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Abstract

Weakly-supervised temporal action localization aims to
detect action boundaries in untrimmed videos with only
video-level annotations. Most existing schemes detect tem-
poral regions that are most responsive to video-level classi-
fication, but they overlook the semantic consistency between
frames. In this paper, we hypothesize that snippets with
similar representations should be considered as the same
action class despite the absence of supervision signals on
each snippet. To this end, we devise a learnable dictionary
where entries are the class centroids of the corresponding
action categories. The representations of snippets identified
as the same action category are induced to be close to the
same class centroid, which guides the network to perceive
the semantics of frames and avoid unreasonable localiza-
tion. Besides, we propose a two-stream framework that in-
tegrates the attention mechanism and the multiple-instance
learning strategy to extract fine-grained clues and salient
features respectively. Their complementarity enables the
model to refine temporal boundaries. Finally, the developed
model is validated on the publicly available THUMOS-14
and ActivityNet-1.3 datasets, where substantial experiments
and analyses demonstrate that our model achieves remark-
able advances over existing methods.

1. Introduction

Temporal action localization (TAL) is committed to de-
tecting action intervals in untrimmed videos. It has re-
ceived increasing popularity recently due to its wide ap-
plication in surveillance analysis, video summarization and
retrieval [39, 44, 47], etc. Typically, fully-supervised TAL
[51, 58, 59] is prohibitively expensive and unrealistic due
to frame-level annotations, thus the weakly-supervised TAL
(WS-TAL) [32, 34, 40, 45, 55] that only video-level annota-
tions are required has been advocated recently.

Most WS-TAL methods [8, 9, 31, 43, 45, 46] transform

Figure 1. An example contains the action of “Bicycle Motocross”
and the background. Representations depicted in monochromatic
color are similar, which should be regarded to describe the same
action (or background) and grouped together. The color brightness
indicates the degree of similarity.

localization into classification tasks that detect temporal
regions contributing the most to video-level classification.
They divide raw videos into fixed-length non-overlapping
snippets, on which snippet-wise attention activations or
class activation sequence (CAS) is generated. Temporal re-
gions are detected by thresholding and merging these ac-
tivations along the time dimension. Specifically, multiple
instance learning (MIL) [36, 42] and the attention mecha-
nism [11, 14, 53] are typically employed. The former ag-
gregates snippets that are considered action instances with
top-k confidence. However, such a regime over-emphasizes
these snippets with top-k confidence, resulting in discard-
ing potential clues in remaining snippets with lower confi-
dence. Besides, MIL chooses the most discriminative snip-
pets ignoring the completeness of action instances, which
is incompatible with the localization task. Different from
MIL, the attention-based mechanism independently yields
class-agnostic confidence for each snippet, which is utilized
as a weight to perform temporal pooling over all snippets
and generate video-level representations for classification.
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Despite the usage of all snippet features for fine-grained
patterns, class-agnostic confidence is semantically ambigu-
ous and harmful to precise boundary detection. As a con-
sequence, we design a two-stream network that integrates
MIL and attention-based mechanisms to overcome their re-
spective drawbacks. Then a late-fusion operation on the
outputs of the two branches is conducted to acquire the final
classification results.

Furthermore, a crux of these works lies in accurately pre-
dicting confidence scores that each snippet belongs to the
foreground or background, which has a nontrivial impact
on the subsequent boundary regression. Since the weakly-
supervision paradigm does not provide explicit supervision
signals, this problem becomes more intractable. A com-
mon solution employs temporal class activation map [40]
(TCAM) to discover snippets that respond to the video-level
classification and assign them high confidence. Other alter-
natives [11, 14, 45, 53] attempt to mitigate this problem by
carefully formulating some attention generation and aggre-
gation mechanisms. Nevertheless, these strategies neglect
the semantic consistency between snippets. Intuitively,
snippets with similar representations should be considered
to be the same class despite the infeasibility of accessing
snippet-level annotations. An example is also illustrated in
Figure 1. We argue that it is unreasonable that there are
no constraints to guarantee such a semantic relation. To
address this intractable issue, we set a learnable dictionary
where entries are class centroids of the corresponding action
categories. The representations of snippets identified as the
same action are induced to be close to the same class cen-
troid. In this manner, the semantic relationship of snippets
is explicitly explored to encourage a reasonable localization
in the weakly-supervised paradigm.

