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Abstract
Transferability of adversarial examples is critical for

black-box deep learning model attacks. While most existing
studies focus on enhancing the transferability of untargeted
adversarial attacks, few of them studied how to generate
transferable targeted adversarial examples that can mislead
models into predicting a specific class. Moreover, existing
transferable targeted adversarial attacks usually fail to suf-
ficiently characterize the target class distribution, thus suf-
fering from limited transferability. In this paper, we pro-
pose the Transferable Targeted Adversarial Attack (TTAA),
which can capture the distribution information of the tar-
get class from both label-wise and feature-wise perspec-
tives, to generate highly transferable targeted adversarial
examples. To this end, we design a generative adversar-
ial training framework consisting of a generator to produce
targeted adversarial examples, and feature-label dual dis-
criminators to distinguish the generated adversarial exam-
ples from the target class images. Specifically, we design
the label discriminator to guide the adversarial examples
to learn label-related distribution information about the
target class. Meanwhile, we design a feature discrimina-
tor, which extracts the feature-wise information with strong
cross-model consistency, to enable the adversarial exam-
ples to learn the transferable distribution information. Fur-
thermore, we introduce the random perturbation dropping
to further enhance the transferability by augmenting the di-
versity of adversarial examples used in the training process.
Experiments demonstrate that our method achieves excel-
lent performance on the transferability of targeted adver-
sarial examples. The targeted fooling rate reaches 95.13%
when transferred from VGG-19 to DenseNet-121, which
significantly outperforms the state-of-the-art methods.

∗Zhibo Wang is the corresponding author.

1. Introduction
As an important branch of artificial intelligence (AI),

deep neural networks (DNNs) contribute to many real-
life applications, e.g., image classification [1, 2], speech
recognition [3, 4], face detection [5, 6], automatic driv-
ing technology [7], etc. Such broad impacts have mo-
tivated a wide range of investigations into the adversar-
ial attacks on DNNs, exploring the vulnerability and un-
certainty of DNNs. For instance, Szegedy et al. showed
that DNNs could be fooled by adversarial examples crafted
by adding human-indistinguishable perturbations to origi-
nal inputs [8]. As successful adversarial examples must be
imperceptible to humans but cause DNNs to make a false
prediction, how to design adversarial attacks to generate
high-quality adversarial examples in a general manner re-
mains challenging.

Adversarial attack methods can be divided into untar-
geted attacks and targeted attacks. Untargeted attacks try
to misguide the model to predict arbitrary incorrect la-
bels, while targeted adversarial attacks expect the gener-
ated adversarial examples can trigger the misprediction for
a specific label. The transferability of adversarial examples
is crucial for both untargeted and targeted attacks, espe-
cially in black-box attack scenarios where the target model
is inaccessible. However, most existing studies focus on
enhancing the transferability of untargeted adversarial at-
tacks, through data augmentation [9, 10], model aggrega-
tion [11,12], feature information utilization [13–15], or gen-
erative methods [16–18]. Although some of them could be
extended to the targeted adversarial attacks by simply mod-
ifying the loss function, they could not extract sufficient
transferable information about the target class due to the
overfitting of the source model and the lack of distribution
information of the target class, thus demonstrating limited
transferability.
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Some recent works [15, 19–21] studied how to boost the
transferability of targeted adversarial attacks by learning the
target class information from either the label or the feature
perspective, leveraging the label probability distribution and
feature maps respectively. The label-wise information, of-
ten output by the last layer of the classification model, can
effectively reflect the direct correlation between image dis-
tribution and class labels. However, learning with just the
label-wise information is proven to retain high-level seman-
tic information of the original class [22], thus leading to low
cross-model transferability. The feature-wise information,
which can be obtained from the intermediate layer of the
classification model, has been proven [23] to have transfer-
ability due to the mid-level layer of different DNNs follow-
ing similar activation patterns. However, the feature-wise
information is not sensitive to the target label and fails to
trigger the targeted misclassification.

In summary, only the information extracted from the la-
bel or the feature cannot generate high-transferability tar-
geted adversarial examples. Meanwhile, most existing tar-
geted attacks assume that the training dataset of the target
model (i.e., target domain) is accessible and could be lever-
aged by the attackers to train a shadow model in the target
domain as the simulation of the target model, which how-
ever is not practical in realistic scenarios.

