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Abstract

Face super-resolution (FSR) aims to reconstruct high-
resolution (HR) face images from the low-resolution (LR)
ones. With the advent of deep learning, the FSR technique
has achieved significant breakthroughs. However, existing
FSR methods either have a fixed receptive field or fail to
maintain facial structure, limiting the FSR performance. To
circumvent this problem, Fourier transform is introduced,
which can capture global facial structure information and
achieve image-size receptive field. Relying on the Fourier
transform, we devise a spatial-frequency mutual network
(SFMNet) for FSR, which is the first FSR method to ex-
plore the correlations between spatial and frequency do-
mains as far as we know. To be specific, our SFMNet is
a two-branch network equipped with a spatial branch and
a frequency branch. Benefiting from the property of Fourier
transform, the frequency branch can achieve image-size re-
ceptive field and capture global dependency while the spa-
tial branch can extract local dependency. Considering that
these dependencies are complementary and both favorable
for FSR, we further develop a frequency-spatial interac-
tion block (FSIB) which mutually amalgamates the com-
plementary spatial and frequency information to enhance
the capability of the model. Quantitative and qualitative
experimental results show that the proposed method out-
performs state-of-the-art FSR methods in recovering face
images. The implementation and model will be released at
https://github.com/wcy-cs/SFMNet.

1. Introduction

Face super-resolution (FSR), also known as face halluci-
nation, is a technology which can transform low-resolution
(LR) face images into the corresponding high-resolution
(HR) ones. Limited by low-cost cameras and imaging con-
ditions, the obtained face images are always low-quality,
resulting in a poor visual effect and deteriorating the down-
stream tasks, such as face recognition, face attribute analy-
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Figure 1. Decomposition and reconstruction of face image in the
frequency domain. (a) denote face images; (b) are their amplitude
spectrum; (c) show their phase spectrum; (d) present the recon-
structed images with amplitude information only; (e) are the re-
constructed images with phase information only.

sis, face editing, etc. Therefore, FSR has become an emerg-
ing scientific tool and has gained more of the spotlight in the
computer vision and image processing communities [20].

FSR is an ill-posed challenging problem. In contrast to
general image super-resolution, FSR only focuses on the
face images and is tasked with recovering pivotal facial
structures. The first FSR method proposed by Baker and
Kanade [1] sets off the upsurge of traditional FSR methods.
These traditional methods mainly resort to PCA [6], convex
optimization [23], Bayesian approach [42] and manifold
learning [19] to improve the quality of face images. Nev-
ertheless, they are still incompetent in recovering plausible
face images due to their limited representation abilities. In
recent years, FSR has made a dramatic leap, benefiting from
the advent of deep learning [20]. Researchers develop var-
ious network frameworks to learn the transformation from
LR face images to the corresponding HR ones, including
single-task learning frameworks [5, 8, 17], multi-task learn-
ing frameworks [4,9,32,51], etc., which has greatly pushed
forward the frontier of FSR research.

Although existing FSR methods improve FSR perfor-
mance, they still have limitations to be tackled. Face im-
age has global facial structure which plays an important
role in transforming LR face images into the correspond-
ing HR ones. However, the actual receptive field of the
convolutional neural network is limited due to the vanish-
ing gradient problem, failing to model global dependency.
To achieve large receptive field, transformer has been ap-
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plied in computer vision tasks [37, 54]. The self-attention
mechanism among every patch can model long-range de-
pendency, but it usually has a high demand for both training
data and computation resource. In addition, the partition
strategy may also destruct the structure of the facial image.
Therefore, an effective FSR method that can achieve image-
size receptive field and maintain the facial structure is an ur-
gent demand. To meet this need, frequency information is
introduced. It is well-accepted that features (for each pixel
or position) in frequency domain can achieve image-size re-
ceptive field and naturally have the ascendency of captur-
ing global dependency [33], and this can well complement
the local facial features extracted in the spatial domain. To
obtain frequency information, Fourier transform is adopted
to decompose the image into the amplitude component and
the phase component, which can well characterize the facial
structure information. As shown in Fig. 1, the image recon-
structed with the phase component reveals clear facial struc-
tural information which is lost in the LR face images. Natu-
rally, the phase component of the Fourier transform contains
key missing information that is critical for FSR task.

