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Figure 1. Given a selfie video rotating under the sun, SunStage reconstructs geometry, material, camera pose, and lighting information.
This recovered information can be used to (a) realistically re-render the input images, (b) modify the lighting conditions by adding /
removing lights, (c) soften harsh shadows by changing the size of the reconstructed light sources (d) render the person in an entirely new
environment, and (e) edit the albedo or material properties to add freckles, makeup, or stickers that realistically interact with scene lighting.

Abstract
A light stage uses a series of calibrated cameras and

lights to capture a subject’s facial appearance under vary-
ing illumination and viewpoint. This captured information
is crucial for facial reconstruction and relighting. Unfortu-
nately, light stages are often inaccessible: they are expen-
sive and require significant technical expertise for construc-
tion and operation. In this paper, we present SunStage: a
lightweight alternative to a light stage that captures com-
parable data using only a smartphone camera and the sun.
Our method only requires the user to capture a selfie video
outdoors, rotating in place, and uses the varying angles
between the sun and the face as guidance in joint recon-
struction of facial geometry, reflectance, camera pose, and
lighting parameters. Despite the in-the-wild un-calibrated
setting, our approach is able to reconstruct detailed facial
appearance and geometry, enabling compelling effects such
as relighting, novel view synthesis, and reflectance editing.

1. Introduction

A light stage [11] acquires the shape and material prop-
erties of a face in high detail using a series of images cap-
tured under synchronized cameras and lights. This captured
information can be used to synthesize novel images of the
subject under arbitrary lighting conditions or from arbitrary
viewpoints. This process enables a number of visual effects,
such as creating digital replicas of actors that can be used in
movies [1] or high-quality postproduction relighting [46].

In many cases, however, it is often infeasible to get ac-
cess to a light stage for capturing a particular subject, be-
cause light stages are not easy to find: they are expensive
and require significant technical expertise (often teams of
people) to build and operate. In these cases, hope is not
lost — one can turn to methods that are trained on light
stage data, with the intention of generalizing to new sub-
jects. These methods do not require the subject to be cap-
tured by a light stage but instead use a machine learning
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model trained on a collection of previously acquired light
stage captures to enable the same applications as a light
stage, but from only one or several images of a new sub-
ject [6, 25, 30, 38, 40, 50, 52]. Unfortunately, these methods
have difficulty faithfully reproducing and editing the ap-
pearance of new subjects, as they lack much of the signal
necessary to resolve the ambiguities of single-view recon-
struction, i.e., a single image of a face can be reasonably
explained by different combinations of geometry, illumina-
tion, and reflectance.

In this paper, we propose an intermediate solution — one
that allows for personalized, high-quality capture of a given
subject, but without the need for expensive, calibrated cap-
ture equipment. Our method, which we dub SunStage, uses
only a handheld smartphone camera and the sun to simu-
late a minimalist light stage, enabling the reconstruction of
individually-tailored geometry and reflectance without spe-
cialized equipment. Our capture setup only requires the user
to hold the camera at arm’s length and rotate in place, al-
lowing the face to be observed under varying angles of inci-
dent sunlight, which causes specular highlights to move and
shadows to swing across the face. This provides strong sig-
nals for the reconstruction of facial geometry and spatially-
varying reflectance properties. The reconstructed face and
scene parameters estimated by our system can be used to
realistically render the subject in new, unseen lighting con-
ditions — even with complex details like self-occluding cast
shadows, which are typically missing in purely image-based
relighting techniques, i.e., those that do not explicitly model
geometry. In addition to relighting, we also show applica-
tions in view synthesis, correcting facial perspective distor-
tion, and editing skin reflectance.

Our contributions include: (1) a novel capture technique
for personalized facial scanning without custom equip-
ment, (2) a system for optimization and disentanglement of
scene parameters (geometry, materials, lighting, and camera
poses) from an unaligned, handheld video, and (3) multiple
portrait editing applications that produce photorealistic re-
sults, using as input only a single selfie video.