In this paper, we aim to generate highly transferable tar-
geted adversarial examples in a more realistic but challeng-
ing scenario where the attacker cannot access the data of
the target domain. To this end, we are facing two main
challenges. The first challenge is how to generate targeted
adversarial examples with both cross-model and cross-
domain transferability? Cross-domain images usually vary
significantly in characteristic distribution (e.g., have differ-
ent attributes even labels), making it difficult for models
to transfer the knowledge to unknown domains. Besides,
when involved models adopt different architectures, do-
main knowledge learned by the source model becomes less
transferable, resulting in more difficulties in cross-model
and cross-domain transferable adversarial attacks. The sec-
ond challenge is how to improve the transferability of tar-
geted adversarial attacks? As the targeted adversarial at-
tack needs to distort the ground-truth label and trigger the
model to predict the target label simultaneously, causing the
transferability of the targeted attack hard to achieve due to
the dual objective of obfuscating original class information
and recognizing target class information.

To solve such challenges, we propose Transferable Tar-
geted Adversarial Attack (TTAA) to generate highly trans-
ferable targeted adversarial examples. The main idea of
our method is to capture the distribution information of the
target class from both label-wise and feature-wise perspec-
tives. We design a generative adversarial network, which
generates targeted adversarial examples by a generator and

captures the distribution information of the target class by
label-feature dual discrimination, consisting of the label dis-
criminator and the feature discriminator. More specifically,
the label discriminator learns the label-related distribution
information from the label probability distribution and the
feature discriminator extracts transferable distribution in-
formation of the target class via feature maps output by the
intermediate layer of the label discriminator. Meanwhile,
we propose random perturbation dropping to enhance our
training samples, which applies random transformations to
augment the diversity of the adversarial examples used dur-
ing the training process to improve the robustness of the
distribution information of the target class on the adversar-
ial examples. In generative adversarial training, such dis-
tribution information extracted by discriminators guides the
generator to acquire the label-related and transferable dis-
tribution information of the target class. Therefore the tar-
geted adversarial examples achieve both high cross-model
and cross-domain transferability.

Our main contributions are summarized as follows.

• We propose a general framework for targeted adver-
sarial attack that works in both non-cross-domain and
cross-domain scenarios. This framework could be eas-
ily integrated with other targeted adversarial attacks to
improve their cross-model and cross-domain targeted
transferability.

• Our proposed Transferable Targeted Adversarial At-
tack could extract the target class distribution from
feature-wise and label-wise levels to promote pertur-
bations to acquire label-related and transferable distri-
bution information of the target class, thus generating
highly transferable targeted adversarial examples.

• Extensive experiments on diverse classification models
demonstrate the superior targeted transferability of ad-
versarial examples generated by the proposed TTAA
as compared to state-of-the-art transferable attacking
methods, no matter whether the attack scenario is
cross-domain or non-cross-domain.

2. Related Work
Since Szegedy et al. [8] demonstrated the existence

of adversarial examples, many adversarial attack methods
[11–13, 24–28] have been proposed to improve the trans-
ferability of adversarial examples. We divide these trans-
ferable adversarial attack methods into two categories via
attack objective, namely transferable untargeted adversarial
attacks and transferable targeted adversarial attacks.

Transferable untargeted adversarial attacks aim to
deceive the target model to output incorrect results no mat-
ter what the misclassifications are. Dong et al. [10] inte-
grated the momentum into the iterative process for getting
stable update directions and avoiding poor local optimum,

20535



thus resulting in more transferable adversarial examples.
Xie et al. [9] created diverse input patterns by adding ran-
dom transformations into the input images at each iteration
to enhance the transferability. Poursaeed et al. [16] pro-
posed generative models for creating universal perturbation
and image-independent perturbation to improve transfer-
ability. Naseer et al. [17] crafted adversarial examples with
relative cross-entropy loss function, which enables domain-
invariant perturbations and launches transferable adversar-
ial attacks. Wang et al. [14] utilized aggregated gradients
to disrupt important object-aware features that dominate
the model decision to enhance transferability. Zhang et
al. [18] leveraged a generative model to disrupt low-level
features of input image extracted by a pre-trained model
based on the ImageNet dataset, enhancing the transferabil-
ity of the adversarial examples. Zhu et al. [29] optimized
both the model gradient and data distribution gradient to
directly push the images away from their original distribu-
tion, thereby boosting the transferability. Those untargeted
adversarial attack methods would suffer from low transfer-
ability when performing targeted adversarial attacks.