In a nutshell, the main contributions and innovations of
this paper are summarized as follows: (1) A novel two-
stream network that absorbs the merits of MIL and atten-
tion mechanism is proposed to resolve WS-TAL. (2) To per-
ceive semantic information, a learnable dictionary with eu-
clidean constraint is designed to facilitate similar represen-
tations to be considered as the same action class. (3) Ex-
tensive experiments on THUMOS-14 and ActivityNet-1.3
benchmarks demonstrate that our model acquires remark-
able advances. Besides, substantial ablation studies also re-
veal that the proposed two-stream structure and semantic-
aware modules are of effectiveness.

2. Related Work

2.1. Action Recognition

Action recognition is a fundamental task in video un-
derstanding, which is endowed with the responsibility of
identifying categories of actions in trimmed videos. Re-
cently, it has made significant progress with advanced deep-

learning techniques. Benefiting from this, plenty of off-
the-shelf action recognition algorithms are leveraged to ab-
stract video-level representations for complicated down-
stream tasks. Early studies [2, 6, 21, 48] mainly relied on
a two-stream structure, wherein one branch is utilized to
encode static appearances and the other branch is designed
to capture temporal properties of actions with optical flows.
These approaches achieve excellent performance and gener-
alization yet slow speed. To mitigate limitations of speed in
using optical flows, follow-up investigations [4, 5, 28] build
up lightweight structures to learn useful temporal informa-
tion. In this paper, we employ I3D [2] as a preliminary
representation extractor of videos for subsequent WS-TAL.

2.2. Fully-Supervised Temporal Action Localiza-
tion

Compare to the action recognition task, TAL not only
needs to predict the category of actions but also the tem-
poral intervals from untrimmed videos. Traditionally,
fully-supervised TAL adopts frame-level annotations dur-
ing training. Most existing efforts are primarily divided
into two categories: top-down and bottom-up. Inspired
by image object detection, top-down approaches [3, 18, 19,
22, 24, 49, 52] transform localization into a detection task
in the temporal dimension. In this paradigm, they first
generate action proposals and then classify them as well
as temporal boundary regression. An advantage of these
works is that they can draw on advanced schemes in ob-
ject detection. On the contrary, the bottom-up methods
[23, 27, 57] yield frame-level predictions followed by some
well-designed post-processing tricks. Unfortunately, such a
fully-supervised paradigm heavily depends on frame-wise
annotations, which are prohibitively expensive and unreal-
istic for much longer videos.

2.3. Weakly-Supervised Temporal Action Localiza-
tion

WS-TAL merely requires video-level annotations and
has received increasing popularity. The attention-
based framework has been fully explored. Specifically,
UntrimmedNets [50] builds up a soft-attention layer to se-
lect relevant segments for boosted performance. HAM-
Net [11] devises a hybrid attention mechanism by setting
different thresholds to capture both the most salient frames
and the full extent of activity. DGAM [45] notices the
frequent occurrences of the action-confusion phenomenon
in action localization tasks and thus introduces a condi-
tional variational auto-encoder with theoretical proof for
the effective separation of action and context instances.
LGCA [14] adopts a multi-stage cross-attention strategy
to acquire multi-modal representations. However, these
attention-based methods produce class-agnostic confidence
that is utilized for suboptimal feature combinations.
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MIL is another favorite framework that can be regarded
as a hard selection mechanism. In specific, ACM-Net [43]
combines MIL and a hybrid CAS to distinguish between
action instances, context, and non-action instances. W-
TALC [42] combines deep metric learning and MIL mech-
anisms to mine correlations between actions. Similarly,
BaS-Net [16] formulates a MIL-based structure and a filter-
ing module to suppress responses from background frames.
CoLA [55] also devises a hard snippet mining algorithm
to guide the network to precisely perceive temporal bound-
aries. Nevertheless, MIL-based methods have a major lim-
itation in that it only focuses on the most discriminative
frames but ignore the integrity of actions. To address this
problem, our method integrates fine-grained clues from an
attention-based strategy with salient features from a MIL
mechanism to improve the action integrity.