Based on the above analysis, we propose a novel spatial-
frequency mutual network (SFMNet) for FSR, which ex-
plores the incorporation between spatial and frequency do-
mains. The SFMNet is a two-branch network, including
a frequency branch and a spatial branch. The frequency
branch is tasked with capturing global facial structure by
the Fourier transform, while the spatial branch is tailored
for extracting local facial features. The global information
in frequency domain and the local information in spatial do-
main are complementary, and both of them can enhance the
representation ability of the model. In light of this, we care-
fully design a frequency-spatial interaction block (FSIB) to
mutually fuse frequency and spatial information to boost
FSR performance. Based on the SFMNet, we also develop
a GAN-based model with a spatial discriminator and a fre-
quency discriminator to guide the learning of the model in
both spatial and frequency domains, which can further force
the SFMNet to produce more high-frequency information.

Overall, the contributions of our work are three-fold:
i) We develop a spatial-frequency mutual network for

face super-resolution, to the best of our knowledge, this is
the first method that explores the potential of both spatial
and frequency information for face super-resolution.

ii) We carefully design a frequency-spatial interaction
block to mutually fuse global frequency information and
local spatial information. Thanks to its powerful modeling
ability, the complementary information contained in spatial
and frequency domains can be fully explored and utilized.

iii) We conduct experiments to verify the superiority of
the proposed method. Experimental results on two widely
used benchmark datasets (i.e, CelebA [30] and Helen [25])
demonstrate that our method achieves the best performance

in terms of visual results and quantitative metrics.

2. Related Work

2.1. Face Super-resolution

Alongside the rise of deep learning technique, re-
searchers develop various convolutional neural network
(CNN) based frameworks for improving face image quality.
Zhou et al. [57] develop the first CNN-based FSR method,
which greatly improves the FSR performance. To cap-
ture the inter-dependency among facial parts, the pioneering
work of [5] is developed by exploiting reinforcement learn-
ing. Instead of training a network in end-to-end manner, the
work of [21] first coarsely recovers an intermediate result
and then compensates for the missing details of the interme-
diate result. Recently, numerous FSR methods have shown
competence in developing effective attention mechanism.
For example, SPARNet [8] develops a face attention unit
to bootstrap facial structure information while SISN [31]
designs an inter-feature split attention to capture facial de-
tails. In contrast to the above FSR methods that recover
face images in image domain, the works of [16, 17] trans-
form the face images into the wavelet coefficient by wavelet
transform to capture rich contextual information. Inspired
by the generative ability of generative adversarial network
(GAN), Yu et al. [52] build URDGN based on GAN. Re-
lying on GAN, another GAN-based FSR method is intro-
duced in [47] which is a collaborative suppression and re-
plenishment framework. However, the learning of GAN-
based model is difficult, limiting its effectiveness. To reduce
the learning difficulty of GAN, PCA-SRGAN [11] resorts
on Principal Component Analysis decomposition while SP-
GAN [55] constructs supervised pixel-wise loss.

Since human face is a highly structured object, many
FSR methods leverage facial prior to boost the FSR per-
formance. Super-FAN [4] designs a heatmap loss which
constrains the distance between heatmaps extracted from
HR and super-resolved face images. However, the con-
straint of heatmap loss is not applied in the inference, and
the heatmap information cannot be well exploited. To ad-
dress this problem, Yu et al. [51] estimate facial prior from
LR and then incorporate the prior to assist the FSR. Con-
sidering that estimating prior from degraded LR face im-
ages is challenging, FSRNet [9] suggests to enhance LR
face images first and then estimate prior from the enhanced
result and utilize the estimated prior. Later on, DIC [32]
performs FSR and prior estimation iteratively and incorpo-
rates the prior to boost FSR to promote the two tasks each
other. However, the accuracy of prior estimation is difficult
to guarantee, limiting the overall FSR result.
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2.2. Fourier Transform