Transferable targeted adversarial attacks aim to mis-
guide the target model to predict specific results, i.e., the tar-
get label. Inkawhich et al. [19,20] applied one or more aux-
iliary neural networks to learn the layer-wise deep feature
distribution of the target class to improve the targeted trans-
ferability. Gao et al. [15] measured similarities between
feature maps by high-order statistics with translation in-
variance to obtain transferable targeted adversarial attacks.
Naseer et al. [21] aligned the global distribution and local
neighborhood structure between the source domain and tar-
get, enhancing the targeted transferability. Byun et al. [30]
diversified the input through differentiable rendering 3D ob-
jects to improve the transferability of the targeted adver-
sarial examples. Those transferable targeted adversarial at-
tacks have limited transferability because they only utilize
feature or label information and cannot adequately charac-
terize the target class information. Different from existing
works, our method leverages label-feature dual distribution
information of the target class to craft adversarial exam-
ples with high cross-model transferability and cross-domain
transferability.

3. Targeted Adversarial Attack
Given a deep learning classification model f(x) : X →

Y, where X and Y denote the images and labels, respec-
tively. Let x ∈ X denote an image from the image domain
X, which is of the size of RH×W×D with H , W , D denot-
ing the height, width, and depth of the image, respectively,
and y ∈ Y denote the ground truth label of the image x.

Targeted adversarial attack aims to craft the perturbation
δ ∈ RH×N×W that misguides the prediction result of the
classifier f(·) from the ground truth label y to the targeted
label yt. To ensure the indistinguishability of the perturba-
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(a) Cross-Domain Targeted Attack
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Figure 1. Targeted adversarial attack produces adversarial exam-
ples that mislead the deep learning model into predicting a specific
class. In cross-domain scenarios, attackers craft adversarial exam-
ples with a domain (Domain A) different from the target domain
(Domain B), while in non-cross-domain scenarios, attackers and
users share the same domain (Domain B).

tion, ℓp-norm is used to regularize the perturbation δ to the
range ϵ. The optimization goal of the targeted adversarial
attack is as follows.

min
δ

ℓ(f(x+ δ), yt), s.t.||δ||p ≤ ϵ, (1)
where the loss function ℓ(·) is adopted to measure the dis-
tance between the predicted result of the adversarial exam-
ple f(x + δ) and the target label yt. The final targeted ad-
versarial example is generally the summation of the original
image x and the perturbations δ, i.e., xadv = x+ δ.

Fig. 1 shows the targeted adversarial attacks under cross-
domain and non-cross-domain attack scenarios. Here, P
and Q denote the source domain owned by the attacker and
the target domain of the target model, respectively. Fig. 1a
describes the scenario of a cross-domain targeted adversar-
ial attack. The attacker crafts targeted adversarial exam-
ples using source domain images xs ∼ P on the source
model (i.e., shadow model), which is then used to mislead
the target model to output the predefined target class. Note
that there is a special case where the attacker and the target
model share the same domain, i.e., P = Q, as shown in
Fig. 1b. We refer to this scenario as the non-cross-domain
targeted adversarial attack.

20536



  Adversarial Example Generation

Source Domain
Image

Target Class 
Image

Feature Map

Label 
Discriminator

Feature
Discriminator

Adversarial 
Example

Perturbation

  Feature-Label Dual Discrimination

Label 
Distributions

......
.........

Feature
Similarity

Generator

Pixel-wise Addition
Matrix Multipliction
Weight Update

Image

Random 
Perturbation 
Dropping

Mask

Figure 2. Framework of TTAA. The framework comprises two
main modules. The adversarial example generation module in-
cludes a generator for crafting the adversarial examples and a ran-
dom perturbation dropping scheme for data augmentation during
the training process. The feature-label dual discrimination module
distinguishes the adversarial examples and the target class images
from feature-wise and label-wise perspectives.

4. Our Method
In this section, we first provide an overview of the pro-

posed TTAA, and then describe the detailed design of each
module in our framework and our training strategy.

