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Abstract

Existing methods mainly handle single weather types.
However, the connections of different weather conditions at
deep representation level are usually ignored. These con-
nections, if used properly, can generate complementary rep-
resentations for each other to make up insufficient train-
ing data, obtaining positive performance gains and better
generalization. In this paper, we focus on the very corre-
lated rain and snow to explore their connections at deep
representation level. Because sub-optimal connections may
cause negative effect, another issue is that if rain and snow
are handled in a multi-task learning way, how to find an
optimal connection strategy to simultaneously improve de-
raining and desnowing performance. To build desired con-
nection, we propose a smart knowledge assignment strat-
egy, called SmartAssign, to optimally assign the knowledge
learned from both tasks to a specific one. In order to fur-
ther enhance the accuracy of knowledge assignment, we
propose a novel knowledge contrast mechanism, so that
the knowledge assigned to different tasks preserves better
uniqueness. The inherited inductive biases usually limit
the modelling ability of CNNs, we introduce a novel trans-
former block to constitute the backbone of our network to ef-
fectively combine long-range context dependency and local
image details. Extensive experiments on seven benchmark
datasets verify that proposed SmartAssign explores effec-
tive connection between rain and snow, and improves the
performances of both deraining and desnowing apparently.
The implementation code will be available at https://
gitee.com/mindspore/models/tree/master/
research/cv/SmartAssign.

1. Introduction

Bad weather types, such as haze, rain, and snow in-
evitably degrade the visual quality of images, meanwhile
decrease the performances of other downstream computer

Input Restormer [58] Ours

Input HDCWNet [7] Ours

Figure 1. Given challenging rainy (with blurry rain streaks) and
snowy (with high bright snowflakes) images , the proposed method
effectively removes the artifacts of rain and snow simultaneously,
achieving better results than the state-of-the-art approaches. This
is attributed to the unique knowledge which captures accurate fea-
tures of rain/snow as well as the common knowledge boosting the
generalization of our model to real data.

vision tasks, e.g., autonomous driving [57]. Existing meth-
ods mainly focus on single weather types, e.g., deraining
[14,19,26,45,46,48–50,56,60], dehazing [5,10,31,41,54],
and desnowing [6, 7, 32, 49]. However, these methods usu-
ally ignore the connections among these weather types,
which, if used properly, may simultaneously improve the
performance of multiple image recovery tasks.

Some methods attempt to explore the connections among
different weather types by handling them with an uni-
fied architecture and one set of pre-trained weights, e.g.,
[8, 25, 27]. But they neglect the difference of multiple
weather types, the uniqueness belonging to single weather
types may harm the performance of other weather recovery
tasks. Therefore, the performances of such unified networks
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are usually lower than the ones for single weather types [8].
In this paper, we focus on the very similar rain and snow

and develop a novel Multi-Task Learning (MTL) strategy
to explore their connections at deep representation level,
meanwhile avoiding the uniqueness of one weather type
from damaging the performance of the other weather re-
covery task. Specifically, our goal is to accurately find the
representations (i.e., connections) which can be shared by
deraining and desnowing to simultaneously enhance both
their performance, and meanwhile determine the exclusive
representations (i.e., uniqueness) for one task to specially
promote its own performance as well as avoid such unique-
ness from damaging the other task. To facilitate the descrip-
tion of our method, we define the deep representation of a
single network channel as a knowledge atom. All the knowl-
edge atoms constitute the knowledge learned by networks.

Similar to conventional MTL method, we also use a
backbone encoder E(·) to learn the whole image-recovery
knowledge simultaneously from rainy and snowy images,
and two task-targeted decoders Ddr(·) and Dds(·) are fol-
lowed in parallel to remove rain and snow, separately. Con-
ventional MTL takes the whole knowledge as the input for
the subsequent decoders. Though such mechanism makes
the best of the connections between both tasks, the in-
fluences of the uniqueness of single tasks are neglected,
i.e., the uniqueness of rain may harm the performance of
desnowing, and vice versa. Instead, we propose a novel
Gated Knowledge Filtering Module (GKFM) to select op-
timal knowledge atoms for both tasks via a highly smart
strategy, so that the connections between both tasks are suf-
ficiently explored and the uniqueness of single tasks is prop-
erly used. To coordinate with GKFM, we design a Task-
targeted Knowledge FeedForward mechanism (TKFF) to let
every knowledge atom flow to its related tasks. Through our
GKFM and TKFF, we realize a smart knowledge assign-
ment, in which both tasks adaptively explore their connec-
tions and uniqueness via gradient backward-propagation.
Hence, we term our MTL mechanism as SmartAssign.