The Fourier transform is a widely used technique to an-
alyze the frequency content in signals. It can be viewed as
a global statistical information of signals, and thus can cap-
ture long-range dependency. Depend on the characteristic
of Fourier transform, Fourier transform is used to perform
computer vision tasks. Yang et al. [49] utilize Fourier trans-
form to assist domain adaption for boosting cross domain
semantic segmentation. Later on, the work of [46] performs
domain generation from Fourier-based perspective. A com-
putationally efficient image classification network equipped
with Fourier transform is introduced in [38]. In addition, to
improve perceptual quality and recover hard high-frequency
details, the works of [12,22] devise Fourier-based loss func-
tions. In low-level tasks, Mao et al. [33] develop a Res FFT-
Conv block to capture both long- and short- range depen-
dencies for enhancing the details while phase-aware Fourier
convolutions are built to improve the light of the images
in [59]. Zhou et al. [58] propose to recover phase and am-
plitude seperatively with pan as guidance. Yu et al. [50]
build amplitude guided phase module to perform dehazing
while Huang et al. [18] first recover amplitude and then re-
cover phase to improve image lightness.

3. Proposed Method
3.1. Revisiting Fourier Transform

Fourier transform is an important technique in signal
processing, which is also a key component in our method.
In this section, we first revisit the Fourier transform before
introducing our method. Given a single channel image x,
the Fourier transform of the image x can be expressed as:

F(x)(u, v) =
1

√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−2jπ( h
H

u+ w
W

v), (1)

where H and W are the height and weight of the image x, j
represents the imaginary unit, u and v are the horizontal and
vertical coordinates, and F denotes the Fourier transform.
From Eq. (1), we learn that each “pixel” in F(x) is the
aggregation of all the pixels in the image x.

In frequency domain, the two significant components of
x, i.e., the amplitude component A(x) and the phase com-
ponent P(x), can be obtained by

A(x)(u, v) =
√
R2(x)(u, v) + I2(x)(u, v), (2)

P(x)(u, v) = arctan(
I(x)(u, v)

R(x)(u, v)
), (3)

where R(x) and I(x) correspond to the real and imagi-
nary parts of F(x). Benefiting from the Fourier transform,
these two components can capture the image-size receptive
field easily, which can just meet our need for efficient long-
distance dependency modeling. In addition, these two com-
ponents capture different characteristics of face image. In

Fig. 1, we show the original face image, corresponding
amplitude and phase spectrum, and images reconstructed
by only amplitude component and phase component, re-
spectively. Obviously, the face images reconstructed by
the phase component have clear facial structure information
that is missing in LR face images. Thus, the phase compo-
nent can maintain facial structure well and can be just used
as a kind of facial prior to boost the FSR performance. In
light of these two points, we develop our spatial-frequency
mutual network (SFMNet) for FSR, which can not only cap-
ture long-distance dependency but also exploits local de-
pendency. Profited by the characteristic of the network, our
method can achieve state-of-the-art FSR performance.

3.2. SFMNet

Considering that both long- and short-range dependen-
cies can boost FSR performance and the Fourier transform
can easily obtain an image-size receptive field, we develop
a spatial-frequency mutual network (SFMNet) which is the
first FSR method to explore the incorporation between the
spatial and frequency domains. The proposed SFMNet is
illustrated in Fig. 2, which consists of a frequency branch
and a spatial branch. Equipped with Fourier transform,
the frequency branch is tailored for capturing global de-
pendency assisted by image-size receptive field. The spa-
tial branch captures local dependency and incorporates the
global frequency information to reconstruct the final super-
resolution (SR) result. Since global frequency information
and local spatial information are complementary and dif-
ferent, we carefully design a frequency-spatial interaction
block (FSIB) which can generate adaptive attention maps
to incorporate these complementary information mutually
and effectively. For PSNR-oriented model, both pixel-level
and frequency-level loss functions are adopted to guide the
learning of the network. Moreover, to improve visual qual-
ity, we introduce adversarial loss in both the spatial and fre-
quency domains based on a spatial discriminator and a fre-
quency discriminator. Now we elaborate on our SFMNet.