Some other works have also investigated to address
the action-context confusion issue. 3C-Net [38] puts for-
ward a formulation with multi-label center loss and action
counting loss terms to enhance the feature discriminabil-
ity and the separability of adjacent action instances. FAC-
Net [9] develops a three-branch pipeline to regularize the
foreground-action consistency and capture accurate action
boundaries. CO2-Net [8] investigates multimodal feature
re-calibration and modal-wise consistency WS-TAL. Be-
sides, pseudo labels are also crafted to guide accurate lo-
calization. RefineLoc [41] employs an iterative refinement
strategy by estimating snippet-level pseudo labels at each
iteration. RSKP [25] uses memory banks to store repre-
sentative snippets for each class. They are used to gener-
ate high-quality pseudo labels, which further generate accu-
rate TCAMs. ASM-Loc [7] leverages a pre-trained teacher
model to construct instance-level pseudo labels for more
fine-grained supervision. TSCN [54] generates pseudo la-
bels from the late fusion attention sequence at previous iter-
ations, and EM-MIL [32] introduces two pseudo-label gen-
eration schemes into an expectation-maximization frame-
work. Nevertheless, they fail to consider the semantic con-
sistency of snippets. Intuitively, snippets with similar repre-
sentations should be considered to be the same class despite
no obvious supervision signal for each snippet. As a result,
our model sets a learnable dictionary where entries are the
class centroids of the corresponding action categories. The
representations of snippets identified as the same action cat-
egory are induced to be close to the same class centroid. In
this manner, the proposed model is semantic-aware and the
learned features are discrimination-enhanced.

3. Methodology

3.1. Overview

Given an untrimmed video, which may contain multi-
ple action instances {Gi = (gsi , g

e
i , y)}mi=1, where gsi and

gei denote the start and end frame for the i-th action in-
stance Gi respectively, and m(m >= 1) is the number of
actions. We propose a two-stream network with a semantic-
aware mechanism to detect the temporal intervals of actions
with the video-level class label y ∈ {0, 1, ..., C}, where
C is the number of classes and 0 corresponds to the back-
ground. The overview of the architecture is presented in
Figure 2. Specifically, I3D [2] is first utilized to extract
frozen spatio-temporal representations from raw videos. In
order to enhance the expressiveness, these representations
are further input into an extra learnable residual block to
acquire features x = [x1, ..., xT ] ∈ RT×D, where T de-
notes the number of sampled snippets and D is the dimen-
sion of features. Another purpose of introducing the resid-
ual block is to guarantee that the proposed semantic-aware
mechanism can adjust representations to facilitate semantic
coherence of frames with the same action, as described in
Section 3.5. Afterwards, x is fed into the attention-based
and MIL-based branches respectively to generate response
values for the foreground, background and context from a
video-level perspective. Responses of these two branches
are further fused to predict the final classification results. In
the following sections, we will elaborate on the technical
details of each module.

3.2. Attention-Based Branch

One branch of the proposed two-stream structure is to
learn frame attention by optimizing video-level recogni-
tion. In detail, we generate the attention afg = (afgt )Tt=1,
act = (actt )

T
t=1 and abg = (abgt )Tt=1 directly from features,

where afgt , actt and abgt ∈ [0, 1] are the attentions of frame
t, which represent the confidence that the t-th frame be-
longs to the foreground, context, and background, respec-
tively. These attentions are further utilized as the weights to
perform temporal average pooling over all frames and gen-
erate video-level foreground features xfg , context features
xct and background features xbg by

xfg =

∑T
t=1 a

fg
t xt∑T

t=1 a
fg
t

, xct =
∑T

t=1 a
ct
t xt∑T

t=1 a
ct
t

,

xbg =

∑T
t=1 a

bg
t xt∑T

t=1 a
bg
t

.