4.1. Overview of TTAA
Existing transferable adversarial attacks focusing on the

cross-model transferability of adversarial examples make a
strong assumption that the domain of the target model is
accessible for the attackers to perform adversarial attacks
in non-cross-domain scenarios, which is not applicable in
more practical cross-domain scenarios. Especially for tar-
geted adversarial attacks, the lack of an appropriate descrip-
tion of the target class distribution further limits both the
cross-model and cross-domain transferability. Therefore,
the key point of the highly transferable targeted adversarial
attack is to design a framework that enables the adversarial
examples to learn the label-aware and transferable distribu-

tion knowledge of the target class images to achieve cross-
model and cross-domain transferability.

To address the above issues, we propose TTAA to gener-
ate highly transferable targeted adversarial attacks. The ba-
sic idea of TTAA is to design an adversarial training method
to enable the generated adversarial examples can fully cap-
ture the distribution information of the target class from
both label and feature perspectives. We present the frame-
work of TTAA in Fig. 2. Specifically, TTAA comprises two
main modules, i.e., the adversarial example generation and
the label-feature dual discrimination modules. With the in-
put of the image xs from the source domain, we create the
adversarial example xadvs from the adversarial example gen-
eration module, which includes a generator for crafting the
perturbation and a random perturbation dropping scheme
for data augmentation. Further, the feature-label discrimi-
nation module, which consists of the label discriminator and
feature discriminator, receives adversarial examples xadvs

and the target class example xt to make a distinction from
both label and feature perspectives. The label discriminator
Dψ plays two roles: 1) a label classifier for the adversar-
ial example xadvs and the target class image xt, capturing
label-aware information for both inputs respectively; 2) a
feature extractor to create latent feature maps (intermediate
layer outputs) for both xadvs and xt. The feature discrimina-
tor Dξ further guides the adversarial examples to learn the
feature-aware information of the target class via a feature-
wise distance loss. The details of each component and our
training strategy are described as follows.

4.2. Label-Feature Dual Discrimination
To help adversarial examples learn the distribution in-

formation of the target class from the label perspective, we
measure the distance between targeted adversarial examples
and target class images. With the input of the image from
adversarial example xadvs and the target class example xt,
the label discriminator outputs the predicted corresponding
label Dψ(xadvs ) and Dψ(xt). Moreover, to further leverage
the feature information from xadvs and xt, we obtain the cor-
responding feature map radvs and rt from intermediate layer
outputs ofDψ . To measure the distance between the two la-
bel probability distributions, we employ the KL divergence,
which can be calculated as follows.

KL
(
Dψ

(
xadvs

)∥∥∥Dψ(xt)) =

1

N

N∑
i=1

K∑
j=1

σ
(
Dψ

(
xadv(i)s

))
j
log

σ
(
Dψ

(
x
adv(i)
s

))
j

σ
(
Dψ

(
xt(i)

))
j

,
(2)

where N denotes the number of input samples, K repre-
sents the output dimension of the label discriminator, and
σ(·) stands for the softmax function with ()j denoting the
output probability for label j in the K possible labels. Con-
sidering that the KL divergence metric is asymmetric, we
further calculate the total label-wise distance (i.e., the label
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loss) is expressed as follows.

Llabel = KL
(
Dψ

(
xadvs

)
∥Dψ (xt)

)
+KL

(
Dψ (xt)

∥∥Dψ (
xadvs

))
.

(3)

Furthermore, to facilitate the adversarial examples to
learn the distribution information of the target class from
the feature perspective, we measure the similarity between
the feature maps radvs and rt extracted by the label discrim-
inator. Specifically, the feature discriminator is a one-class
classifier, where the feature maps radvs and rt extracted by
the label discriminator serve as inputs and the probabilities
of the feature maps radvs and rt being from the target class
are outputs, i.e.,Dξ(radvs ) andDξ(rt). The output of 1 from
Dξ indicates that the feature map is from the target class
image, and an output of 0 means the opposite. Then, the
feature-wise distance between the adversarial example and
the target class is computed as

Lfeature =BCE
(
Dξ

(
rs
adv

)
, 1
)

=−
N∑
i=1

logDξ
(
radv(i)s

)
,

(4)

where BCE(·) denotes the binary cross entropy function.
Combining the label-wise distance Llabel and the

feature-wise distance Lfeature, the distribution information
of the target class can be fully captured. With such in-
formation, which has high cross-model and cross-domain
transferability, we are likely to generate highly transferable
targeted adversarial examples via TTAA.