In order to further enhance the accuracy of knowledge
assignment, i.e., toward optimally exploring the connec-
tions and uniqueness of deraining and desnowing, we in-
troduce a novel knowledge contrast, making the same kind
of knowledge atoms more closer, and the ones belonging to
different kinds more discriminative under a similarity met-
ric. In this process, all the knowledge atoms are transformed
into a new low-dimension feature space by a Dimension Re-
duction Module (DRM) to avoid model collapse when op-
erating on the original high-dimension knowledge atoms.

Currently, CNNs are still the mainstream choice for
image recovery. However, the inherited inductive biases
limit their modelling capacity for long-range context depen-
dency. Though they can also obtain a large receptive field
by stacking a deep architecture, such indirect modelling is

indeed inferior to that of a transformer, which models both
short and long range dependency directly via self-attention.
In this paper, we adopt transformer blocks to constitute our
backbone encoder E(·). Usually, transformer needs suffi-
cient training pairs to ensure good performance. Hence,
our transformer block introduces a gated CNN branch to
complement limited training data via the inductive biases.
Moreover, the locality of CNN helps to recover degraded
image details and the gated operation is used to reduce re-
dundant features caused by the combination of CNN and
transformer. Figure 1 gives two examples of deraining and
desnowing. By contrast, our method obtains better image
recovery quality on both tasks than SOTA methods.

Our contributions are summarized in the following:

• We propose a novel knowledge assignment strategy,
i.e., SmartAssign, to excavate the connections and
uniqueness of rain and snow, so that their connections
are used to enhance the performance of both tasks and
the uniqueness is applied to boost corresponding task
and avoided from damaging the other task.

• We propose a novel knowledge contrast mechanism to
further boost the accuracy of knowledge assignment,
in which a dimension reduction module (DRM) is in-
troduced to stabilize the training of our model.

• We propose a novel transformer block to make the best
use of the superiority of self-attention and convolution,
in which gated operations are introduced to alleviate
the feature redundancy.

2. Related Work
Deraining. Early deraining methods usually utilize dic-
tionary learning [35] to factorize a rainy image, and the
rain-removed result is obtained by reconstructing the non-
rain dictionary atoms [4,9,17,21,30,33,47,49]. In contrast
to conventional methods, deep learning has shown better
deraining performance and running efficiency. Some deep
learning based methods learn a direct mapping from rainy
images to rain-free ones, e.g., SPANet [46], PIGWM [62],
TUM [8], DGUNet [37], AirNet [25] and KiT [24].

Because the patterns of rain streaks are simpler than
these of rain-free background, some other works use a net-
work to learn easier rainy residual, which is subtracted from
rainy image to obtain the deraining result. These meth-
ods include DDN [14], JORDER [55, 56], DID-MDN [60],
RESCAN [29], MSPFN [19], DRD-Net [11], MPRNet [59],
RCDNet [45], MAXIM [43], TransWeather [44], Uformer
[53], etc. Though residual based models can deal with rain
streaks well, they cannot remove haze-like effect caused
by the accumulation of tiny raindrops, which usually leads
to low image contrast. Some attempts focus on develop-
ing a physical model to formulate the formation of rainy
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Figure 2. Overview of our SmartAssign framework. SmartAssign first learns Fwk together from Tdr , Tds and Tre. Then GKFM and TKFF
are used to explore the connections Fck and uniqueness Frk/Fsk of Tdr and Tds to optimally assign knowledge atoms to related tasks.

images, and a network is trained under the driving of the
model to handle haze-like effect. These methods include
PYM+GAN [26] and ASV-joint [51].

Desnowing. Early works rely on guided filters [16] to re-
move snow in single images [12, 61]. Similar to derain-
ing, an over-complete dictionary can also be used to en-
hance snowy images [49]. Liu et al. present DesnowNet
to remove opaque snow particles, in which multiple scales
are utilized to model the diversity of snow [32]. In [6], a
snow model is proposed by allowing veiling effect and a
network called JSTASR is designed to classify and further
remove snow. Wavelet transform and contradictive channel
features are proposed in [7] to remove snow in a hierarchi-
cal way. In [8], two-stage knowledge distillation and multi-
contrastive regularization are developed to handle multiple
weather conditions, including snow.