3.2.1 Overview

In this subsection, we introduce the pipeline in detail. Given
the LR face image ILR, we feed it into two convolutional
layers from two branches to extract features, generating
F 0

Fre and F 0
Spa corresponding to the frequency and spatial

branches. Then, the extracted features are fed into L spatial-
frequency mutual learning modules (SFMLM) to extract
multi-scale features,

F i
Spa,F

i
Fre = f i

SFMLM(F i−1
Spa ,F i−1

Fre ), (4)

where f i
SFMLM is the function of the i-th SFMLM. After L

SFMLMs, FL
Spa and FL

Fre are fed into reconstruction layers
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Figure 2. Overview of the proposed SFMNet in which FFT and IFFT are Fourier transform and inverse Fourier transform. SFMNet consists
of a frequency branch (the top branch) and a spatial branch (the bottom branch). The former aims at capturing global facial structure and
achieving image-size receptive field with Fourier transform, while the latter focuses on extracting local facial features.

(comprised of a convolutional layer) in two branches, re-
covering face images ISR

Fre and ISR
Spa as shown in Fig. 2.

To urge the model to perform FSR well, the model is su-
pervised by pixel-level and frequency-level loss functions,

LPix =
∥∥ISR

Spa − IHR
∥∥
1
+
∥∥ISR

Fre − IHR
∥∥
1
, (5)

LFre =
∥∥∥A(ISR

Fre)−A(IHR)
∥∥∥
1
+

∥∥∥P(ISR
Fre)− P(IHR)

∥∥∥
1
, (6)

where LPix and LFre correspond to loss at the pixel-level and
frequency-level, A(·) and P(·) are operations to extract am-
plitude and phase. The pixel-level loss guides the SFMNet
to reconstruct high-fidelity face images, and the frequency-
level loss helps it to learn frequency information. In ad-
dition, benefiting from the powerful generative ability of
the generative adversarial network, we introduce adversarial
losses in both spatial and frequency domains. In detail, we
build a spatial discriminator and a frequency discriminator
to discriminate recovered SR results and HR in the spatial
and frequency domains, respectively. The two discrimina-
tors share a similar structure but take different inputs. The
input of the spatial discriminator is SR or HR while that of
the frequency discriminator is the concatenation of ampli-
tude and phase of SR or HR. The specific loss functions are

LAdv
Spa = −log(SD(ISR

Spa)), (7)

LAdv
Fre = −log(FD([A(ISR

Spa),P(ISR
Spa)])), (8)

where [·, ·] denotes concatenation, SD and FD correspond
to the spatial discriminator and the frequency discriminator
respectively. Except that, perceptual loss which measures
the distance between facial features is also adopted,

LPer =
∥∥Φ(ISR

Spa)− Φ(IHR)
∥∥
1
, (9)

where Φ denotes VGG [41]. The whole loss function is

L = LSpa + γ1 ∗ LFre + γ2 ∗ LAdv
Fre + γ3 ∗ LAdv

Spa + γ4 ∗ LPer, (10)

where γ1, γ2, γ3 and γ4 are the trade-off parameters.

3.2.2 Spatial-frequency Mutual Learning Module

Here we elaborate on the i-th spatial-frequency mutual
learning module (SFMLM) in SFMNet. In detail, at the i-th
SFMLM, F i−1

Spa and F i−1
Fre generated by the i-1-th SFMLM

are fed into the spatial and frequency branches, respectively,

F i
Fre = f i

FRB(F
i-1
Fre),F

i

Spa = f i
SPB(F

i-1
Spa), (11)

where f i
FRB and f i

SPB correspond to frequency block (FRB)
and spatial block (SPB) in the frequency branch and spatial
branch, respectively, F

i

Spa and F i
Fre are the extracted fea-

tures. SPB consists of cascaded residual blocks [14]. Con-
trary to SPB, FRB decomposes the input into phase A and
amplitude P components, and then adopts two convolutional
layers to recover two components A and P , respectively. Fi-
nally, the inverse Fourier transform is used to generate the
output F i