2. Related works

Face modeling. Extensive research has been devoted to
the modeling of human faces, leading to various 3D mor-
phable models (3DMMs) [2, 3, 5–7, 9, 10, 25, 31–33, 43].
These models are parametric (maybe in the form of neu-
ral networks [33]), allowing one to express variations com-
pactly with a vector. They also encode strong priors learned
from real scans. The groundbreaking face 3DMM is that of
Blanz and Vetter [3] containing models for shape, expres-
sion, and appearance (the Phong model). Also influential is
the FLAME model [25] that uses vertex-based Linear Blend
Skinning (LBS). FLAME is described by a mapping from

shape, pose, and expression vectors to a list of vertices. We
refer the reader to the survey by Egger et al. [13] for differ-
ent face morphable models.

Such parametric face models provide a low-dimensional
space for optimization or learning algorithms. DECA [14]
uses the FLAME model to estimate detailed facial geom-
etry (and albedo) from single images, by predicting addi-
tional displacement maps and adding them to the estimated
FLAME models. More recently, NextFace [12] employs
the 3DMM geometry and albedo priors to learn an albedo
residual that captures more facial details.

Without modeling 3D face geometry, researchers have
also achieved photorealistic synthesis of portrait images us-
ing generative models and large-scale high-quality image
datasets [22, 23].

Light stage capture. The light stage as described in De-
bevec et al., achieves impressive portrait reconstruction and
relighting by capturing a series of images of the face under
varying illumination [11]. Subsequent work made this pro-
cess faster, more efficient, and explored different types of
illuminants [15, 16, 28].

Given that a light stage is not always accessible, a
number of methods have been proposed to achieve sim-
ilar outputs from a single (or few) input portrait images
[18,19,29,30,40,41,48–50]. These method rely on a dataset
of light stage captures or synthetic examples as training
data.

Our setup can be thought of as a “minimalist light stage”
formed by just the sun and a rotating camera, without
requiring the high construction and maintenance costs of
building a light stage. This parameterization of a sun and
skylight model has been shown to be effective in photomet-
ric stereo [17,21] and scene factorization [27,42]. In a simi-
lar spirit, Calian et al. [8] focus on lighting estimation using
faces as “light probes”. Sengupta et al. propose to circum-
vent the need for a complicated light stage by recording the
facial appearance responses to varying contents displayed
on a desk monitor, and then perform portrait relighting [37].
Sevastopolsky et al. also attempt to simplify the capture
setup from a light stage to a mobile phone camera with a
co-located flash [39]. Unlike our work, which is physically-
based, their approaches use neural rendering, and therefore
have less direct control over lighting, material, and scene
parameters.

3. Overview
Our method targets accurate reconstruction of scene

lighting, subject geometry, and material properties from
a handheld video sequence of a person rotating in place
under the sun. Given a selfie video, we take a test-time
optimization approach that uses the information from all
frames of the video to solve for a physical model of the
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Figure 2. Overview. Our method jointly reconstructs geometry, skin reflectance, lighting, and camera pose from a selfie video sequence
of a person rotating under the sun. Our system begins by extracting supervisory information from the video sequence: facial landmarks,
foreground alpha mattes, and camera orientations. These are used to supervise the optimization of a collection of scene parameters (full
list in Sec. 5.2) used in a physically-based renderer. The rendered output is an image consisting of diffuse, specular, and ambient light
contributions. After optimization, the solved scene parameters can be used for a number of editing applications, shown in Sec. 7.

scene: the geometry and material properties of the face,
scene lighting, and camera parameters (Fig. 2). This phys-
ical model consists of a base face shape parameterized by
a low-dimensional deformable model Xb, a displacement
map ∆X , a reflectance model with diffuse Rd and specular
components Rs, scene lighting Li, and a perspective cam-
era C. These components are explained in detail in Sec. 4.

After this model has been recovered, we can modify the
scene and the subject parameters to re-render images. We
show several editing applications in Sec. 7: editing skin re-
flectance, relighting with arbitrary environment map, im-
proving harsh lighting conditions (by softening shadows
and adding fill lights), and adjusting camera parameters to
change viewpoint or manipulate perspective effects.

4. Formulation

Given an input video, our system reconstructs the param-
eters of a physical model: i.e., geometry and reflectance of
the subject, the scene lighting parameters, and the camera
parameters. In this section, we detail all of these parameters
and describe the rendering process that turns these parame-
ters into an image.