(1)

Then, a shared fully-connected layer following a softmax
layer is applied on xfg , xct and xbg to produce classification
results ŷattfg , ŷatt

ct and ŷattbg for the foreground, context and
background, respectively. Notably, this procedure takes full
advantage of all frame information without omissions of de-
tails, which is beneficial for discovering subtle clues and
complementary to salient features extracted by the MIL-
based branch described in Section 3.3.
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Figure 2. Overview of the proposed model. Our model comprises two branches, one of which is attention-based and does well in encoding
local subtle clues, and the other is MIL-based and is an expert on capturing the most discriminative features. The late fusion of class
distributions of two branches is employed for video-level recognition. Besides, a learnable dictionary is well-designed for effective semantic
awareness. The symbols ⊕ and ⊗ denote element-wise addition and tensor multiplication respectively.

3.3. MIL-Based Branch

The attention-based branch is a soft combination strat-
egy, which is prone to produce suboptimal combination co-
efficients that are detrimental to localization, especially for
the foreground category due to its sparsity [40]. To this
end, a MIL-based branch is introduced to integrate the most
discriminative frame-level information into a video-level
counterpart. In specific, this branch first utilizes a fully-
connected layer with a dropout operation to independently
embed the feature of each frame xt to category space and
thus gets a class activation sequence p ∈ RT×(C+1). Since
the attentions afg , act and abg produced by the attention-
based branch are class-agnostic, they have trouble being op-
timized with video-level supervisory signals, so we further
integrate class information p into them as follows:

zfg = afg × p, zct = act × p, zbg = abg × p. (2)

These calculations are completed by a broadcast mechanism
in Python. The advantage of this procedure is that class in-
formation is weighted by attention scores, and the generated
zfg , zct, and zbg are able to focus on the foreground, context
and background features respectively. Besides, to capture
the most discriminative features, the MIL mechanism views
videos as a bag of frames and incorporates respectively the
top-k confidence of zfg , zct and zbg by

ωc
fg =

1

k
max

Uc
fg

⊂zfg [:,c],

|Uc
fg

|=k

∑
u∈Uc

fg

u,

ωc
ct =

1

k
max

Uc
ct⊂zct[:,c],
|Uc

ct|=k

∑
u∈Uc

ct

u,

ωc
bg =

1

k
max

Uc
bg

⊂zbg [:,c],

|Uc
bg

|=k

∑
u∈Uc

bg

u,

(3)

where Uc
fg , Uc

ct and Uc
bg are sets that contain the top-k

classification scores over all frames for class c. k is a
value proportional to the length of videos and is set as
k = max(⌊T/σ⌋, 1), where σ is a hyper-parameter. In this
setting, ωc

fg represents the confidence that the video con-
tains actions with the class c. Then, a softmax function
is applied on ωc

fg to normalize probability distribution for

each class: ŷmil
fg (c) =

exp(ωc
fg)∑C

c̃=0 exp(ωc̃
fg)

. The same operation

is performed on ωc
ct and ωc

bg to acquire ŷmil
ct (c) and ŷmil

bg (c).

3.4. Late-Fusion of two branches

After we acquire classification results from both
attention-based and MIL-based branches, we further inte-
grate them via a late-fusion operation. In detail, we average
the predictions of the two-branch as the final results:

ŷfg = (ŷattfg + ŷmil
fg )/2, ŷct = (ŷattct + ŷmil

ct )/2,

ŷbg =(ŷattbg + ŷmil
bg )/2.