4.3. Random Perturbation Dropping (RPD)
Fig. 3a presents general adversarial example generation

from the original image during the training process and test
process. Adversarial examples used for training are the sim-
ple summations of the original images and perturbations. It
is worth noting that there may exist a case where the adver-
sarial perturbations generated by the trained generator are
concentrated in a certain region of the image, as shown in
the test process of the Fig. 3a, which decreases the robust-
ness of the distribution information of the target class on
adversarial examples and compromises the transferability.

Instead, to ensure high transferability, we need to ren-
der the perturbations that matter uniformly distributed over
the entire image. To achieve this goal, we incorporate the
random perturbation dropping (i.e., RPD) technique into
the adversarial example generation in the training process.
Specifically, as shown in the dashed frame of Fig. 2, the
RPD generates a random mask M with the same size as the
perturbation, which consists of entries of either 0 or 1. By
matrix multiplying the random mask M and the perturba-
tion δ, we can remove several squares of pixels from the
perturbation. Formally, after incorporating the random per-
turbation dropping process, the final generated adversarial
image xadvs is computed as

TRAINING PROCESS TEST PROCESS

Adversarial 
example

Orignal 
image Perturbations Orignal 

image
Adversarial 

example

(a) General Adversarial Example.
TRAINING PROCESS TEST PROCESS

Orignal 
image

Perturbations 
after RPD

Adversarial 
example

Adversarial 
example

Orignal 
image

(b) Adversarial Example after Random Perturbation Dropping.

Figure 3. Comparison between general adversarial example and
adversarial example after random perturbation dropping (RPD) in
training and test process. We can observe that by performing RPD
on the adversarial examples in the training phase, the generated ad-
versarial examples visually have more density in the testing phase.

xadvs = M × δ + xs, (5)

where xs is the original source domain image.
We show the adversarial example generation process

with/without the random perturbation dropping in Fig. 3,
where Fig. 3a shows the general training process of adver-
sarial examples while Fig. 3b shows the effect of RPD on
the adversarial example.

4.4. Generative Adversarial Training
We generalize the adversarial example generation as an

optimization problem, for which we design the loss function
LG and LD for the generator and the feature discriminator,
respectively. By minimizing the loss functions, we itera-
tively update the parameters θ of the generator Gθ and the
parameters ξ of the feature discriminator Dξ via gradient
descent.

θ ← min LG, ξ ← min LD. (6)

In order for the generator Gθ to learn the extracted label-
feature dual distribution information and generate highly
transferable targeted adversarial examples, we design an
adversarial training method, which involves the adversarial
process between the generator and the feature discriminator.
Given the source domain images, xs, as inputs, the gener-
ator Gθ creates the perturbations δ. To avoid being easily
identified by humans, we need to restrict the perturbations
to a range of [−ϵ, ϵ]. Accordingly, the perturbation is gen-
erated as follows. We summarize the complete procedures
of the generative adversarial training in Algorithm 1.

δ = clip (Gθ (xs)) , (7)

where clip(·) represents a projection operation that restricts
the xadvs to the range of [x− ϵ, x+ ϵ].

Recall that the training objective of the generator is to
successfully deceive the discriminator by minimizing the
label-wise and feature-wise distances between the adversar-
ial image and the target class image. Combining Eq. (3) and
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Algorithm 1: Training of TTAA
Input: The source domain image xs, the target class

image xt, pre-trained label discriminator Dψ , max
perturbation ϵ, the number of iteration T , and
maximum perturbation magnitude ϵ.

Output: Generator Gθ
1 Initialize the generator Dθ and feature discriminator Dξ.
2 for i = 1, · · · , T do
3 Get batches of source domain xs and the target class

image xt respectively
4 Get the adversarial perturbations δ = Gθ(xs)
5 Generate random mask M for random dropping the

perturbations, get adversarial example
xadvs = M × δ + xs

6 Clip xadvs to meet ∥xadvs − xs∥∞ ≤ ϵ

7 Get feature maps: radvs and rt
8 Calculate label loss:
9 Llabel = KL(Dψ(x

adv
s ), Dψ(xt))

10 Calculate feature loss:
11 Lfeature = BCE(Dξ(r

adv
s ), 1)

12 Calculate loss of the generator:
13 LG = Llabel + Lfeature
14 Update θ ← minLG
15 Calculate loss of feature discriminator:
16 LD = BCE(Dξ(r

adv
s ), 0) + BCE(Dξ(rt), 1)

17 Update ξ ← minLD
18 end
19 return Generator Dθ

Eq. (4), the overall loss function of the generator to be min-
imized is described as

LG = Llabel + Lfeature. (8)

The training objective of the feature discriminator is to
successfully distinguish the feature map of the adversarial
image from the target class. In other words, the feature dis-
criminator should output 0 when taking the feature map of
the adversarial image as input but output 1 when fed with
the feature map of the target class image. The loss function
of the feature discriminator Dξ is defined as follows.