Geometry. We denote Xj as the full mesh of the sub-
ject for frame j, composed of a per-frame coarse mesh
Xb

j (β, θj , ψj) and a global displacement map ∆X . The
coarse mesh Xb

j is a FLAME deformable face model [25]

defined by global shape code β, per-frame pose code θj , and
per-frame expression code ψj . Xb

j also contains per-vertex
UV coordinates, which maintain correspondence across
variations in θj and ψj . As such, we model all our global
(per-subject) spatially varying parameters in UV space, and
sample values per-fragment when rasterizing.

The displacement map ∆X is used to model fine details
like wrinkles that cannot be represented by Xb

j . We dis-
place the coarse geometry by ∆X at rasterization time, by
sampling a displacement value per-fragment and displacing
each fragment along the surface normal Nj of the coarse
mesh Xb

j . After displacement, the updated fragment posi-
tions are used to compute a new surface normal N ′

j .
Xb

j is optimized per-frame, since it accounts for subtle
(and unavoidable) variations in expression and head pose
during the capture, which are modeled by θj and ψj . ∆X ,
on the other hand, is optimized in UV-space (i.e., globally
per-subject), since the deformations it encodes are invariant
to the changes in expression or pose. Formally, the final
geometry Xj is given by:

Xj = Xb
j (β, θj , ψj) + ∆X ⊙Nj (1)

where ⊙ is the Hadamard product.

Reflectance. We model the skin reflectance, denoted as
R(x, ωi, ωo) ∈ R3, where x is a 3D point on the face ge-
ometry X , ωi is the incoming light direction, and ωo is the
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outgoing direction, using a diffuse and a specular compo-
nent: R = Rd +Rs.

The diffuse component Rd(x, ωi) ∈ R3 is a Lambertian
reflectance model consisting of an albedo map, a, which we
optimize as a per-subject UV-space image. For the skin’s
specular component, we use the Blinn-Phong model [4].

Rs(x, ωi, ωo) = ks
s+ 2

2π
(h(ωi, ωo) · n(x))s (2)

where h(ωi, ωo) = normalize(ωi + ωo) is the half vector,
ks is the specular intensity, s is the specular exponent, and
(s+2)/(2π) is the normalization term for the reflection lobe
to integrate to 1. Following [47], we segment the UV-space
map into 10 segmented specular reflectance clusters. We
then optimize for a spatially-varying pair of values (s, ks)
per-cluster, enabling varying shininess across the face.

While Blinn-Phong does not model many complex ef-
fects such as subsurface scattering, our experiments with
other models for facial reflectance, such as microfacet mod-
els [44], show no significant quality improvements, and of-
ten introduce unstable training. More analysis is provided
in the supplementary material.

Lighting. We use a sun-sky model to represent lighting
as the sum of an “ambient” environment map and the sun:
Li(x, ωi) = Lamb

i (ωi) + Lsun
i (ωi). Note neither Lamb

i (ωi)
nor Lsun

i (ωi) depends on the 3D point x, since we model
both as directional lights. Optimization-wise, our lighting
parameters consist of a 16 × 32 × 3 environment map for
ambient lighting, the sun direction psun ∈ S3, and the scalar
sun intensity ksun. We fix the sun color to white [1, 1, 1] in
our lighting model to resolve the albedo-illumination ambi-
guity.

4.1. Rendering

We calculate the outgoing radiance Lo at 3D location x
as viewed from viewing direction ωo as:

Lo(x, ωo)

=

∫
Ω

V (x, ωi)Li(x, ωi)⊙R(x, ωi, ωo) (ωi · n(x)) dωi

(3)

=
∑
ωi

V (x, ωi)
(
Lamb
i (ωi)⊙Rd(x, ωi) (4)

+ Lsun
i (ωi)⊙Rd(x, ωi) + Lamb

i (ωi)⊙Rs(x, ωi, ωo)

+ Lsun
i (ωi)⊙Rs(x, ωi, ωo)

)
(ωi · n(x))△ωi (5)

where V (x, ωi) is the light visibility at x from ωi, and
Li(x, ωi) is the incoming radiance reaching x from ωi. We
ignore the specular reflection caused by the ambient light-
ing, i.e., Lamb

i (ωi)⊙Rs(x, ωi, ωo), since it is much weaker

than the specular reflection of the sun. In the next subsec-
tions, we will group the terms into a diffuse contribution Ld

o

and a specular contribution Ls
o: Lo = Ld

o+L
s
o. For the final

rendered color value, we apply the Reinhard operator [35]
and a gamma correction of γ = 2.2 to Lo to convert from
linear to sRGB space.

