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Abstract

Parameter regularization or allocation methods are ef-
fective in overcoming catastrophic forgetting in lifelong
learning. However, they solve all tasks in a sequence uni-
formly and ignore the differences in the learning difficulty of
different tasks. So parameter regularization methods face
significant forgetting when learning a new task very dif-
ferent from learned tasks, and parameter allocation meth-
ods face unnecessary parameter overhead when learning
simple tasks. In this paper, we propose the Parameter
Allocation & Regularization (PAR), which adaptively select
an appropriate strategy for each task from parameter allo-
cation and regularization based on its learning difficulty.
A task is easy for a model that has learned tasks related
to it and vice versa. We propose a divergence estimation
method based on the Nearest-Prototype distance to mea-
sure the task relatedness using only features of the new task.
Moreover, we propose a time-efficient relatedness-aware
sampling-based architecture search strategy to reduce the
parameter overhead for allocation. Experimental results
on multiple benchmarks demonstrate that, compared with
SOTAs, our method is scalable and significantly reduces
the model’s redundancy while improving the model’s per-
formance. Further qualitative analysis indicates that PAR
obtains reasonable task-relatedness.

1. Introduction
Recently, the lifelong learning [9] ability of neural net-

works, i.e., learning continuously from a continuous se-
quence of tasks, has been extensively studied. It is natural
for human beings to constantly learn and accumulate knowl-
edge from tasks and then use it to facilitate future learning.
However, classical models [13, 18, 41] suffer catastrophic
forgetting [12], i.e., the model’s performance on learned
tasks deteriorates rapidly after learning a new one.

To overcome the catastrophic forgetting, many param-
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Figure 1. PAR adaptively selects a strategy from regularization
and allocation to handle each task according to its learning diffi-
culty. The difficulty depends not only on the task itself, but also
on whether the model has previously learned tasks related to it.

eter regularization or allocation methods have been pro-
posed. Parameter regularization methods [10, 16, 19, 21,
23, 25, 27] alleviate forgetting by adding a regularization
term to the loss function and perform well when the new
task does not differ much from learned tasks. Parameter al-
location methods based on static models [7, 15, 31, 36] and
dynamic models [2,20,24,26,29,30,34,38,39,42,45,47] al-
locate different parameters to different tasks and can adapt
to new tasks quite different from learned tasks. However,
the above methods solve all tasks in a sequence uniformly,
and ignore the differences of learning difficulty of different
tasks. This leads to the significant forgetting in parameter
regularization methods when learning a new task which is
quite different from learned tasks, and also leads to unnec-
essary parameter cost in parameter allocation methods when
learning some simple tasks.

In this paper, we propose a difficulty-aware method
Parameter Allocation & Regularization (PAR). As shown
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in Fig. 1, we assume that the learning difficulty of a task
in continual learning depends not only on the task itself,
but also on the accumulated knowledge in the model. A
new task is easy to adapt for a model if it has learned re-
lated tasks before and vice versa. Based on the assumption,
the PAR adaptively adopts parameter allocation for difficult
tasks and parameter regularization for easy tasks. Specif-
ically, the PAR divides tasks into task groups and assigns
each group a dedicated expert model. Given a new task, the
PAR measures the relatedness between it and existing task
groups at first. If the new task is related to one of the ex-
isting groups, it is easy for the corresponding expert. The
PAR adds the task to the related group and learns it by the
expert via the parameter regularization. Otherwise, the new
task is difficult for all existing experts, and the PAR assigns
it to a new task group and allocates a new expert to learn it.

There are two challenges in this work: the measurement
of relatedness and the parameter explosion associated with
parameter allocation. For the first one, we try to measure the
relatedness by the KL divergence between feature distribu-
tions of tasks. However, the KL divergence is intractable
and needs to be estimated since the feature distributions of
tasks are usually unknown. In addition, the constraint of
lifelong learning that only data of the current task are avail-
able exacerbates the difficulty of estimation. To solve above
problems, inspired by the divergence estimation based on
k-NN distance [44], we propose the divergence estimation
method based on prototype distance, which only depends
on the data of the current task. For the second one, we try
to reduce parameter overhead per expert by searching com-
pact architecture for it. However, the low time and memory
efficiency is an obstacle to applying architecture search for
a sequence of tasks in lifelong learning. To improve the
efficiency of architecture search, we propose a relatedness-
aware sampling-based hierarchical search. The main con-
tributions of this work are as follows:

• We propose a lifelong learning framework named Pa-
rameter Allocation & Regularization (PAR), which se-
lects an appropriate strategy from parameter allocation
and regularization for each task based on the learning
difficulty. The difficulty depends on whether the model
has learned related tasks before.