Fre, as shown in Fig. 2 (right).
Thanks to the Fourier transform, the frequency branch

can capture global dependency with an image-size recep-
tive field, while the spatial branch can extract local depen-
dency. In light of that global and local dependencies are
complementary and can both facilitate FSR, we develop a
frequency-spatial interaction block (FSIB) which is planted
behind every SPB to harness the complementarity of them,

F i
Spa = f i

FSIB(F
i

Spa,F
i
Fre), (12)

where f i
FSIB represents the function of our FSIB at i-th

SFMLM, and F i
Spa is the generated feature that incorporates

global and local dependencies. At this time, the final out-
puts of the i-th SFMLM, F i

Spa and F i
Fre, are obtained.

3.2.3 Frequency-spatial Interaction Block

As introduced in the previous section, the frequency branch
captures image-size dependency benefited by the Fourier
transform while the spatial branch utilizes convolutional
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Figure 3. The architectures of the frequency-spatial interaction block (FSIB) (left) and spatial-frequency cross-attention (SFCA) (right) in
which C denotes concatenation, CS is channel split operation and R is reshape operation.

layer to obtain short-range dependency. The image-size de-
pendency and short-range dependency are complementary
and both profitable to FSR task. In consideration of this, we
should explore how to combine them to recover face images
efficiently. To achieve this goal, we design a frequency-
spatial interaction block (FSIB) which can mutually and
adaptively fuse the global frequency information and local
spatial information. As illustrated in Fig. 3, our FSIB first
fuses two information coarsely by cross-attention and then
generates different attention maps to fuse them finely.

Firstly, with F
i

Spa and F i
Fre, FSIB applies two convolu-

tional layers on them, obtaining F̂Spa and F̂Fre respectively.
Note that we ignore the i in the equation for simplifica-
tion. Then, to utilize the complementarity of global fre-
quency information and local spatial information, we de-
sign a spatial-frequency cross-attention (SFCA) based on
the self-attention mechanism.

SFCA To be specific, SFCA has two inputs, including
source information Fs and guidance information Fg. To
fuse the two information fully, it uses Fs to generate query
Q and uses Fg to obtain key K and value V by applying dif-
ferent convolutional layers. After that, the cross-attention
between the source and guidance can be obtained by

Attention(K,Q, V ) = fSoftmax(QKT /
√
d)V, (13)

FFuse = fConv(Attention(K,Q, V )) + Fs, (14)

where d is the hyperparameter, and FFuse is result. To cap-
ture global incorporation among channel dimension and de-
crease the computational cost of the SFCA, multiplication
is calculated along channel dimension.

To model the incorporation between local spatial infor-
mation and global frequency information, we let the fre-
quency information F̂ i

Fre and the spatial information F̂ i
Spa

serve as source and guidance for each other in FSIB,

F
SFCA
Fre = fSFCA(F̂Fre, F̂Spa),F

SFCA
Spa = fSFCA(F̂Spa, F̂Fre), (15)

where fSFCA(·, ·) is the function of SFCA, and the two
parameters correspond to the source and guidance respec-
tively, F SFCA

Fre and F SFCA
Spa are the fused results which com-

bine the spatial and frequency information. With these two
results, we propose to predict the pixel-wise attention with a
predict network fPN for fusing them mutually. In detail, we
first concatenate the two results and feed the concatenated
result into the predict network that consists of convolutional
layers followed by sigmoid,

FAtt = fPN([F
SFCA
Fre ,F SFCA

Spa ]), (16)

where FAtt is the predicted attention and the channel of FAtt
is twice as large as the one of the original feature. In light of
the difference and complementarity between the frequency
information and spatial information, we split the FAtt along
the channel dimension to generate adaptive attentions F Att

Spa

and F Att
Fre for reweighting them adaptively,

FSF = F Att
Spa ∗ F̂Spa + F Att

Fre ∗ F̂Fre, (17)

where FSF is the final fusion result.