(4)

Afterwards, a cross-entropy loss is applied for the fore-
ground, context, and background classification respectively:

Lfg
cls = −

C∑
c=0

yfg(c)logŷfg(c),

Lct
cls = −

C∑
c=0

yct(c)logŷct(c),

Lbg
cls = −

C∑
c=0

ybg(c)logŷbg(c),

(5)

where yfg , yct and ybg denote ground truths that are for-
mulated by a fancy trick. In detail, we set yfg(0) = 0 and
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yfg(j) = 1 for yfg , where j denotes ground truth indexes
of action instances and yfg(0) represents the label for the
background. For ybg , ybg(0) = 1 and all other class labels
are set to 0. Since the context is considered to be related to
action instances and backgrounds, we annotate yct(0) = 1
and yct(j) = 1, which is more conducive for the model to
learn discriminative features.

In summary, the attention- and MIL-based branches are
complementary to each other, encoding both all subtle clues
and the most salient features, which facilitates subsequent
precise action detection.

3.5. Semantic-Aware Mechanism

Despite the absence of explicit supervision signals in
WS-TAL, we still expect that the model has the capabil-
ity of extracting consistent semantic representations. Intu-
itively, frames predicted to be of the same class tend to have
similar representations. Motivated by this, we set a learn-
able dictionary Q ∈ R(C+1)×D where entries are the class
centroids of the corresponding action categories. Given a
feature xt, suppose it is recognized as the class c when gen-
erating CAS in the MIL-based branch, then a euclidean dis-
tance between the feature xt and Q[c, :] is minimized as:

Lsmt =
1

T

T∑
t=1

||xt −Q[argmax
c

(p(t)), :]||2, (6)

where : is the slicing operation in Python. In this manner,
the representations of frames identified as the same action
category are induced to be close to the same class centroid.

3.6. Overall Loss Function

Apart from the aforementioned classification loss and
semantic-aware constraint, we further employ a guide loss
as used in [11,43] to ensure the consistency of the responses
of two branches at frame-level:

Lgui =
1

T

T∑
t=1

|1− afgt − zfg[t, 0]|. (7)

To sum up, the overall loss function is formulated as:

Lall = Lfg
cls + λ1Lct

cls + λ2Lbg
cls + λ3Lsmt + λ4Lgui (8)

where λ1, λ2, λ3 and λ4 are hyper-parameters that control
the importance of different loss terms.

3.7. Inference

During inference, we feed videos into the network to
acquire a video-level class distribution ŷfg and attention-
weighted class activation sequence zfg . We filter out frames
with class scores lower than a pre-defined threshold α. For
the remaining categories, we extract consecutive segments

and generate proposals (t̂s, t̂e, ϕ(c)) for class c by enforcing
a threshold η on action-instance activation sequence zfg .
By setting different η, the model will generate proposals of
various scales. Here t̂s and t̂e represent the start and end
frames, respectively. ϕ(c) is a refined confidence that there
exist actions with class c in the proposal. Specifically, ϕ(c)
absorbs scores of its neighbors and is calculated following
the Outer-Inner-Contrastive function of AutoLoc [46]:

ϕin(c) =

∫ t̂e

t̂s
zfg[t, c]

t̂e − t̂s
,

ϕout(c) =

∫ t̂s

t̂s−t̂v
zfg[t, c] +

∫ t̂e+t̂v

t̂e
zfg[t, c]

2× t̂v
,

ϕ(c) = ϕin(c)− ϕout(c) + βŷfg(c).

(9)

In fact, zfg describes frame-level class responses, and ŷfg
is the video-level class responses. Their combinations are
leveraged as confidence of action instances. t̂v = t̂e−t̂s

5 de-
notes the inflated contrast area. β is the combination hyper-
parameter. Finally, a Non-Maximum Suppression (NMS)
mechanism is applied on the refined confidence ϕ(c) to re-
move redundant proposals.