• We propose a divergence estimation method based on
prototype distance to measure the distance between the
new task and previous learned tasks with only data of
the new task. Meanwhile, we propose a relatedness-
aware sampling-based architecture search to reduce
the parameter overhead of parameter allocation.

• Experimental results on CTrL, Mixed CIFAR100 and
F-CelebA, CIFAR10-5, CIFAR100-10, CIFAR100-20
and MiniImageNet-20 demonstrate that PAR is scal-
able and significantly reduces the model redundancy

while improving the model performance. Exhaustive
ablation studies show the effectiveness of components
in PAR and the visualizations show the reasonability
of task distance in PAR.

2. Related Work
2.1. Lifelong Learning

Many methods have been proposed to overcome catas-
trophic forgetting. Replay methods try to replay samples of
previous tasks when learning a new task from an episodic
memory [32,40] or a generative memory [3,28,37]. Parame-
ter regularization methods, including the prior-focused reg-
ularization [16, 19, 23, 27] and the data-focused regular-
ization [10, 21, 25], try to alleviate forgetting by introduc-
ing a regularization term in the loss function of the new
task. Parameter allocation methods based on the static
model [7,15,31,36] and the dynamic model [2,20,24,26,29,
30,34,38,39,42,45,47] overcome catastrophic forgetting by
allocating different parameters to different tasks.

Methods with relatedness. Several methods also con-
sider the utility of task relatedness [2, 15]. Expert Gate
[2] assigns dedicated experts and auto-encoders for tasks
and calculates the task relatedness by reconstruction error
of auto-encoders. The task relatedness is used to transfer
knowledge from the most related previous task. CAT [15]
defines the task similarity by the positive knowledge trans-
fer. It focuses on selectively transferring the knowledge
from similar previous tasks and dealing with forgetting be-
tween dissimilar tasks by hard attention. In this paper, we
propose a divergence estimation method based on prototype
distance to calculate the task relatedness used to measure
the task learning difficulty.

Methods with NAS. Static model based methods [7,31]
try to search a sub-model for each task with neural ar-
chitecture search (NAS). Dynamic model based methods
[20, 42, 46] adopt NAS to select an appropriate model ex-
pansion strategy for each task and face the high GPU mem-
ory, parameter, and time overhead. Instead, in this paper,
we propose a relatedness-aware hierarchical cell-based ar-
chitecture search to search compact architecture for each
expert with a lower GPU memory and time overhead. [8,14]
adopt NAS on multi-task learning.

2.2. Cell-based NAS

Neural architecture search (NAS) [11,33] aims to search
for efficient neural network architectures from a pre-defined
search space in a data-driven manner. To reduce the size
of the search space, cell-based NAS methods [22, 48, 49]
try to search for a cell architecture from a pre-defined cell
search space, where a cell is a tiny convolutional network
mapping an H ×W × F tensor to another H ′ ×W ′ × F ′.
The final model consists of a pre-defined number of stacked
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cells. The cell in NAS is similar to the residual block in
the residual network (ResNet), but its architecture is more
complex and is a directed acyclic graph (DAG). The oper-
ations in the search space are usually parameter-efficient.
NAS methods usually produce more compact architectures
than hand-crafted designs.

3. Method
We focus on the task-incremental scenario of lifelong

learning. Specifically, the model learns a sequence of tasks
T = {T1, . . . , Tt, . . . , TN} one by one and the task id
of sample is available during both training and inference.
Each task Tt has a training dataset, Dt

train = {(xt
i, y

t
i); i =

1, . . . , nt
train}, where yti is the true label and nt

train is the
number of training examples. Similarly, we denote the val-
idation and test dataset of task Tt as Dt

valid and Dt
test.