4. Experiments
4.1. Dataset and Metrics

Two widely used face datasets are chosen in this pa-
per, including CelebA [30] and Helen [25]. To be spe-
cific, we apply OpenFace [2,3,53] to extract 68 facial land-
marks based on which face images are cropped, and then
the cropped face images are resized into 128×128 pixels as
ground truth. To acquire LR face images, the ground truth
is downsampled into 32×32 and 16×16 corresponding to
4× and 8× FSR tasks, respectively. In the training phase,
we use 168,854 face images from CelebA [30]. In the test-
ing phase, 50 face images from Helen [25] and 1,000 face
images from CelebA [30] are chosen to evaluate the perfor-
mance of the model. In terms of evaluation metrics, PSNR,
SSIM [44], LPIPS [56] and NIQE [35] results are used.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 4. Visual quality comparison of state-of-the-art methods on Helen [25] dataset by the scale of ×4 (the top two face images) and
CelebA [30] dataset by the scale of ×8 (the bottom two face images). Please zoom in to view the differences. (a): LR; (b): SRCNN [10];
(c): EDSR [29]; (d): FSRNet [9]; (e): DIC [32]; (f): SPARNet [8]; (g): SISN [31]; (h): Our SFMNet; (i): GAN-based SFMNet; (j): HR.

Table 1. Quantitative evaluation of various FSR methods on CelebA [30] and Helen [25] datasets. The best and the second-best results are
emphasized with bold and underscore, respectively. Par denotes the parameter and the time is running time in the inference phase.

Dataset
CelebA [30] Helen [25]

Par Time×4 ×8 ×4 ×8
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Bicubic 27.48 0.8166 0.1841 23.58 0.6285 0.2692 28.22 0.6628 0.1771 23.88 0.6628 0.2560 - -
SRCNN [10] 28.04 0.8369 0.1599 23.93 0.6348 0.2559 28.77 0.8730 0.0556 24.27 0.6770 0.2430 19.6k 9.1ms
EDSR [29] 31.45 0.9095 0.0518 26.84 0.7787 0.1159 31.87 0.9286 0.0574 26.60 0.7851 0.1400 3.4M 10.0ms
FSRNet [9] 31.46 0.9084 0.0519 26.66 0.7714 0.1098 31.93 0.9283 0.0543 26.43 0.7799 0.1356 3.2M 53.0ms

DIC [32] 31.53 0.9107 0.0532 27.37 0.8022 0.0920 31.98 0.9303 0.0576 26.94 0.8026 0.1144 20.8M 84.6ms
SPARNet [8] 31.71 0.9129 0.0476 27.42 0.8036 0.0891 31.98 0.9300 0.0592 26.95 0.8029 0.1169 10.0M 45.0ms

SISN [31] 31.88 0.9157 0.0476 27.31 0.7978 0.0998 32.41 0.9351 0.0535 27.08 0.8083 0.1225 8.4M 63.8ms
SFMNet(Ours) 32.01 0.9175 0.0441 27.56 0.8074 0.0869 32.51 0.9362 0.0498 27.22 0.8141 0.1061 8.1M 51.8ms
SFMNet+GAN 30.99 0.8051 0.0291 26.48 0.7662 0.0594 31.54 0.9187 0.0323 26.39 0.7792 0.0760 8.1M 51.8ms

4.2. Implementation Details

In SFMNet, L is set to 14 and the number of residual
blocks in every SRB is 2. In addition, a downsampling
module (implemented by the inverse pixelshuffle [24] and
convolutional layers) and an upsampling module (imple-
mented by pixelshuffle [40] and convolutional layers) are
inserted after every FRB and SRB in 1-6 SFMLMs and 9-
14 SFMLMs, respectively. For training the PSNR-oriented
model, γ1 is 0.01, γ2, γ3 and γ4 are set as zero. For GAN-
based model, we use the pretrained PSNR-oriented model
as initialization and set γ2=0.0005, γ3=0.001 and γ4=0.1.
We use the Adam optimizer with β1=0.9, β2=0.99, and
ϵ=1e-8 to train our model. The learning rate is set to 1e-
4. Our experiments are implemented on PyTorch [36] with

NVIDIA GeForce RTX 3090.