4. Experiments
4.1. Dataset and Setting

THUMOS-14. THUMOS-14 [10] is a challenging action
localization dataset that comprises 200 untrimmed videos
for training and 213 videos for testing. It contains a total of
20 categories. Each video consists of 15.5 action instances
on average and the length of videos varies from a few min-
utes to tens of minutes.
ActivityNet-1.3. ActivityNet-1.3 [1] is a larger-scale action
localization dataset that comprises 200 categories of videos,
where each video contains 1.6 action instances on average.
ActivityNet-1.3 provides 10024 videos for training, 4926
videos for validation, and 5044 videos for testing. Each
video contains approximately 35% frames with the fine-
grained distinction between the context and background,
and is therefore relatively challenging. We report results on
its validation set following the previous work [24, 43, 45].
Evaluation Protocol. The mean Average Precision (mAP)
at different temporal Intersection over Union (t-IoU) thresh-
olds is reported as evaluation criteria. For THUMOS-14,
t-IoU thresholds are set to [0.1:0.1:0.7] (from 0.1 to 0.7 in
steps of 0.1). For ActivityNet-1.3, t-IoU thresholds are set
to [0.5:0.05:0.95] (from 0.5 to 0.95 in steps of 0.05).
Implementation Details. Given a video, we sample con-
tinuous non-overlapping 16 frames as a snippet and extract
RGB and optical-flow features using I3D framework [2]
pre-trained on Kinetics [13]. These two features are fur-
ther concatenated and form a 2048-dimensional representa-
tion. For fair comparisons, we do not finetune the feature
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Supervision Method
mAP@t-IoU(%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

Fully
Supervised

SSN [58] 66.0 59.4 51.9 41.0 29.8 - - -
BSN [24] - - 53.5 45.0 36.9 28.4 20.0 -
BMN [22] - - 56.0 47.4 38.8 29.7 20.5 -

BSN++ [49] - - 59.9 49.5 41.3 31.9 22.8 -
G-TAD [52] - - 66.4 60.4 51.6 37.6 22.9 -

Weakly
Supervised †

3C-Net [38] 59.1 53.5 44.2 34.1 26.6 - 8.1 -
PreTrimNet [56] 57.5 50.7 41.4 32.1 23.1 14.2 7.7 23.7

SF-Net [33] 71.0 63.4 53.2 40.7 29.3 18.4 9.6 40.8
Ju et al. [12] 72.3 64.7 58.2 47.1 35.9 23.0 12.8 44.9
LACP [15] 75.7 71.4 64.6 56.5 45.3 34.5 21.8 52.8

Weakly
Supervised

MAAN [53] 59.8 50.8 41.1 30.6 20.3 12.0 6.9 31.6
BasNet [16] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.3

EM-MIL [32] 59.1 52.7 45.5 36.8 30.5 22.7 16.4 37.7
DGAM [45] 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0

A2CL-PT [35] 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.8
CoLA [55] 66.2 59.5 51.5 41.9 32.2 22.0 13.1 40.9

HAM-Net [11] 65.4 59.0 50.3 41.1 31.0 20.7 11.4 39.8
ACSNet [30] - - 51.4 42.7 32.4 22.0 11.7 -

ACM-Net [43] 65.3 59.2 49.5 38.4 27.4 16.4 6.9 37.6
ASL [34] 67.0 - 51.8 - 31.1 - - -

D2-Net [37] 65.7 60.2 52.3 43.4 36.0 - - -
AUMN [31] 66.2 61.9 54.9 44.4 33.3 20.5 9.0 41.5

UM [17] 67.5 61.2 52.3 43.4 33.7 22.9 12.1 41.9
FAC-Net [9] 67.6 62.1 52.6 44.3 33.4 22.5 12.7 42.2
CO2-Net [8] 70.1 63.6 54.5 45.7 38.3 26.4 13.4 44.6
ASM-Loc [7] 71.2 65.5 57.1 46.8 36.6 25.2 13.4 45.1

Ours 73.0 68.2 60.0 47.9 37.1 24.4 12.7 46.2

Table 1. Quantitative comparisons on THUMOS-14 benchmark. The mAP is used as an evaluation criterion at t-IoU thresholds 0.1:0.1:0.7,
and AVG denotes the average of mAP of t-IoU over the interval from 0.1 to 0.7. † means extra training data are used.