As shown in Fig. 2, the PAR divides previously learned
tasks into task groups G and assigns each group Gi a ded-
icated expert model Ei. For a new task, PAR calculates
the distances, which reflect the relatedness, between it and
existing task groups at first. Then, it adopt an appropriate
learning strategy from parameter allocation and regulariza-
tion for the new task based on the distances.

3.1. Task Distance via Nearest-Prototype Distance

The PAR calculates the distance between the new task
and each existing task at first, then it averages the distances
of tasks in the same group as the distance between the new
task and the group.

We calculate the distance between two tasks by the KL
divergence between their distributions. However, the KL
divergence is intractable because the true distributions of
tasks are usually agnostic. Instead, we estimate the KL di-
vergence by the features of data. To enhance estimation sta-
bility, we introduce an extra pre-trained extractor1 to gener-
ate a robust feature Xt

i for each image xt
i in task Tt. The

pre-trained extractor is only used for divergence estimation
and does not affect the learning of tasks. The number of
extra parameters introduced by the model is a constant and
does not affect the scalability of our method.

k-Nearest Neighbor Distance Given the features of dis-
tributions, a classical divergence estimation method for
multidimensional densities is the k-Nearest Neighbor (k-
NN) distance [44]. Suppose the feature distributions of the
new task Ti and an existing task Tj are qi and qj respec-
tively, and the features Xi = {Xi

1, . . . , X
i
n} and Xj =

{Xj
1 , . . . , X

j
m} are drawn independently from distributions

qi and qj , where n and m are the numbers of samples. The

1We adopt a ResNet18 pre-trained on the ImageNet. It does not intro-
duce unfairness because the generated features are not involved in model
training and prediction.

k-NN distance of feature Xi
l in Xi and Xj are denoted by

νk(l) and ρk(l) respectively. Specifically, the ρk(l) is the
Euclidean distance from Xi

l to its k-NN in {Xi
z}z ̸=l. Sim-

ilarly, the νk(l) is the distance from Xi
l to its k-NN in Xj .

Then, the KL divergence between distributions qi and qj are
estimated as follows:

KL(qi||qj) ≈ K̂L(qi||qj) =
d

n

n∑
l=1

log
νk(l)

ρk(l)
+ log

m

n− 1
,

(1)
where d is the feature dimension.

The k-NN distance is asymmetric and this is consistent
with the asymmetry of the KL divergence. The motivation
behind Eq. (1) is that the k-NN distance is the radius of a
d-dimensional open Euclidean ball used for k-NN density
estimation. Readers can refer to [44] for more details such
as convergence analysis.

Nearest-Prototype Distance However, the calculation of
the k-NN distance involves features of two tasks Ti and Tj

and violates the constraint of lifelong learning that only data
of the current task Ti are available. To overcome this prob-
lem, we propose the Nearest-Prototype distance to replace
the k-NN distance. Specifically, suppose the set of classes
in task T i is Ci, for each class c ∈ Ci, we maintain a pro-
totype feature U i

c , which is the mean of features of samples
belonging to the class c. Then, the Nearest-Prototype dis-
tance of Xi

l to Xi is defined as follows:

ρ(l) = ||Xi
l − U i

c(l)||, (2)

where || · || is the Euclidean distance and c(l) is the class
of Xi

l . Similarly, we denote the set of classes in task Tj by
Cj and the prototype features of Xj for each class c ∈ Cj

by U j
c . Then, the Nearest-Prototype distance of Xi

l to Xj

is denoted as

ν(l) = min
c

||Xi
l − U j

c ||2, c ∈ Cj . (3)

Then, by replacing the k-NN distances νk(l) and ρk(l)
in Eq. (1) by the the Nearest-Prototype distances ν(l) and
ρ(l), the KL divergence estimated by the Nearest-Prototype
distance is as follows:

KL(qi||qj) ≈ K̃L(qi||qj) =
∑
c∈Ci

1

nc

nc∑
l=1

log
ν(l)

ρ(l)
, (4)

where constant terms are omitted because we are only con-
cerned with the relative magnitude of KL divergence. The
Eqs. (2) to (4) only involve features of the new task Ti and
prototypes of the existing task Tj , which satisfies the con-
straint of lifelong learning. The storage cost of prototypes
is small and negligible.