Multi-task learning. Multi-task learning methods are
usually classified into two categories according to the pa-
rameter sharing strategies [39]. The first category is hard-
parameter sharing, in which a backbone encoder is shared
by all tasks and multiple task-targeted decoders branch out
[2, 13, 18, 20, 23, 27, 38]. The second category is soft-
parameter sharing, in which every task has its independent
network branch. Different branches share parameters via
a defined mechanism, e.g., Cross-stitch [36], Sluice [40],
and NDDR [15]. AdaShare is another different parameter
sharing method [42]. It uses a single network to execute
multi-task training, in which different tasks can selectively
choose layers to constitute their own execution paths.

3. Proposed Method
Rain and snow are two different weather types. Their

differences mainly lie in: 1) different transparency, leading
to higher pixel intensities of snowflakes than rain streaks;
2) different sizes, falling speed and directions, separately
forming rain streaks and snowflakes in images. Despite of

differences, they still have some commonalities: 1) Due to
strong reflection to light, they both possess higher intensi-
ties than neighboring regions [49]; 2) veiling effect could
appear in both of them [6, 51]; 3) their clear backgrounds
share the same distribution. Besides such apparent differ-
entiae and commonalities in RGB space, in this paper, we
focus on exploring their connections and uniqueness in deep
feature space, and design an effective MTL algorithm to en-
hance the performances of both deraining and desnowing.

Assume deraining and desnowing are denoted as Tdr and
Tds, we first learn the whole knowledge Fwk from both
rain and snow images in a MTL manner. In Fwk, some
knowledge atoms Fck can be shared by both tasks, i.e.,
their connections, some Frk/Fsk can only be exclusively
used by Tdr/Tds, i.e., their uniqueness. Our core idea is
to find an optimal strategy to assign Fwk to Tdr and Tds
(SmartAssign), so that their performances can be enhanced
simultaneously. In order to further improve the accuracy of
knowledge assignment, we introduce another auxiliary task
Tre to recognize rainy and snowy scenes to make knowl-
edge atoms in Fwk more discriminative. Moreover, Tre
also helps network extract high-level semantic knowledge
of rain and snow, facilitating their removing from images.

3.1. SmartAssign

Figure 2 illustrates an overview of SmartAssign. We first
learn Fwk via a backbone encoder E(·) as follows:

Fwk = E(I), (1)

where I is rainy/snowy image. During training, rainy and
snowy datasets are combined together to constitute our
training dataset. In order to determine the shared and ex-
clusive knowledge atoms, we adopt three gated knowledge
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Figure 3. The t-SNE distributions of Frk, Fck and Fsk. (a) A
rainy image. (b) Their t-SNE distributions for (a). (c) A snowy
image. (d) Their t-SNE distributions for (c). The results illus-
trate that Frk, Fck and Fsk possess different distributions for both
rainy and snowy images. Hence, they respectively contain repre-
sentative image contents.

filtering module (GKFM) to filer Fwk as follows:

Frk = GKFMrk(Fwk),

Fck = GKFMck(Fwk),

Fsk = GKFMsk(Fwk),

(2)

where Frk is the unique knowledge for Tdr, Fsk is for Tds,
and Fck is the shared knowledge for both of them. Fig-
ure 3 shows their t-SNE [34] distributions. We observe that
they represent different distributions, and thus stand for dif-
ferent meanings. The latter experiments will further illus-
trate their effectiveness on Tdr and Tds. After obtaining the
connections and uniqueness, we adopt a novel and effec-
tive task-targeted knowledge feedforward (TKFF) mecha-
nism to assign Frk, Fck and Fsk to related tasks. Note that
our TKFF is not a network architecture, but a novel task-
guided knowledge assignment strategy. Different from con-
ventional MTL taking the whole knowledge Fwk as the in-
put for the following decoders, our TKFF utilizes Fwk more
elaborately and accurately, letting the common knowledge
Fck enhance the performance of both tasks, and the unique
knowledge Frk/Fsk only boosts corresponding tasks.