4.3. Comparison with the state-of-the-arts

To verify the superiority of our proposed method, we
compare our method with several state-of-the-art methods,
including two representative convolutional neural network-
based general image super-resolution methods SRCNN [10]
and EDSR [29], and four FSR methods, FSRNet [9], DIC
[32], SPARNet [8] and SISN [31]. In addition, Bicubic in-
terpolation is also used as a baseline. The quantitative re-
sults are tabulated in Table 1. To be fair, all models are
trained and tested with the same dataset. It can be ob-
served that our method can achieve the best performance
in both two testing datasets. SRCNN and EDSR are not de-
signed for face images and fail to recover face images well.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 5. The visualization comparison of different FSR methods in both spatial domain (the top row) and frequency domain (the bottom
row). Please zoom in to view the differences. (a): LR; (b): SRCNN [10]; (c): EDSR [29]; (d): FSRNet [9]; (e): DIC [32]; (f): SPARNet [8];
(g): SISN [31]; (h): Our SFMNet; (i): GAN-based SFMNet; (j): HR.
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Figure 6. ROC curve on LFW [15] for face recognition task.

(a) (b) (c) (d)

Figure 7. Real-world LR face images restoration comparison. (a):
LR; (b): Restoreformer [45]; (c): VQFR [13]; (d): Ours.

FSRNet and DIC propose to estimate the facial prior and
then utilize the prior. However, the accuracy of the esti-
mated prior cannot be guaranteed, limiting the FSR perfor-
mance. Compared to SPARNet and SISN limited in spatial
space, our method can exploit the frequency information
that can capture image-size receptive field and depict high-
frequency details, improving FSR performance obviously.
Except the PSNR and SSIM, we also present the parameter
and running time of different FSR methods in Table 1 and

our method achieves a good balance between performance
and model complexity.

In addition, we also visualize the results hallucinated by
different methods in Fig. 4. Regarding the frontal face im-
ages (e.g., the third face in Fig. 4), all methods can recon-
struct facial structure while our methods have the advantage
of recovering facial details, especially key facial compo-
nents, such as teeth and eyes. As for profile face images, our
method can still have an advantage in recovering accurate
and realistic details than other methods, demonstrating the
robustness and stability of our method. This is because our
method can utilize global face structure and implicit phase
prior provided by the Fourier transform. In addition to that,
we also visualize the comparison results in both the spatial
domain and the frequency domain in Fig. 5. Thanks to the
Fourier transform, our method can not only recover realis-
tic facial details in the spatial domain but also reconstruct an
accurate frequency spectrum in the frequency domain. To
conclude, quantitative and visual quality comparisons prove
the superiority of our method.

4.4. Face Recognition Results

A good FSR method can not only achieve higher PSNR
and SSIM, but also improve the downstream tasks such as
face recognition. Thus, we also perform face recognition as
a measurement to evaluate the FSR performance of differ-
ent FSR methods. To be specific, we randomly select some
face images from LFW [15] dataset as reference. Then, for
every reference, we select face images with the same iden-
tity and the different identities as test images. Then, we
downsample the test images and use different FSR methods
to recover them. Then, we adopt a pretrained face recogni-
tion model Deepface [39] to perform face recognition and
judge whether the test and reference images belong to the
same person. Then we plot the ROC curves in Fig. 6. As
illustrated, the AUC (the area under the ROC curve) result
of ours is the largest, demonstrating that our SFMNet out-
performs other FSR methods in face recognition task.
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Table 2. Ablation study of the proposed FSIB.

Dataset
CelebA [30] Helen [25]

PSNR↑ SSIM↑ PSNR↑ SSIM↑
SBN 27.35 0.8010 26.98 0.8063

SFCNet 27.39 0.8033 27.01 0.8079
SFCCNet 27.40 0.8022 27.10 0.8072
SFMNet 27.56 0.8082 27.22 0.8141

Table 3. Ablation study of the frequency discriminator.