The motivation behind Eq. (4) is intuitive. The Nearest-
Prototype distance ρ(l) reflects the relationship between the
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Figure 2. The architecture of PAR. PAR divides previously learned tasks into task groups and each group has a dedicated expert model.
Given a new task T5, PAR calculates the distance between it and existing task groups to measure its learning difficulty. Then, PAR learns
the new task by parameter regularization if it is easy to learn. Otherwise, PAR learns the new task by parameter allocation and search
compact architecture for each expert by a relatedness-aware hierarchical architecture search.

sample Xi
l in task Ti and its class prototype in feature space.

The Nearest-Prototype distance ν(l) reflects the relation-
ship between the sample Xi

l and class prototypes of exist-
ing task Tj in feature space. If the value of ρ(l) and ν(l)
are equal for each Xi

l , the class prototypes of two tasks are
close. In this case, the distribution of the two tasks are sim-
ilar, and the estimated KL divergence by Eq. (4) is 0.

Adaptive Learning Strategy Given the distance between
the new task Ti and each existing tasks by KL divergence,
we denote the distance s′i,g between the task Ti and a task
group Gg by the average of distances of tasks in the group
as follows:

s′i,g =
1

|Gg|

|Gg|∑
j′

KL(qi||qj′), (5)

where qi and qj′ represent feature distributions of task Ti

and the j′-th task in group Gg . The s′i,g ∈ [0,∞) since the
range of the KL divergence is [0,∞). However, we try to
use the distance to reflect the relatedness, which is usually
measured by a value between 0 and 1. So we map the s′i,g
into [0, 1] by a monotone increasing function as follows:

si,g = min(s′i,g, 1− e−2×s′i,g ), (6)

where e is the Euler’s number.
Suppose the smallest distance between the new task Tt

and existing groups is st,g∗ and the corresponding task
group is Gg∗, the PAR selects the learning strategy by com-
paring the st,g∗ with a hyper-parameter α. If st,g∗ ≤ α,

the new task is added to this related group Gg∗ and learned
by parameter regularization. Otherwise, the new task is as-
signed to a new group and learned by parameter allocation
because no existing task group is related to it.

3.2. Parameter Regularization

A new task Tt is easy for the expert model Eg∗ if it is
related to the group Gg∗ . PAR reuses the expert Eg∗ to
learn this task by parameter regularization. Inspired by LwF
[21], we adopt a parameter regularization method based on
knowledge distillation. Specifically, the loss function con-
sists of a training loss Lnew and a distillation loss Lold. The
training loss encourages expert Eg∗ to adapt to the new task
Tt and is the cross-entropy for classification as follows:

Lnew = −
∑

(x,y)∈Dt
train

log(pEg∗ (y|x)). (7)

The distillation loss encourages the expert Eg∗ to maintain
performance on previous tasks in the group Gg∗ . To calcu-
late it, we record the logits yj of the output head of each
previous task Tj for each sample x of task Tt. The distilla-
tion loss is as follows:

Lold = −
∑

(x,y)∈Dt
train

∑
Tj∈Gg∗

yj · log(pEg∗ (x)
j
), (8)

where yj and pEg∗ (x)
j are vectors with lengths equal to

the number of categories of the previous task Tj . The total
loss is

LPR = Lnew + λLold, (9)
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Method
S− S+ S in Sout Spl S long

AP AF AP AF AP AF AP AF AP AF AP AF

Finetune 0.180 -0.330 0.240 -0.230 0.180 -0.310 0.150 -0.370 0.210 -0.300 0.200 -0.400

(1) EWC 0.540 -0.010 0.370 -0.040 0.430 -0.120 0.510 -0.030 0.300 -0.170 0.270 -0.300

(2) ER 0.410 -0.130 0.430 -0.070 0.380 -0.170 0.540 -0.070 0.450 -0.080 - -

(3) HAT∗ 0.570 -0.010 0.570 0.000 0.580 -0.010 0.600 0.000 0.580 0.000 0.240 -0.100

(4)