Figure 2 visually shows how our TKFF assigns knowl-
edge to different tasks. Frk flows to the deraining head
Ddr(·), and Fsk is assigned to the desnowing head Dds(·).
The shared Fck flows to both Ddr(·) and Dds(·) to en-
hance both their performance. Because the connection Fck

is helpless for the auxiliary Tre, the recognition head Dre(·)
only takes the unique knowledge Frk and Fsk as inputs.

Such process is formulated as follows:

Rdr = Ddr(Frk,Fck),

Rre = Dre(Frk,Fsk),

Rds = Dds(Fsk,Fck),

(3)

where Rdr, Rre and Rds are the results of deraining Tdr,
recognition Tre and desnowing Tds, respectively.

We would like to point out that our SmartAssign enables
different tasks to adaptively control the closing/opening of
the gates in GKFM for all knowledge atoms via the gradient
backpropagation, so that an optimal knowledge assignment
strategy will be learned to obtain the desired connections
and uniqueness of different tasks. That is the reason that
our method is termed as SmartAssign.

3.2. Network Structure

As shown in Figure 2, our network consists of three main
parts: the shared backbone encoder E(·), GKFM and the
decoders Ddr(·), Dre(·) and Dds(·) for the three tasks. We
give their detailed architecture in the following.
Encoder. We first use a convolutional layer to project a
RGB image I into feature space:

Fp = Conv(I). (4)

Because rain/snow usually possesses salient characteristics
in the shallow feature space, we adopt a Spatial Attention
Module (SAM) to highlight such saliencies, facilitating the
discrimination of rain/snow from background:

Fsam = ϕ(Conv3(Fp))⊙ Fp, (5)

where ϕ(·) is the Sigmoid activation function, ⊙ is point-
wise multiplication, the subscript number 3 means 3 convo-
lutional layers. The locality bias usually restricts the mod-
elling capacity of CNN architectures for long-range context
dependencies. Instead of only using CNN architecture, we
introduce a transformer structure to learn the whole features
Fwk, in which a novel Gated Long and Short range feature
Fusion Vision Transformer (GLSF-ViT) block is designed
to combine the merits of local convolutional and global self-
attention mechanism. Fwk can be obtained as follows:

Fwk = GLSF-ViTN (Fsam), (6)

where N means there are N GLSF-ViT block.
GLSF-ViT. As shown in Figure 4, our GLSF-ViT is com-
prised of two branches. In the upper branch, a Multi-head
Self-Attention module (MSA) and a MLP module are con-
catenated in cascade to model long-range dependency of a
patch-embedded feature Fpe, which is formulated as:

Fmsa = MSA(LN(Fpe)) + Fpe,

Fmlp = MLP(LN(Fmsa)) + Fmsa,
(7)
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where LN(·) is layer normalization for stable training and
fast convergence. Self-attention is the core operation in
MSA. If Queries (Q), Keys (K) and Values (V) have been
derived from Fpe, the self-attention is calculated as:

Attn(Q,K,V) = softmax(
QKT

√
d

)V, (8)

where d is embedding dimension. In the lower branch, a
CNN block is used to extract more image details, in which
SiLU is activated as the gate for each feature channel to
adaptively select useful feature maps, meanwhile avoiding
feature redundancy by rejecting uesless ones, the details are:

Fcv = Conv(LN(Fpe)),

Flocal =Fcv ⊙Gate(FC2(Pool(Fcv))),
(9)

where Gate(·) is the gate operation, FC(·) is fully-
connected layer, Pool(·) is average pooling. The output of
our GLSF-ViT is:

Fglsf = Fmlp + Flocal. (10)

GKFM. The modules GKFMrk(·), GKFMck(·) and
GKFMsk(·) taking Fwk as input possess the same archi-
tecture. The core design is a knowledge filtering mechanism
with an adaptive gating operation, in which the gating oper-
ation is implemented with SiLU activation layer. Besides,
two convolutional layers are followed to refine the filtered
knowledge. The details are formulated as follows:

Fgkfm = Conv2(Fwk ⊙Gate(FC2(Pool(Fwk)))),
(11)

Decoders. The structures for decoders Ddr(·), Dre(·) and
Dds(·) are as follows:

Rdr = Conv3(Frk,Fck),

Rre = FC(Pool(Conv3(Frk,Fsk))),

Rds = Conv3(Fsk,Fck).