Diffuse contribution. The diffuse contribution Ld
o is then

given by only the diffuse terms of Equation 5:

Ld
o(x) =

∑
ωi

Lamb
i (ωi)⊙

a(x)

π
(ωi · n(x))∆ωi

+ V (x, psun)ksun[1, 1, 1]⊙ a(x)

π
(psun · n(x))∆psun

(6)

where a(x) is the albedo at point x, ksun is the (optimized)
sun intensity, and psun is the (optimized) sun direction. The
sun is modeled as a directional light source, so the sec-
ond summation can be simplified to a single term, only in
the direction of psun. We additionally optimize for a high-
dynamic-range (HDR) environment map E ∈ R16×32×3,
from which values of Lamb

i are sampled.

Specular contribution. The specular contribution Ls
o at

each pixel is given by only the specular term due to the sun
in Equation 5 (recall that we ignore the specular ambient
term due to its weak contribution):

Ls
o(x, ωo) = V (x, psun)ksun[1, 1, 1]ks

s+ 2

2π

(h(psun, ωo) · n(x))s (psun · n(x))∆psun (7)

where we have substituted Equation 2 and reduced the sum-
mation to just one term at psun (since Lsun

i is 0 elsewhere).

Shadow map. In order to generate a map of self-occluded
shadows, we perform two passes of rasterization: first,
we render a z-buffer from a virtual orthographic camera
aligned with the sun direction, psun, and then, when raster-
izing a given camera viewpoint, compare all fragment posi-
tions dhit to the light’s z-buffer dshadow. To avoid precision
issues and ensure smooth gradients for back-propagation,
we implement a soft comparison as follows in generating
shadow/visibility maps:

V (x, ωi) = 1− sigmoid (k(dhit − dshadow × b)) (8)

where k is the falloff slope, and b the tolerance. We use
k = 800 and b = 1.0015.

5. Optimization
The described physical model contains a large number

of parameters to be optimized, controlling scene elements
like lighting, geometry, pose, and texture. Unfortunately,
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naı̈vely optimizing all these parameters from scratch does
not result in an optimal solution, since the final observed
appearance of the face can often be explained variously
through changes to geometry, material properties, lighting
or camera parameters, making optimization severely under-
constrained and ambiguous. Therefore, we adopt a two-
stage optimization approach, through which parameters are
gradually enabled. In this section, we describe this process
and the relevant losses that guide optimization.

5.1. Coarse alignment

Our system begins by using an off-the-shelf network
(DECA [14]) to generate, for each input image, a set of
shape parameters β, pose parameters θj , and expression pa-
rameters ψj of a FLAME face model [25], as well as the
relative pose parameters of the virtual camera observing the
3D face. Unfortunately, as with many other single-image fa-
cial geometry estimators, DECA assumes an orthographic
projection model and therefore cannot accurately recover
geometry for our selfie capture sequences, which contain
heavy perspective effects (Figure 6). Without a good initial-
ization for geometry, optimization of lighting and material
properties seldom converges to an optimal solution due to
the heavily ambiguous nature of our optimization problem.

To circumvent this issue, we employ a first stage of
optimization where we only optimize for the parameters
of a perspective camera (with a known focal length, ex-
tracted from input metadata) and the face geometry param-
eters (β, θj , ψj). As initialization for this optimization pro-
cess, we use the predicted DECA values for each frame’s
pose θj and expression ψj , but set all frames to the av-
erage predicted shape βavg = 1

N

∑
j βj , since the identity

remains constant across all frames. To convert DECA’s or-
thographic camera to a perspective camera, we additionally
optimize for an unknown scale S and translation Tj , which
are initialized to empirically chosen values S = 2.6e4,
Tj = (0, 0, 1.5e5). During optimization, the face shape β
and scale S are shared across all frames, while camera pose
Tj , expression ψj , and pose θj are optimized per-frame.
Note that DECA controls the relative orientation of the cam-
era and the face by varying the pose code θ instead of the
camera rotation. We adopt this formulation and keep the
camera orientation fixed relative to the face. The global
orientation of the camera at each frame (and therefore the
face) is extracted from the capture video, either through a
structure-from-motion system or IMU measurements com-
monly available on a smartphone.