Independent 0.560 0.000 0.570 0.000 0.570 0.000 0.610 0.000 0.590 0.000 0.570 0.000
PNN 0.620 0.000 0.520 0.000 0.570 0.000 0.620 0.000 0.540 0.000 - -
SG-F 0.636 0.000 0.615 0.000 0.655 0.000 0.641 0.000 0.620 0.000 - -
MNTDP-S 0.630 0.000 0.560 0.000 0.570 0.000 0.640 0.000 0.550 0.000 0.680 0.000
MNTDP-D 0.670 0.000 0.610 0.000 0.600 0.000 0.680 0.000 0.620 0.000 0.750 0.000
LMC 0.666 0.000 0.601 -0.014 0.695 0.000 0.667 -0.010 0.616 -0.035 0.639 -

PAR(our) 0.706 0.000 0.670 -0.017 0.699 0.000 0.694 0.000 0.700 0.000 0.773 -0.016

Table 1. The average performance (AP) and average forgetting (AF) on the six streams (S−, S+, S in, Sout, Spl, S long) in the CTRL
benchmark. We compare the PAR with four types of baselines: (1) parameter regularization, (2) replay, (3) parameter allocation with static
model, and (4) parameter allocation with dynamic model. The * corresponds to model using the AlexNet backbone.

where λ is a hyper-parameter to balance training and dis-
tillation loss. Note that our method is without memory and
does not require storing samples for previous tasks.

However, the expert Eg∗ may over-fit the new task whose
sample size is far less than tasks in the group Gg∗ , even
though the new task is related to the group. This leads to
interference with previously accumulated knowledge in the
expert Eg∗ . To avoid the above problem, PAR records the
maximum sample size of tasks in each task group. Sup-
pose the maximum sample size in the group Gg∗ is Q, PAR
freezes the parameters of expert Eg∗ except for the task-
specific classification head during the learning if the sample
size of the new task is less than 10 percent of Q. By transfer-
ring the existing knowledge in expert Eg∗ , only optimizing
the classification header is sufficient to adapt to the new task
because the new task is related to the group Gg∗ .

3.3. Parameter Allocation

If no existing groups are related to the new task Tt, PAR
assigns it to a new task group GM+1 with a new expert
EM+1, where M is the number of existing groups. We
adopt the cross-entropy loss for the task Tt as follows:

LPA = −
∑

(x,y)∈Dt
train

log(pEM+1
(y|x)). (10)

The number of experts and parameters in PAR is propor-
tional to the number of task groups, mitigating the growth
of parameters. To further reduce the parameter overhead of
each expert, we adopt cell-based NAS (refer to Sec. 2.2 for
details) to search for a compact architecture for it.

Each expert in PAR is stacked with multiple cells and
the search for expert architecture is equivalent to the search

for the cell architecture. Since the time overhead of NAS
becomes unbearable as the number of tasks increases, we
propose a relatedness-aware sampling-based architecture
search strategy to improve efficiency.

As shown in Fig. 2, we construct a hierarchical search
space. The coarse-grained search space contains cells used
by existing experts and an unknown cell whose architecture
will come from the fine-grained search space. Following
common practice [22, 48], the fine-grained search space is
a directed acyclic graph (DAG) with seven nodes (two in-
put nodes i1, i2, an ordered sequence of intermediate nodes
n1, n2, n3, n4, and an output node). The input nodes rep-
resent the outputs of the previous two layers. The output
is concatenated from all intermediate nodes. Each interme-
diate node has a directed candidate edge from each of its
predecessors. Each candidate edge is associated with six
parameter-efficient candidate operations.

To search a cell for the new task, we introduce a hyper-
parameter β. If st,g∗ ≤ β, PAR reuses the cell of expert Eg∗

for the task Tt. A task distance greater than α and less than
β indicates that the new task is not related enough to share
the same expert with tasks in the group Gg∗ but can use the
same architecture. If st,g∗ > β, PAR assigns the unknown
cell to the new expert and adopts a sampling-based NAS
method named MDL [48] to determine its architecture. Due
to limited space, we leave the details of the MDL in the
supplementary.