Dataset
CelebA [30] Helen [25]

LPIPS↓ NIQE↓ LPIPS↓ NIQE↓
SFMNet 0.0869 10.620 0.1061 10.964

SD 0.0684 6.931 0.0847 7.475
SFD 0.0594 6.690 0.0760 7.020

4.5. Real-world Face Restoration

In addition, we also verify the performance of our model
on real-world face image restoration. For real-world face
image restoration, existing methods [7,13,26–28,34,43,45,
48] explore the potential of reference prior, generative prior
or vector-quantized dictionary. From them, we choose Re-
storeformer [45] and VQFR [13] as comparison methods.
Note that we directly use the pretrained model in official
public code to infer the results. As shown in Fig. 7, Restore-
former generates many artifacts while faces hallucinated by
VQFR have high perceptual quality. However, the faces re-
covered by VQFR are slightly distorted, and the expression
and the fidelity of the recovered faces is different from the
original faces. Although the results of our method are not
as high quality as those of VQFR, they are realistic and nat-
ural and contain key facial details. In addition, our model is
only trained on 128×128 face images degraded with Bicu-
bic while the comparison methods are trained on 512×512
face images with complex degradation. In summary, our
method can be used to recover real-world LR face images.

4.6. Ablation Study

In this section, we further conduct experiments to verify
the effectiveness of key components in SFMNet on ×8.

The effectiveness of the FSIB: First, we remove the fre-
quency branch and only preserve the spatial branch in our
method, and the remaining model is called SBN. Then, we
recover the frequency branch and replace our FSIB with
concatenation followed by convolutional layers with the
similar parameters to SFMNet, named SFCNet. Finally, our
carefully designed FSIB is planted into the SFCNet, gen-
erating the SFMNet. The results are reported in Table 2.
The quantitative metrics of SFCNet are a little better than
the ones of SBN, demonstrating that the frequency branch
can provide global dependency to enhance the representa-
tion ability of the model. However, the improvement is
limited due to that concatenation is too simple to perform

(a) (b) (c) (d)
Figure 8. ×8 SR results of different discriminators. (a): LR; (b):
SD; (c): SFD; (d): HR; SFD can recover realistic facial details.

the interaction between the frequency domain and the spa-
tial domain. Finally, equipped with our carefully designed
FSIB, our method SFMNet achieves the best performance
in terms of both PSNR and SSIM. To further verify the ef-
fectiveness of the proposed SFCA, we replace the SFCA
with concatenation followed by convolutional layer, gen-
erating the model SFCCNet. Compared with SFCCNet,
SFCA can improve FSR performance obviously.

The effectiveness of the frequency discriminator: We
also conduct experiments to analyze the effectiveness of the
frequency discriminator. Specifically, we compare the re-
sults of the model with and without the frequency discrimi-
nator in Table 3, where SD and SFD are denoted as the for-
mer and the latter model, respectively. From the aspects of
quantitative metrics, the introduction of the frequency dis-
criminator can obviously improve the LPIPS and NIQE per-
formance of the model. The visual quality comparison of
SD and SFD is shown in Fig. 8. Since frequency spectrum
can capture global face structure, faces hallucinated by SFD
look more realistic and visually pleasing than those of SD.

5. Conclusion

In this paper, we develop a spatial-frequency mutual net-
work (SFMNet) for face super-resolution, which is the first
work to explore the interaction between spatial domain and
frequency domain in this field. The proposed SFMNet is a
two-branch network, including a spatial branch and a fre-
quency branch. The spatial branch extracts local facial fea-
tures in the spatial domain. The frequency branch takes
advantage of Fourier transform to finish the transforma-
tion from spatial domain to frequency domain and capture
global dependency with image-size receptive field. To ex-
plore the complementarity between the global and local in-
formation, we carefully design a frequency-spatial interac-
tion block that can fuse these dependencies mutually and
boost face super-resolution performance. Finally, a fre-
quency discriminator is developed to guide the model in fre-
quency domain. Experimental results demonstrate that our
proposed method can achieve state-of-the-art performance.
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