We use two losses to guide this optimization: a mask
loss Lmask and a landmark loss Llmk. The FLAME model
includes 3D facial landmark points, corresponding to the
standard 68-point facial landmarks set [36] used in facial
tracking. Our landmark loss minimizes the L1 distance be-
tween the 2D projection of these 3D landmarks (into the

input camera viewpoint) and 2D landmarks estimated from
the input frame by a 2D landmark detector HRNets [45].

The facial landmarks provide a stong constraint on fa-
cial feature alignment, but are sparse, and therefore cannot
constrain the overall shape or boundary of the mesh. To
supplement it, we include a silhouette loss Lmask, which pe-
nalizes the L2 difference between the rasterized mask of
the mesh Isil and the semantic segmentation mask Imask of
the input image, using an off-the-shelf semantic segmen-
tation network [26] trained to segment humans in portrait
photographs.

The final pose loss is then: Lpose = Lmask + Llmk, op-
timized using an ADAM optimizer [24]. See supplemental
for optimization parameters.

5.2. Photometric optimization

Once the 3D model and camera parameters are approx-
imately aligned, we proceed to the second stage of opti-
mization, in which we optimize the precise facial geometry,
lighting, and reflectance properties. All the parameters op-
timized in the first stage (Section 5.1) remain as free vari-
ables. In total, the parameters optimized during this stage
include: Lighting parameters: (1) psun, the global sun di-
rection, (2) E, the global environment map, (3) ksun, the
global sun intensity, Facial geometry parameters: (4) β,
the global FLAME shape code, (5) ψj , the per-frame ex-
pression code, (6) θj , the per-frame pose code, (7) ∆X ,
the global deformation map, Material properties: (8) ks,
the global, spatially-varying specular intensity, (9) s, the
global, spatially-varying specular roughness, (10) a, the
global, spatially-varying surface albedo, Camera pose pa-
rameters: (11) Tj , the per-frame perspective camera trans-
lation, and (12) S, the global scene scale.

During optimization, we randomly select a frame j, ren-
der the face using a differentiable rasterizer [34] and the
equations described in Section 4 to get the rendered image
Î . In addition to the previously defined landmark and mask
losses, we include L2 and VGG [20] photometric losses,
comparing the original and reconstructed images:

Lphoto = ||Îj · Isil − Ij · Imask||2 (9)

We also include an L2 regularization LE and L2-
smoothness regularization LEs on the reconstructed envi-
ronment map, to encourage the majority of the lighting to
be explained by direct sunlight and to aid in disentangle-
ment of the sun and ambient lighting. The total optimized
loss becomes:

L = λmaskLmask + λlmkLlmk + λELE + λEsLEs

+ λVGGLVGG + λphotoLphoto (10)

with λmask, λlmk = 0.05, λVGG = 0.005, λE =
0.01, λEs, λphoto = 1. Additional optimization details are
provided in the supplemental materials.
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(a) DECA [14] (b) DPR [52] (c) GCFR [18] (d) TR [30] (e) NextFace [12] (f) NLT [51] (g) Ours (h) GT

Figure 3. Qualitative: Relighting. A comparison of our method at rendering a new (unseen) lighting environment (h). Our method is
able to realistically synthesize the novel lighting condition, including cast shadows and specularity, and nearly matches the (unseen) target
reference image. See supplement for additional details on experimental setup and analysis of results.

(a) Nearest view (b) DECA [14] (c) NextFace [12] (d) NLT [51] (e) Ours (f) GT

Figure 4. Qualitative: view synthesis. A comparison of our method at the task of generating an image from an unseen viewpoint (f),
having only seen a limited collection of input viewpoints. See supplement for more details on experimental setup and analysis of results.

6. Evaluation

In this section, we detail quantitative and qualitative
experiments comparing our approach with state-of-the-art
methods and ablated variants of our method.