extractor, i.e., I3D. For the dictionary learning, we first av-
eraged the representations(extracted by the pre-trained I3D)
of the same class in the training set. They are initialized to
the centroid of the corresponding class and then a warmup
operation is conducted. Our model is implemented using
the PyTorch framework and runs on NVIDIA Tesla V100
GPUs. Adam with a learning rate of 1e-4 is utilized to opti-
mize the model for 100 epochs. We set λ1 = 0.1, λ2 = 0.1,
λ3 = 5e-2 and λ4 = 2e-3. The hyper-parameter α = 0.1,
β = 0.2, and σ are set to 8, 2, and 2 for the foreground,
context, and background classes, respectively. These values
are obtained by using the grid search method. In detail, for
α, we search from 0.05 to 0.5 in the step of 0.05. For β, we
search including two scales: from 0.05 to 0.5 in the step of
0.05 and from 0.1 to 1 in the step of 0.1. For λ, we set ini-
tial λ1 and λ2 are 0.01, and search λ3 and λ4 in two scales:
from 0.001 to 0.01 in the step of 0.001, and from 0.01 to
0.1 in the step of 0.01. Then we fix λ3 and λ4 and search
λ1 and λ2 using the same step. The dropout regularization
is used with a possibility of 0.5. The learnable dictionary Q
is initialized to a uniform distribution between 0 and 1. In
order to remove overlap proposals, we perform NMS with a
t-IoU threshold of 0.5. For THUMOS-14, the batch size is

16 and the number of snippets T is set as 750. η is set from
0.1 to 0.9 in steps of 0.025. For ActivityNet-1.3, the batch
size is 32 and the number of snippets T is set to 75. η are
set from 0.005 to 0.025 in steps of 0.005.

4.2. Main Results

We compare our model with state-of-the-art competitors
on THUMOS-14 and ActivityNet-1.3 datasets in both fully-
supervised and weakly-supervised settings. Some methods
[8,12,15,33,38,56] utilize extra data or information during
training and are also listed for reference. Under the same
conditions, our approach achieves remarkable advances.
THUMOS-14. Table 1 illustrates the performance of dif-
ferent competitors on THUMOS-14 dataset. Without addi-
tional training data or information accessible, it can observe
that our model remarkably outperforms other approaches at
most t-IoU thresholds. Also, the average mAP (Avg) from
0.1 to 0.7 is reported for more comprehensive assessments.
Results demonstrate that our method achieves the best per-
formance. Especially, we achieve a significant boost over
the state-of-the-art methods at AVG (+4.0% for FAC-Net,
+1.6% for CO2-Net and +1.1% for ASM-Loc), indicating
that our localization is more precise in general. Further-
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Supervision Method
mAP@t-IoU(%)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Avg

Fully
Supervised

SSN [58] 41.3 38.8 35.9 32.9 30.4 27.0 22.2 18.2 13.2 6.1 26.6
BSN [24] 46.5 - - - - 30.0 - - - 8.0 30.0

G-TAD [52] 50.4 - - - - 34.6 - - - 9.0 34.1

Weakly
Supervised †

CMCS [26] 36.8 - - - - 22.0 - - - 5.6 -
3C-Net [38] 35.4 - - - - 22.9 - - - 8.5 -
LACP [15] 40.4 - - - - 24.6 - - - 5.7 -

Weakly
Supervised

UntrimmedNet [50] 7.4 6.1 5.2 4.5 3.9 3.2 2.5 1.8 1.2 0.7 3.6
AutoLoc [46] 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3 16.0

TSM [20] 30.3 - - - - 19.0 - - - 4.5 -
CleanNet [29] 37.1 33.4 29.9 26.7 23.4 20.3 17.2 13.9 9.2 5.0 21.6
Bas-Net [16] 34.5 - - - - 22.5 - - - 5.2 -
DGAM [45] 40.6 37.0 33.2 29.8 26.6 23.2 19.7 15.1 10.4 5.2 24.1