(12)

3.3. Loss Functions

Image recovery loss. Tdr/Tds aim to recover the degraded
image I by rain/snow. They possess the same image re-
covery losses. In our work, we use Charbonnier loss [3] in
the RGB image domain, the gradient loss and sparsity loss
in the gradient domain to constrain the training of Tdr/Tds.
Assume R is the recovery result of I, and G is correspond-
ing ground truth, these losses are formulated as follows:

Lchar =
√
∥R−G∥2 + ϵ2, (13)

where ϵ is set as 10−3. Because image details are more
salient in the gradient domain, we add gradient loss as:

Lgrad = ∥ ▽R−▽G∥2, (14)

Figure 4. Architecture of our GLSF-ViT. In the upper branch, self-
attention is adopted to capture long range dependency. In the lower
branch, a CNN module is introduced to recover more image de-
tails. The gating operation is to avoid information redundancy.

where ▽ denotes the combination of the horizontal and
vertical gradient operators. Sparsity is an intrinsic prop-
erty of images, and has been verified to be effective in im-
age restoration [50]. We thus use the unsupervised quasi-
sparsity loss to keep intact object textures:

Lsparsity =
∑
m,n

|ωm,n ∗R|+ |ωm,n ∗ (I−R)|, (15)

where ωm,n is the nth 3× 3 filter centered at the mth pixel,
and ∗ is the convolution operation.
Recognition loss. The loss for the recognition task Tre is:

Lrecog = ∥Rre − L∥2, (16)

where L is the label indicating rainy or snowy scenes, and
Rre is the prediction result for Tre.
Contrastive loss. The knowledge Frk, Fck, and Fsk con-
tain representative contents and play different roles, they
should be exclusive from each other. We thus design a novel
knowledge contrast mechanism to reach this goal. They are
first transformed into three low-dimension C × F feature
matrices Mrk, Mck and Msk via a dimension reduction
module (DRM), respectively, in which each row is a feature
vector (the details are in supplement). The contrastive loss
is then computed:

Z =
1

3
(MrkM

⊤
rk/(MrkM

⊤
ck +MrkM

⊤
sk)

+MckM
⊤
ck/(MckM

⊤
rk +MckM

⊤
sk)

+MskM
⊤
sk/(MskM

⊤
rk +MskM

⊤
ck)),

(17)

Lcontra =
1

C2

C∑
i=1

C∑
j=1

Z(i, j), (18)

where / denotes element-wise division.
At last, our overall loss function is:

L = Lchar + Lgrad + Lrecog + λ1Lsparsity + λ2Lcontra,
(19)

where λ1 and λ2 are balance parameters.
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Datasets MAXIM [43] DGUNet [37] MPRNet [59] ASV-joint [51] Restormer [58] TUM [8] Ours
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Rain-streak 33.01/0.924 32.47/0.919 32.11/0.917 31.08/0.905 32.91/0.923 30.72/0.892 33.16/0.931
Rain1200 30.78/0.897 31.54/0.896 32.91/0.916 31.77/0.893 31.48/0.901 29.57/0.858 33.07/0.927
Real-rain 33.53/0.958 35.83/0.948 36.04/0.946 35.67/0.927 35.34/0.946 22.75/0.855 36.55/0.962

Table 1. PSNR and SSIM comparison with SOTA methods. The best and second best numbers are in bold and underlined, respectively.

Input
MAXIM

[43]
DGUNet

[37]
MPRNet

[59]
ASV-joint

[51]
Restormer

[58]
TUM

[8] Ours GT

Figure 5. Qualitative comparisons with SOTA methods on a synthetic rainy images. (Zooming in for better view.)

Methods Snow100K-L SRRS CSD
PSNR/SSIM PSNR/SSIM PSNR/SSIM

JSTASR [6] 20.16/0.657 25.82/0.892 27.52/0.873
HDCW [7] 20.57/0.676 27.78/0.923 29.06/0.914
TUM [8] 25.66/0.851 28.03/0.926 30.10/0.933

Ours 29.45/0.923 30.53/0.931 32.50/0.957

Table 2. PSNR and SSIM comparison with SOTA methods on
three snowy testing datasets. The best and second best numbers
are in bold and underlined, respectively.