4. Experiments

4.1. Experimental Settings

Benchmarks We adopt two benchmarks the CTrL [42]
and the Mixed CIFAR100 and F-CelebA [15], which con-
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Method Finetune HAT CAT PAR

AP 0.6155 0.6178 0.6831 0.7122

Table 2. We compare the average performance (AP) of PAR with
two parameter allocation methods based on static model on the
mixed CIFAR100 and F-CelebA benchmark.

# Method
CIFAR100-10 MiniImageNet-20

AP(%) AF(%) AP(%) AF(%)

Finetune 0.280 -0.560 0.378 -0.314

1
EWC 0.608 -0.061 0.574 -0.144
MAS 0.579 -0.050 0.368 -0.238
LwF 0.655 -0.088 0.589 -0.169

2
GPM∗ 0.725 - 0.604 -

A-GEM 0.677 -0.120 0.524 -0.152

3

Independent 0.820 0.000 0.787 0.000
PN 0.821 0.000 0.781 0.000

Learn to Grow 0.791 0.000 - -
MNTDP-S 0.750 -0.000 - -
MNTDP-D 0.830 -0.000 - -

PAR 0.853 -0.020 0.816 -0.022

Table 3. PAR outperforms (1) parameter regularization methods,
(2) replay methods, and (3) parameter allocation methods with
dynamic model on classical benchmarks. The * corresponds to
model using the AlexNet backbone.

tain mixed similar and dissimilar tasks. CTrL [42] includes
6 streams of image classification tasks: S− is used to eval-
uate the ability of direct transfer, S+ is used to evaluate
the ability of knowledge update, Sin and Sout are used to
evaluate the transfer to similar input and output distribu-
tions respectively, Spl is used to evaluate the plasticity, Slong

consists of 100 tasks and is used to evaluate the scalability.
Similarly, Mixed CIFAR100 and F-CelebA [15] including
mixed 10 similar tasks from F-CelebA and 10 dissimilar
tasks from CIFAR100 [17].

Further, we adopt classical task incremental learning
benchmarks: CIFAR10-5, CIFAR100-10, CIFAR100-20
and MiniImageNet-20. CIFAR10-5 is constructed by divid-
ing CIFAR10 [17] into 5 tasks and each task has 2 classes.
Similarly, CIFAR100-10 and CIFAR100-20 are constructed
by dividing CIFAR100 [17] into 10 10-classification tasks
and 20 5-classification tasks respectively. MiniImageNet-
20 is constructed by dividing MiniImageNet [43] into 20
tasks and each task has 5 classes. We leave the results on
the CIFAR10-5 and CIFAR100-20 in the supplementary.

Baselines Firstly, we compare our method with two sim-
ple baselines Finetune and Independent. While Finetune
learns tasks one-by-one without any constraints, Indepen-

Method
CIFAR100-10 (10 tasks) S long (100 tasks)
AP M(M) AP M(M)

Finetune 0.180 0.607 0.200 0.607
Independent 0.820 6.070 0.570 60.705

PN 0.821 12.422 - -
Learn to Grow 0.791 1.926 - -

MNTDP-S 0.750 6.100 0.680 39.658
MNTDP-D 0.830 6.075 0.750 25.508

PAR 0.853 1.400 0.773 13.475

Table 4. Compared with existing parameter allocation methods
based on dynamic model, PAR obtains better average performance
(AP) with fewer model parameters (M, M=1e6) .

#
Allocation Strategy

Reg. AP M(M) T(h)
Fixed FS CS

1 ✓ 0.855 2.236 1.0
2 ✓ 0.861 2.277 1.9
3 ✓ ✓ 0.870 1.900 1.2
4 ✓ 0.775 0.244 1.0
5 ✓ ✓ 0.834 1.129 1.0
6 ✓ ✓ 0.856 1.210 1.4

PAR ✓ ✓ ✓ 0.853 1.400 1.1

Table 5. Ablation studies of components in PAR on the
CIFAR100-10. The Fixed represents using a fixed cell from
DARTs. The FS and CS represent fine-grained and coarse-grained
search space respectively. The Reg. represents the parameter reg-
ularization. The PAR makes the trade off among average perfor-
mance (AP), parameter overhead (M), and time overhead (T).