LD = BCE
(
Dξ

(
rs
adv(i)

)
, 0

)
+BCE

(
Dξ

(
rt

(i)
)
, 1

)
= −

N∑
i=1

logDξ
(
r
adv(i)
s

)
−

N∑
i=1

log
(
1−Dξ

(
rt

(i)
))

.
(9)

5. Performance Evaluation
In this section, we conduct experiments to evaluate the

performance of the proposed TTAA. We first present the ex-
perimental setup. Then, we sequentially provide the exper-
imental results in non-cross-domain and cross-domain sce-
narios. We further investigate the performance of TTAAa-
gainst defense methods (i.e., adversarial training). Finally,
some ablation studies are performed.

5.1. Experimental Setup

Datasets. Following prior works [17, 21], we use two
datasets in our experiments, i.e., the ImageNet dataset [31]
and the Paintings dataset. For the non-cross-domain sce-
nario, we use ImageNet as both the source domain and tar-
get domain. We set three target classes, i.e., Great Grey
Owl, Goose, and French Bulldog, and sample 1300 images
for each to form the target class dataset. From the samples
of non-target classes, we randomly choose 50,000 images as
the training set and 10,000 images as the testing set. For the
cross-domain scenario, we take Paintings and ImageNet as
the source domain and target domain, respectively. We fol-
low the same target class dataset generation method as the
non-cross-domain scenario. Then, from Paintings dataset,
we select 50,000 images as the training set and 10,000 im-
ages as the testing set. Note that in our experiments, we will
report the results averaged over three selected target classes.
Implementation Details. Following baseline methods [16,
17,21], we choose the ResNet network as the generator. We
employ the commonly used models in PyTorch, including
VGG-19 [32], ResNet-50 [33], and DenseNet-121 [34], as
the label discriminator. Moreover, we use a simple one-
class classification model with four convolutional layers as
the feature discriminator, which takes the feature maps (i.e.,
the output of the label discriminator) as input and outputs
the probability that the feature map belongs to the target
class. Note that each layer of the label discriminator would
produce an intermediate result (i.e., feature map), but in our
experiments, we use the feature map generated by the 17th
layer of the VGG-19 network, the 4th layer of the ResNet-
50 network, and the 5th layer of the DenseNet-121 network.

During the training process, the parameters of the label
discriminator are fixed, while those of the generator and the
feature discriminator are iteratively updated. The training
process for each model lasts for 60 epochs with a batch
size of 64. We employ the Adam optimizer with an ini-
tial learning rate of 0.001. We set the perturbation threshold
as ϵ = 16/255.

During the testing process, we use a wide variety of
models with different architectures as the target model to
evaluate the transferability of adversarial examples, includ-
ing VGG-16 [32], VGG-19 [32], ResNet-50 [33], ResNet-
152 [33], DenseNet-121 [34], DenseNet-201 [34] and
SqueezeNet-v1.1 [35]. To further examine the attack per-
formance against possible defenses, we also take some ad-
versarially trained models as the target model, i.e., Adv-
VGG-19, Adv-ResNet-50, and Adv-DenseNet-121.
Performance Metric. To measure and compare the ef-
fectiveness of targeted adversarial examples, we employ
the targeted fooling rate (TFR) as the performance metric,
which characterizes the proportion of generated adversar-
ial examples that are predicted by the target model as the
attacker-chosen target class. Formally, TFR is computed as

20539



Source
Target Attack VGG-16 VGG-19 Res-50 Res-152 Dense-121 Dense-201 Squeeze-v1.1

VGG-19

PGD 6.3 99.92* 0.28 0.08 0.18 0.14 0.0
MI-FGSM 13.86 100.0* 0.68 0.18 0.56 0.62 0.0
DI-FGSM 22.93 99.64* 1.04 0.24 0.94 0.58 0.0