4. Experiments
4.1. Datasets and Implementation Details

Datasets. For deraining, we adopt “Rain-streak” [28],
“Rain1200” [60], and “Real-Rain” [46] datasets. For
desnowing, we use “Snow100K” [32], “SRRS” [6] and
“CSD” [7] datasets. “Rain-streak”1 contains 20800 pairs,
we randomly select 2000 samples for testing, and the re-
maining is for training.

To make fair comparisons, we let all models be trained
on the same datasets. During deraining comparisons, only
“CSD” is used to match different rainy datasets to train our
model. During desnowing comparison, only “rain1200”
is adopted to match different snowy datasets. Under such
strategy, three different performances can be obtained on
“rain1200” when matching different snowy datasets. How-
ever, we observe that these performances are very close with
each other, i.e., ±0.07dB for PSNR and ±0.01 for SSIM.
Similar phenomenon happens on “CSD” when matching
different rainy datasets, ±0.1dB for PSNR and ±0.05 for
SSIM. Hence, in this paper, the reported performances

1Download from https : / / github . com / lsy17096535 /
Single-Image-Deraining

on these two datasets are simultaneously produced by the
model trained by using these two datasets.
Training details. We implement our model using the
MindSpore Lite tool [1]. During training, all the patches
are randomly cropped from the original image pairs with a
fixed size of 256 × 256, the batch size is 4. Adam [22] is
selected as the optimizer. The initial learning rate is 0.0004,
and decreases by multiplying 0.5 when the loss stops reduc-
ing. λ1 and λ2 are set to 0.01, 0.001, respectively.

To evaluate our method, recent SOTA deraining meth-
ods DGUNet [37], MAXIM [43], Restormer [58], TUM [8],
MPRNet [59], ASV-joint [51] are selected to make compar-
isons. Desnowing works are relatively fewer and the codes
of some works are not available so far. We select the most
recent JSTASR [6], HDCWNet [7] and TUM [8] to make
comparisons. PSNR and SSIM [52] are selected as the ob-
jective metrics to assess different works quantitatively.

4.2. Comparison with State-of-the-Arts

Quantitative evaluation on synthetic data. Table 1 re-
ports PSNR and SSIM values of different deraining meth-
ods. We observe that MAXIM, DGUNet, MPRNet and
Restormer comprehensively obtain good quantitative val-
ues. Especially for MAXIM and MPRNet, they obtain more
second best metrics. Restormer is relatively stable, i.e., its
performances are consistently high on all datasets, show-
ing good generalization. By contrast, our method obtains
the best results, which is attributed to exploring the connec-
tions and uniqueness of rain and snow. Table 2 shows the
performance of different methods on desnowing datasets.
Our method shows highly superior performance on snow
removal, obtaining 4.0 dB higher PSNR on the challenging
Snow100K-L dataset than the second best TUM.
Qualitative evaluation on synthetic data. Figure 5
shows the deraining results of different methods on a syn-
thetic images. We observe that MAXIM and our method
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Input JSTASR [6] HDCWNet [7] TUM [8] Ours GT

Figure 6. Qualitative comparisons with SOTA methods on a synthetic snow image. (Zooming in for better view.)

Input MAXIM [43] DGUNet [37] MPRNet [59] ASV-joint [51] Restormer [58] TUM [8] Ours

Figure 7. Qualitative comparisons with SOTA methods on two real rainy images. (Zooming in for better view.)

Input
JSTASR

[6]
HDCWNet

[7]
TUM

[8] Ours

Figure 8. Qualitative comparisons with SOTA methods on two
real-world snow images.

obtain the better performance in removing fine rainy traces.
Other methods only remove apparent rain streaks, the fine
rainy traces still remain. In Figure 6, we show the desnow-
ing results of different methods on a synthetic snowy im-
ages. We observe that there are still apparent snowflakes
existing in the results of JSTASR and HDCWNet. TUM
obtains good visual quality. By comparison, ours removes
more snowflakes and recovers clearer image details.

Qualitative evaluation on real data. Figure 7 shows the
deraining results on real-world rainy images. MAXIM,
DGUNet, Restormer and TUM produce good visual qual-
ity on the first image, removing majority of rain streaks and
recovering more image details. However, SOTA methods
cannot handle the second challenging one well. By contrast,
our method removes more rain streaks and recovers better
visual quality. Figure 8 visually shows desnowing results.
Our method removes most snowflakes, especially for some
fine-grained snow spots. We explore the connections of rain

and snow, and adopt a novel knowledge filtering mechanism
to avoid uniqueness of one task from damaging the other
one. All these designs work cooperatively and generate su-
perior performances on both Tdr and Tds.