Baseline comparisons. We evaluate our method on the
tasks of novel-view synthesis and relighting. For novel-
view synthesis, we compare our method with DECA [14],
Neural Light Transport (NLT) [51], and NextFace [12].
For relighting, we compare with DECA, NLT, NextFace,
GCFR [18], image-based methods Deep Single Image Por-
trait Relighting (DPR) [52], Total Relighting (TR) [30] and
NVPR [49]. Additional comparisons and details on the ex-
perimental setups are provided in the supplemental materi-
als.

We present qualitative comparisons for relighting in Fig-
ure 3 and novel view synthesis in Figure 4. Quantitative

comparisons on these images are provided in Table 1. These
testing images consist of (1) a multi-view capture of the
face, in which the subject remains still and the camera is
moved to novel viewpoints in the same environment as the
original capture, and (2) front-facing sequences in novel en-
vironment lighting and unseen sun positions. All testing
images are not seen during training of our method, NLT or
NextFace. The results shown in Figures 3 and 4 as well as
Table 1 clearly demonstrate that our method outperforms all
the baselines at both relighting and view synthesis. Single-
image methods (DECA, GCFR, DPR, TR) can generalize
to other subjects, but fail to recover more faithful and phys-
ically accurate facial details. Comparison with multi-image
methods (NLT, NextFace) demonstrates that SunStage is
a better reconstruction system. Additional analysis of the
comparisons is provided in the supplemental materials.
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DiffuseSpecularNormal Albedo Ambient Reconstruction Ground Truth

Figure 5. Decomposition. We show all the components which comprise our final rendered image to demonstrate that our method not only
closely recreates the ground truth image (reproducing realistic highlights and shadows), but also performs a meaningful decomposition
of lighting components and facial geometry. Note that our reconstructed surface normals include high frequency details specific to each
subject, like wrinkles and birthmarks, which are used in computation of the shadows and specular reflections.

Relighting Novel view synthesis
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DECA [14] 16.41 0.69 0.25 16.64 0.66 0.29
GCFR [18] 16.97 0.70 0.20 - - -
DPR [52] 19.03 0.72 0.19 - - -
NLT [51] 20.15 0.75 0.18 22.27 0.79 0.15
Total Relighting [30] 20.24 0.79 0.16 - - -
NextFace [12] 22.98 0.76 0.15 22.55 0.75 0.15
Ours 23.64 0.83 0.10 25.28 0.84 0.09
Ours w/o coarse 17.83 0.66 0.23 19.65 0.70 0.17
Ours w/o SV ks, s 21.31 0.77 0.13 21.94 0.77 0.12
Ours w/o Lmask, Llmk 16.46 0.61 0.30 18.83 0.68 0.20
Ours w/o Lmask 20.13 0.75 0.15 20.54 0.74 0.15
Ours w/o opt. (β, θi, ϕi) 18.67 0.69 0.19 18.28 0.66 0.19
Ours w/o soft shadow 21.46 0.77 0.13 22.05 0.77 0.12
Ours w/o ∆X 21.16 0.75 0.15 21.80 0.75 0.14

Table 1. Quantitative comparison. Comparison of our method
on the tasks of novel view synthesis and relighting. See Section 6
for a description of the ablated variants.

Disentanglement. In Figure 5, we demonstrate how Sun-
Stage decomposes the appearance of a portrait photograph
into different components: specular, diffuse, and ambient.
We also visualize the surface normal, albedo, and other in-
termediate representations to show that our method is able
to effectively recover a physically plausible reconstruction
of the real world and disentangle the different components
that contribute to the final appearance. We further validate
the quality of the reconstructed geometry and materials in
the supplementary material.