GAP 69.71 100.0* 24.89 27.10 33.56 27.56 1.78
CDA 71.76 99.14* 25.41 27.96 34.96 26.58 2.44
TTP 77.25 98.60* 28.76 31.76 41.24 28.14 14.18

ODI-MI-TI 85.41 99.80* 70.38 43.16 72.75 72.46 14.87
DRA+PGD 75.02 89.52* 74.04 67.12 87.70 86.24 74.96

ours 92.95 99.33* 79.24 67.58 95.13 89.29 31.68

Res-50

PGD 0.18 0.22 99.86* 1.0 0.6 0.58 0.0
MI-FGSM 0.4 0.32 100.0* 2.31 2.33 4.55 0.0
DI-FGSM 1.6 1.97 99.84* 11.25 11.34 14.72 0.0

GAP 49.11 51.78 98.89* 79.56 57.11 52.44 4.22
CDA 53.75 55.83 99.39* 75.44 70.93 63.24 2.45
TTP 76.54 62.94 98.73* 78.37 78.64 74.43 35.98

ODI-MI-TI 70.24 71.79 98.26* 69.34 78.52 88.23 21.60
DRA+PGD 62.16 59.94 96.54* 82.18 84.66 84.89 52.65

ours 88.96 83.34 99.16* 80.48 90.49 92.34 56.71

Dense-121

PGD 0.28 0.22 1.32 0.34 99.86* 3.23 0.0
MI-FGSM 0.54 0.05 2.68 1.12 100.0* 10.2 0.0
DI-FGSM 0.82 0.74 5.52 2.57 99.88* 18.34 0.0

GAP 39.74 42.84 45.4 38.67 99.09* 83.33 3.56
CDA 43.23 47.22 50.05 34.52 98.94* 87.76 4.61
TTP 58.31 66.19 62.81 64.54 96.32* 90.02 20.28

ODI-MI-TI 44.27 58.30 52.79 37.43 99.65* 82.67 19.74
DRA+PGD 59.56 57.02 79.46 75.14 95.92* 83.10 56.14

ours 72.78 72.48 81.68 70.13 99.16* 91.59 35.39

Table 1. Targeted fooling rates (%) of different attacks against different target models in non-cross-domain scenarios. “*” indicates
white-box attack since the target model is the source model, and the best results are highlighted in bold.

Source
Target Attack VGG-16 VGG-19 Res-50 Res-152 Dense-121 Dense-201 Squeeze-v1.1

TTP 68.46 - 28.02 30.67 42.54 39.62 10.63
VGG-19 ours 77.05 - 32.63 35.20 39.12 41.87 29.14

TTP 61.85 60.11 - 53.89 74.05 72.14 26.69
Res-50 ours 64.37 66.62 - 73.44 81.02 82.38 40.67

TTP 66.75 63.04 51.74 49.72 - 72.43 12.27
Dense-121 ours 72.94 71.30 65.23 57.65 - 80.42 21.71

Table 2. Targeted fooling rates (%) of different attacks against different target models in cross-domain scenarios. The best results
are highlighted in bold.

TFR =

∑N
i=1 g

(
f
(
x
adv(i)
s

)
, yt

)
N

, g (a, b) =

{
0, a ̸= b

1, a = b
(10)

where N denotes the total number of adversarial exam-
ples, f(·) represents the target model, xadv(i)s stands for the
adversarial example generated by the trained generator from
the source domain images, and yt denotes the target class.
Baseline Attacks. We compare TTAA with several state-
of-the-art attack methods, including some untargeted ad-
versarial attack methods, i.e., PGD [36], MI-FGSM [10],
DI-FGSM [9], GAP [16], CDA [17] and the targeted adver-
sarial attack methods, i.e., TTP [21], ODI [30], DRA [29].

5.2. Results in Non-Cross-Domain Scenarios
We present the experimental results in non-cross-domain

scenarios in Tab. 1, where the first column represents the
label discriminator (i.e., the source model), while the first

row corresponds to the different target models. We can ob-
serve that the TFRs of all attack methods are very close to
1 when the target model is the same as the source model.
When the target model is different from the source model,
we can find that our TTAA leads to larger TFRs than base-
lines. For example, when the source model is ResNet-50
and the target model is SqueezeNet-v1.1, TTAA achieves
a TFR of 56.71%, while the untargeted baseline methods
only have TFRs of at most 4.22%. Besides, TTAA outper-
forms the targeted baseline attack method TTP in terms of
21% higher in TFR. Therefore, TTAA significantly outper-
forms baselines on the transferability of targeted adversarial
examples in the cross-model attack settings.