dent builds a model for each task independently. Then, we
present parameter regularization methods, including EWC
[16], LwF [21], and MAS [1], and replay methods, in-
cluding ER [6], GPM [35], and A-GEM [5]. Meanwhile,
we compare parameter allocation methods with the static
model, including HAT [36] and CAT [15], and parame-
ter allocation methods with the dynamic model, including
PN [34], Learn to Grow [20], SG-F [24], MNTDP [42],
LMC [29] with PAR.

Metrics Denote the performance of the model on Tj after
learning task Ti as ri,j where j ≤ i. Suppose the current
task is Tt, the average performance (AP) and average for-
getting (AF) are as follows:

AP =
1

t

t∑
j=1

rt,j , AF =
1

t

t∑
j=1

rt,j − rj,j . (11)

To evaluate the parameter overhead, we denote the total
number of the model as M.

7781



0.000.000.00 0.250.250.25 0.500.500.50 0.750.750.75
Alpha

0.80

0.82

0.84

0.86

0.88

0.90

AP

Performance vs Alpha

(a) Average performance (AP)

0.000.000.00 0.250.250.25 0.500.500.50 0.750.750.75
Alpha

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Si
ze

(M
)

Size(M) vs Alpha

(b) Model size

0.000.000.00 0.250.250.25 0.500.500.50 0.750.750.75
Alpha

3
4
5
6
7
8
9

10

#E
xp

er
t

#Expert vs Alpha

(c) Experts

0.000.000.00 0.250.250.25 0.500.500.50 0.750.750.75
Alpha

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e(
h)

Time(h) vs Alpha

(d) Time

Figure 3. Ablation studies of α (Alpha) when β = 0.75. The larger α encourages the model to reuse experts. so the model size and number
of experts decreases with the increase of α. The α is independent of the architecture search, so the learning time is stable relative to it.
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Figure 4. Ablation studies of β (Beta) when α = 0.5. The β has little effect on the average performance and size of model, and conversely
has a great effect on the learning time because the determine the frequency of architecture search. The larger β encourages the model to
reuse architectures of existing experts.

Implementation details We implement PAR by the Py-
Torch and open the source code2. We set the number of
cells of each expert in PAR as 4, and set the α to 0.5 and
the β to 0.75 for all tasks. We adopt the SGD optimizer
whose initial learning rate is 0.01 and anneals following a
cosine schedule. We also set the momentum of SGD to 0.9
and search weight decay from [0.0003, 0.001, 0.003, 0.01]
according to the validation performance. The results are av-
eraged across three runs with different random seeds.

Without special instructions, following MNTDP [42],
we adopt a light version of ResNet18 [13] with multiple
output heads as the backbone for baselines. For the perfor-
mance on CTrL, we report the results from MNTDP [42]
and LMC [29]. For the performance on mixed CIFAR100
and F-CelebA, we report the results from CAT [15]. For the
performance on classical benchmarks, we: report the results
of RPSnet [31], InstAParam [7], and BNS [30] from origin
papers; adopt the implementation of [4] for memory-based
methods; and adopt our implementation for the others.

4.2. Comparison with baselines

At first, we evaluate PAR on benchmarks with mixed
similar and dissimilar tasks. As shown in Tab. 1, PAR out-
performs baselines on all six streams in CTrL. One reason
is that PAR allows knowledge transfer among related tasks
while preventing interference among tasks not related. For

2https://github.com/WenjinW/PAR

Insects

Vehicles 2Fish

Flowers

Food containers

Fruit and vegetables

Household electrical devices

Household furniture

Large carnivores

Large man-made 
outdoor things

Large natural 
outdoor scenes

Large omnivores 
and herbivores

Medium-sized 
mammals

People
Reptiles

Small mammals

Trees

TaskExpert Label

Aquatic mammals

Non-insect 
invertebrates

1

0

9

2

3

5

4

6

7

8

Vehicles 1

Figure 5. Visualization of task groups and experts on CIFAR100-
Coarse. The PAR groups semantically related tasks into the same
group. We distinguish the different groups by different colors.

example, performance on stream S+ shows that PAR can
update the knowledge of the expert for the task t−1 by the
task t+1 with the same distribution and more samples. Per-
formance on streams S− and Sout shows that our method
can transfer knowledge from experts of tasks related to the
new task. Another reason is that a task-tailored architecture
helps each expert perform better. Moreover, performance
on stream S long shows that PAR is scalable for the long task
sequence. Similarly, results in Tab. 2 show that PAR out-
performs parameter allocation methods with static models.

