real natural image and an extremely off-retouch
image (e.g., where the image is all green). This helped
us filter low-quality participants, such as users that always

2https://unsplash.com/
3https://www.mturk.com/

click ‘left’ to try and game the MTurk reward. After filter-
ing, we obtained pair-wise comparison results from 70 sub-
jects, contributing a total of 3500 comparisons. To analyze
these results, we follow previous work [3,4,14], and use the
Bradley-Terry (B-T) [1] model to derive the global ranking
of all methods. We normalize the B-T scores such that the
sum of the scores equals one across methods. Table 3 sum-
marizes the results. It shows that our method achieves the
highest B-T score, outperforming all the baselines, indicat-
ing our approach compares favorably in real-world image
harmonization.

Methods B-T Score ↑
Composite 0.1025

DovNet [4] 0.1342
IHT [9] 0.2350
Harmonizer [14] 0.2257

Ours 0.3025

Table 3. User Study Results. B-T scores of composite image,
DovNet [4], IHT [9], Harmonizer [14] are calculated on 100 real
composite images. Our approach ranks first, suggesting superior
real-world performance.

Real composites with captured reference. Figure 6 shows
two representative examples of real composite results (see
supplemental for more). For this qualitative comparison,
we created a dataset of 40 high-resolution real-composite
images with reference images by capturing a fixed set of
foreground objects against multiple backgrounds, as well as
a ‘background-only’ image. By segmenting the foreground
object from one photo and pasting onto the ‘background-
only’ image of another, we get an input composite for our
model. The captured photo of the same object in the same
background scene (placed at roughly the same location) acts
as qualitative reference. Compared to other approaches, our
results are visually closer to the captured reference.

4.3. Ablation studies

We assess the advantages of our semi-supervised dual-
stream training approach, contrasting it with traditional su-
pervised training, while also examining the effects of our
global RGB curve module and shading map. We conduct
the comparisons on RealHM [13] at 2048 × 2048, com-
paring our full method (dual-stream training + two-stage
model) with: 1. Supervised training only (Stream 1) +
global curves only; 2. Supervised training only (Stream 1)
+ two-stage parametric model; 3. Dual-stream training +
global curves module only. We report quantitative metrics
(MSE and PSNR), and the B-T score from a user study
(similar to § 4.2, but with 68 subjects). Table 4 and Figure 7
summarize our findings, revealing that our shading map and
dual-stream training strategy substantially enhance realism
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Background Composite IHT Harmonizer Ours Reference

Figure 6. Real composite harmonization results with captured
reference. The composite is obtained by pasting the foreground
subject, from a different photo (not shown) onto the background
(left). The reference (right) is obtained by physically placing the
foreground subject in the background scene and taking a photo.
We compare our method with IHT [9], and Harmonizer [14]. Our
results show better visual agreement with the captured reference
(best viewed by zooming on the digital preprint).

compared to the curve-only, fully-supervised model.

Stream
1

Stream
2

Global
Curves

Shading
Map MSE PSNR B-T score

✓ ✓ 291.4 26.32 0.201
✓ ✓ ✓ 268.3 26.60 0.206
✓ ✓ ✓ 223.8 27.23 0.217
✓ ✓ ✓ ✓ 153.3 28.34 0.252

Composite - - 0.124

Table 4. Ablation study results of training strategies and para-
metric model. We compare our semi-supervised training strategy
(Stream 1 + Stream 2) with supervised training (Stream 1) and
compare our two-stage model (Global Curves + Shading map) ver-
sus the model with only the global curve module. MSE and PSNR
are used for quantitative comparisons, and the B-T score is calcu-
lated from user study results.

As reported in Table 4, we observe that the dual-stream
training strategy outperforms supervised training (row 3 and
4 v.s. row 1 and 2) in terms of both quantitative met-
rics and B-T score, which demonstrates the benefits of
our proposed dual-training strategy in real-world applica-
tions. Inspecting the results in Figure 7, we observe that the
dual-training strategy (column 4 and 5) brings advantages
in color-harmonization when there is a strong foreground-
background color mismatch.

On the other hand, as shown in Table 4 row 3 v.s. row
4, our proposed two-stage parametric model outperforms
the global curve-only model by a large margin on RealHM
benchmark, reducing the MSE by 30%. Furthermore, as
shown in Figure 7, our full model (last column) includes
both color harmonization and local shading to the results,
achieving more plausible and harmonious results.

To better visualize the roles of our two-stage parametric
model, Figure 8 shows the intermediate results as well as

Composite Curves
Supervised

Curves + Shading map
Supervised

Curves
Dual-stream

Curves + Shading map
Dual-stream (full)

Figure 7. Visual comparison of ablations. Our full pipeline
(right) shows more color-harmonious results than supervised
training-only models (columns 2 and 3). Our local shading map
adjusts local shading and produces more natural outputs (compare
columns 4 and 5).

the parametric outputs (global curves and shading map) of
a representative example. The global curves module har-
monizes the global tone of the foreground sculpture and
matches it with the background scene, while the shading
map module refines local adjustments to harmonize the
sculpture’s shading with the lighting environment.

Composite Intermediate results 
(global curves)

Shading mapShading map Final results
(global curves + shading map)

Figure 8. Intermediate results and parametric outputs. RGB
curves harmonize the global color/tone (center), while our shading
map corrects the local shading in the harmonization output (right).

5. Conclusion
In this work, we propose a novel semi-supervised dual-

stream training strategy to bridge the training-testing do-
main gap and mitigate the generalization issues that limit
previous works for real-world image harmonization. Our
method leverages high-quality artist-created image pairs
and unpaired realistic composites to enable richer image
edits for real-world applications. Besides, we introduce a
new two-stage parametric model (Global RGB Curves and
shading map) to reap the most benefits from our training
strategy and, for the first time, enable local editing effects
with learned shading map. Our method outperforms other
state-of-the-art methods on established benchmarks and real
composites. Furthermore, our training strategy has the po-
tential to generalize to a wider range of image harmoniza-
tion operations (e.g., matching the noise, harmonizing the
boundaries, adding cast shadows). As a future work, we
would like to include more attributes in our models and fur-
ther improve the performance of real-world image harmo-
nization.
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