4.3. Ablation Studies

Effectiveness of key designs. There are many key designs
in our SmartAssign. Due to space limitation, we selec-
tively study the following aspects by ablating experiments
and only report their performances on the representative
“Rain1200” and “CSD” datasets. 1) V1: ablating knowl-
edge contrast; 2) V2: ablating GKFM and TKFF, i.e., the
conventional MTL mechanism; 3) V3: ablating gated CNN
module in GLSF-ViT; 4) V4: single task training, Vr

4 for
Tdr, Vs

4 for Tds; 5) V5: ablating auxilary task Tre ; 6) V6:
our SmartAssign. The quantitative and visual results are
given in Table 3 and Figure 9. We observe that the perfor-
mance decreases after respectively ablating these designs.
V2 obtains lowest values, illustrating the effectiveness of
exploring connections and uniqueness. Our SmartAssign
obtains the best results via combining different designs.

Effectiveness of unique and common knowledge. To
study the effect of Frk, Fck and Fsk, we freeze the pre-
trained parameters before TKFF, and 1) only use Fck to
train Ddr(·) and Dds(·), termed as K1; 2) only use Frk and
Fsk to train Ddr(·) and Dds(·), respectively, termed as K2.
Table 4 shows that the performance decreases after ablating
unique/common knowledge, respectively. But K2 is bet-
ter than K1 consistently on rainy/snowy dataset, illustrating
that unique knowledge plays more important role. Figure 10
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Input V1 V2 V3 Vr
4 /Vs

4 V5 V6

Figure 9. Ablating components leads to performance decrease. Especially, GKFM and TKFF (V2), and the gated CNN module in GLSF-
ViT (V3) play key roles in our method.

Datasets V1 V2 V3 Vr
4 /Vs

4 V5 V6

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Rain1200 32.34/0.906 32.11/0.894 32.46/0.916 32.19/0.919 33.01/0.921 33.07/0.927
CSD 31.73/0.941 31.93/0.933 32.03/0.946 32.20/0.944 32.41/0.953 32.50/0.957

Table 3. PSNR and SSIM comparison of different variants of our model. Note that Vr
4 /Vs

4 only handle rain/snow weather. Their decreased
performance illustrates that they play positive roles as a part of our SmartAssign.

Datasets K1 K2 Ours
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Rain1200 30.11/0.904 31.43/0.913 33.07/0.927
CSD 29.86/0.915 31.65/0.932 32.50/0.957

Table 4. The quantitative values consistently decrease after ab-
lating the unique knowledge Frk/Fsk and the shared knowledge
Fck, illustrating that they all functions positively during deraining
and desnowing.

Input K1 K2 Ours

Figure 10. Ablating Frk, Fck and Fsk decreases performance,
showing their positive contributions to our model.

shows similar results, K2 removes more rain/snow than K1.

Limitations. Although SmartAssign achieves better per-
formance than SOTA methods, there are still some open
problems which are not completely solved by our model.
The limitation of our SmartAssign mainly lies in desnow-
ing task. Some fine snow traces may remain in the final
results for some images with complex snowy patterns. An

example is the second image in Figure 8. This can be un-
derstood as the light snowy traces with blurry patterns are
difficult to be simulated by synthetic training pairs, which is
a limitation of all existing methods including SmartAssign.
In the future, we will focus on this limitation and attempt to
solve it by introducing some effective priors.

5. Conclusion
In this paper, we proposed a novel multi-task learn-

ing strategy, SmartAssign, to develop the connections
and uniqueness of rainy and snowy images, in which a
novel knowledge assignment approach is proposed to adap-
tively determine the shared and exclusively-used knowledge
atoms for deraining and desnowing. To better discriminate
knowledge atoms, we proposed a novel knowledge contrast
mechanism to enhance the similarity of knowledge atoms
belonging to the same kind and highlight the discrimination
of knowledge atoms belong to different kinds. Moreover,
an effective transformer block was proposed to combine the
long- and short-range modelling capacities of self-attention
and convolution, respectively. Extensive experiments on six
benchmark datasets have been conducted, which illustrate
that our proposed SmartAssign is highly effective to both
deraining and desnowing.
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