5.3. Results in Cross-Domain Scenarios

Among all baseline attack methods, only TTP can launch
transferable targeted adversarial attacks in cross-domain
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scenarios. Thus, our experiments in the cross-domain sce-
narios only compare TTAA to TTP. The TFR results of
TTAA and TTP are summarized in Tab. 2. The source
models in the first column and the target models in the
first row are trained on Paintings and ImageNet, respec-
tively. Tab. 2 reveals that the proposed TTAA achieves su-
perior performance (i.e., higher TFRs) than TTP. Specifi-
cally, when transferring from DenseNet-121 to ResNet-50,
TTAA achieves a 13.5% higher TFR than TTP.

What’s more, combining Tab. 2 and Tab. 1, it can be ob-
served that TTAA in cross-domain scenarios can achieve
even larger TFRs than other methods in non-cross-domain
scenarios. For instance, when adversarial examples transfer
from DenseNet-121 to ResNet-50, TTAA reached 65.24%
targeted fooling rate in Tab. 2 while TTP gets 62.81% tar-
geted fooling rate in Tab. 1. This further validates that
TTAA can effectively improve the targeted transferability of
adversarial examples, in both non-cross-domain and cross-
domain attack scenarios.

5.4. Results against Defenses

We evaluate the attack performance against possible de-
fenses in cross-domain scenarios by setting some adversar-
ially trained models that bear some robustness towards ad-
versarial examples as the target model, and the results are
shown in Tab. 3. We can observe that although the over-
all TFRs of TTAA slightly decrease compared to the non-
robust case (i.e., Tab. 2), our method TTAA still outper-
forms TTP.

Source
Target Attack Adv-VGG-19 Adv-Res-50 Adv-Dense-121

TTP - 26.97 37.12
VGG-19 ours - 30.75 37.45

TTP 56.42 - 72.09
Res-50 ours 63.78 - 75.41

TTP 62.75 45.71 -
Dense-121 ours 68.32 57.23 -

Table 3. Targeted fooling rate of different attacks against ad-
versarially trained target models in cross-domain scenarios.
The best results are highlighted in bold.

5.5. Ablation Study
In this subsection, we perform ablation studies to unveil

how each of the technical designs (i.e., the label loss, the
feature loss, and the random perturbation dropping) affects
the performance of TTAA. Fig. 4 shows the TFRs in three
cases, where each corresponds to a kind of combination of
our technical designs. Note that the case with only label loss
design has the lowest transferability (i.e., the lowest TFR).
In contrast, when incorporating the feature loss design, the
attack performance is improved significantly. This further
validates that our feature-label dual discrimination design
can greatly help capture the distribution information of the
target class. Moreover, we can see that the RPD can fur-
ther enhance transferability by increasing the diversity of
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Figure 4. Effect of each component (i.e., label loss Llabel, feature
loss Lfeature, and RPD) of TTAA.
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Figure 5. Effect of layer choice of feature maps on TFR. Different
layers from the source models (i.e., VGG-19 and Res-50) are se-
lected to extract the feature maps to train the generator.

adversarial examples. Thus, we can conclude that each of
our technical designs is effective, and combining them can
make a bigger difference.

Fig. 5 displays the TFRs of attacking target models by
adversarial examples from generators trained with feature
maps of different layer depths. Based on these empirical re-
sults, we select the final intermediate layers for each source
model as given in Sec. 5.1 to extract the feature maps.

6. Conclusion
In this work, we proposed TTAA to generate highly

transferable targeted adversarial examples. Extensive ex-
periments show the superior performance of our attack both
in cross-domain and non-cross-domain scenarios compared
to those state-of-the-art methods, with an average 7% in-
crease in the fooling rate of the target model. Meanwhile,
TTAA can be easily integrated with other targeted adversar-
ial attacks to improve their cross-model and cross-domain
targeted transferability. Moreover, the experiments also
demonstrate our attack can evade defense of adversarial
training with only about a 3% drop in the fooling rate of
the target model, indicating the robustness of our attack.
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