Ablation studies. In addition to our comparisons with

(a) Input image (b) DECA [14] (c) Stage 1 (d) Final

Figure 6. Perspective. DECA’s assumption of an orthographic
camera is broken by the strong perspective effects in selfies, caus-
ing poor alignment (b) with input images (a). Our first stage of
optimization (c) (Sec. 5.1) improves alignment by solving for the
parameters of a perspective camera and refined shape parameters.
In the second stage we additionally optimize for a displacement
map ∆X to produce our final shape with finer geometric details
like wrinkles (d). Red line added to highlight alignment with (a).

the state-of-the-art baselines, we also compare with ablated
variants of our own method. In particular, we include seven
such experiments in Table 1: our method (1) without the
initial first stage of coarse geometric alignment, i.e., di-
rectly optimizing both geometric and photometric param-
eters from the start, (2) without the spatially varying spec-
ular parameters, instead using a single global scalar s and
ks, (3) without the geometric alignment losses Lmask and
Llmk, (4) without just Lmask, (5) without shape optimization,
i.e., keeping the initial shape code predicted by DECA, (6)
without soft shadow computation, i.e., using a hard z-buffer
comparison to compute a shadow map instead of our soft
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(a) Input (b) Soft shadows (c) (b) + fill light (d) Swap scene

Figure 7. Adjusting lighting parameters. We can adjust the re-
covered scene parameters to improve the lighting conditions in an
input image (a) by softening the harsh shadows cast by the nose
(b), adding a fill light to brighten the shaded region (b), or replac-
ing the environment altogether (d).

comparison operator in Equation 8, and (7) without the dis-
placement map ∆X . Visual results for each of these vari-
ants are provided in the supplemental material.

7. Applications

Relighting. We demonstrate two types of relighting appli-
cations: (1) lighting modification and (2) lighting replace-
ment. Practical lighting modification is common in por-
trait photography when the lighting conditions are not ideal,
e.g., when direct sunlight casts undesirable harsh shadows
with high contrast. A common practice is to make the light
source larger and more diffuse by using a scrim or bounce
card. In Fig. 7b, we show that by virtually increasing the
size and spreading the energy of our reconstructed light-
ing source (i.e., the sun), we are able to soften the shadows
and re-render a more visually pleasing face. Another ap-
proach to reducing the effects of harsh shadows is adding
local fill lights, which reduces the contrast between the lit
and shaded regions (Fig. 7c). Alternatively, fill lights can
also be used for artistic purposes, to create dramatic lighting
effects (Fig. 1b). Finally, replacing the scene lighting with
that of a novel environment (Fig. 7d) is a necessary step in
realistically inserting a captured subject into a virtual scene,
which is useful for visual effects and VR applications.

View Synthesis. In Figure 8, we show that our recon-
structed 3D model of the face can be used to synthesize new
views by manipulating the viewpoint of the camera. We
can also change other camera parameters, such as the focal
length, to reduce the perspective effects on the face, which
is often desirable for selfie images that contain significant
facial distortion due to perspective.

Skin Reflectance Editing. We are also able to edit the re-
flectance components of the subject. As shown in Figure 1e,

(a) Short focal (b) Long focal (c) Novel view 1 (d) Novel view 2

Figure 8. Changing camera parameters. We can change the
recovered camera parameters to render novel views (c,d) or change
the focal length (a,b).

(a) Less shinier (b) More shinier (c) Less shinier (d) More shinier

Figure 9. Adjusting the specularity. We can change the the spec-
ular properties of the face, making the face less shinier (a, c) or
more shinier (b, d).

we can adjust the optimized albedo to add freckles, stickers,
or other textures that realistically interact with reflections,
shadows, and other elements of scene lighting, or we can
adjust the specular properties of the face, making the face
more or less shinier, as shown in Figure 9.

8. Conclusion and Discussions
In this paper, we propose SunStage, a lightweight and

practical facial capture, rendering, and editing system that
can serve as a minimalist light stage. With a video of an in-
dividual rotating in-place under the sun, our system recon-
structs a physical model of the subject and the scene light-
ing, which enables us to relight the subject with realistic
reflections and cast shadows. Our system allows arbitrary
lighting and reflectance control in the reconstructed physi-
cal space, which can be rendered to produce photo-realistic
results. We demonstrate several applications such as editing
skin reflectance, relighting, and view synthesis.

Limitations. Our system inherits the limitations of mor-
phable face models and is unable to model hair, teeth, or
clothing geometry, beyond slight deformations. Addition-
ally, certain regions which are seen under constant shadow
or specular reflection (and therefore have no cues on re-
flectance or albedo) are sometimes unable to be decom-
posed accurately into separate reflectance and lighting com-
ponents. Visualization and further discussions of the sys-
tem’s limitations are provided in the supplemental material.
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