Further, we evaluate the PAR on classical benchmarks.
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Figure 6. The heat-maps of task distances of four streams in CTrL
benchmark. The PAR can recognize the related tasks in S−, S+,
and Sout exactly.

Results in Tab. 3 show that PAR outperforms parameter
regularization methods, memory-based methods, and pa-
rameter allocation methods with dynamic model on the
CIFAR100-10 and MiniImageNet-20.

At last, we analyze the parameter overhead3 of PAR on
CIFAR100-10 and S long. Compared with baselines, the
PAR obtains better average performance with fewer model
parameters. The reason is that the the allocated experts in
PAR have compact architecture and are parameter efficient.
Performance on the stream S long shows that PAR is scalable.

4.3. Ablation Studies

We analyze the effects of components in PAR and the
results are listed in Tab. 5. First, we evaluate the impact
of hierarchical architecture search on parameter allocation.
Compared with using a fixed cell from DARTs [22] (#1),
searching cells from fine-grained space can improve model
performance (#2). Combined with coarse-grained space,
searching from the hierarchical space can further improve
performance while reducing the time and parameter over-
head (#3). Then, we find that parameter regularization alone
is time efficient, but its performance is low (#4). Finally,
by selecting an appropriate strategy from parameter alloca-
tion and regularization based on the learning difficulty of
each new task, PAR make a trade off among average perfor-
mance, parameter overhead, and time overhead.

We analyze the impact of important hyper-parameters α
and β in PAR on the CIFAR100-10. The α determines the
reuse experts during the learning and the larger α encour-

3We ignore the parameter overhead of the extractor (11.18M) in diver-
gence estimation, which is fixed and will not become a bottleneck with the
increase of tasks.

ages the model to reuse experts. Results in Fig. 3 show that
the model size and number of experts decreases with the in-
crease of α. The β determines the frequency of architecture
search and the larger β encourages the model to reuse archi-
tectures of existing experts Results in Fig. 4 show that the
learning time decreases with the increase of β.

4.4. Visualization

To analyze the task distance in PAR, we construct a new
benchmark CIFAR100-coarse by dividing CIFAR100 into
20 tasks based on the coarse-grained labels. The illustra-
tion in Fig. 5 shows that the PAR can obtain reasonable
task groups. For example, the PAR adaptively puts tasks
about animals into the same groups, such as the Aquatic
mammals, Large omnivores and herbivores, Fish, and so on.
The Food containers and Household electrical devices are
divided into the same group since they both contain cylin-
drical and circular objects. It also finds the relation between
Non-insect invertebrates and Insects.

Moreover, we visualize the heat maps of task distances
obtained by PAR on four streams of CTrL in Fig. 6. The
distance between the first and the last task on streams S−,
S+ and Sout are small, which is consistent with the fact that
they all come from the same data distribution. Instead, the
distribution of the last task on stream Sin is perturbed from
the distribution of the first task, so their distance is large.
The above results show that PAR can obtain reasonable task
distance and relatedness.

5. Conclusion
In this paper, we propose a new method named

Parameter Allocation & Regularization (PAR). It allows the
model to adaptively select an appropriate strategy from pa-
rameter allocation and regularization for each task based on
the task learning difficulty. Experimental results on multiple
benchmarks demonstrate that PAR is scalable and signifi-
cantly reduces the model redundancy while improving per-
formance. Moreover, qualitative analysis shows that PAR
can obtain reasonable task relatedness. Our method is flexi-
ble, and in the future, we will introduce more relatedness es-
timation, regularization, and allocation strategies into PAR.
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