EM-MIL [32] 37.4 - - - - 23.1 - - - 2.0 -
TSCN [54] 35.3 - - - - 21.4 - - - 5.3 -

ACM-Net [43] 40.0 36.8 33.9 30.5 27.0 24.0 20.2 15.9 11.0 6.1 24.5
A2CL-PT [35] 36.8 - - - - 22.0 - - - 5.2 -
AUMN [31] 38.3 - - - - 23.5 - - - 5.2 -

ASM-Loc [7] 41.0 - - - - 24.9 - - - 6.2 -
Ours 41.8 38.5 35.8 32.6 29.2 25.7 22.7 17.5 12.6 6.5 26.3

Table 2. Quantitative comparisons on ActivityNet-1.3 benchmark. The mAP is used as an evaluation criterion at t-IoU thresholds
0.5:0.05:0.95, and AVG denotes the average of mAP of t-IoU over the interval from 0.5 to 0.95. † means extra training data are used.

more, compared with both fully-supervised methods and
weakly-supervised with additional training data, our model
can achieve close or even better performance.
ActivityNet-1.3. The comparison results of the state-of-
the-art approaches on ActivityNet-1.3 are summarized in
Table 2. Since our model is able to learn robust repre-
sentations and perceive the semantic information of frames
with subtle changes, it achieves amazing performance and
outperforms all previous WS-TAL methods on all t-IoUs.
Specifically, our method exceeds the state-of-the-art method
ASM-Loc [7] that designs a complicated multi-step refine-
ment. Surprisingly, the displayed methods utilizing extra
training data are also inferior to ours. The overall result
proves that our method can not only achieve accurate ac-
tion localization (THUMOS-14), but also effectively detect
boundaries with the fined-grained distinction between the
context and background (ActivityNet-1.3).

4.3. Ablation Study

In this section, we conduct ablation studies on different
losses and network architectures to prove the effectiveness
of these components.
Study on Different Losses. We first analyze the proposed
model by experimenting with combinations of different loss
terms, and results are displayed in Table 3 and Table 4. For
both THUMOS-14 and ActivityNet-1.3, we observe that a
remarkable performance advance is obtained when com-
bined with all loss terms, confirming the utility and comple-
mentarity of these losses. Furthermore, introducing Lcmt

loss can bring more performance improvement when t-IoU
thresholds are higher, which reveals the importance of se-

mantic consistency for finer and more precise localization
when constraints are tighter.
Study on Network Structures. From the results of abla-
tion studies on different losses, we observe that several cas-
trated variants perform better than some prevailing meth-
ods, which we attribute to the two-branch network structure.
To prove our point, we use castrated counterparts of only
a mechanism without a late-fusion operation. Since Lgui

and Lsmt are only involved when the MIL-based branch is
employed, so only Lfg

cls, Lct
cls and Lbg

cls are utilized in each
variant for a fair comparison. During inference, temporal
regions are detected by thresholding and merging afg and
zfg for the attention- and MIL-based variants respectively.
As demonstrated in Table in 5 and Table 6, the localization
accuracy degrades regardless of whether an attention-based
or MIL-based branch is used alone, demonstrating the su-
periority of the overall architecture. In addition, since the
attention-based variant is class-agnostic and lacks discrim-
inability, we observe that its performance is far worse than
the MIL-based variant.

4.4. Qualitative Results

To further explore the localization performance of vari-
ants with different losses, Figure 3 illustrates qualita-
tive results, including various types of temporal regions.
The first example shows a video containing an action of
“Trimming branches or hedges” with a shot change in the
process. The model with an overall loss accurately hits each
boundary instance, while predictions of other variants are
not desirable. The second example describes the motion
of “Swinging” and is a more challenging video attributed
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Lfg
cls Lbg

cls Lct
cls Lgui Lsmt 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

✓ 62.8 56.0 45.8 37.1 26.7 17.4 8.5 36.3
✓ ✓ 63.4 57.9 47.6 38.7 27.4 18.2 9.0 37.5
✓ ✓ ✓ 67.6 61.7 52.5 42.7 31.9 20.8 10.1 41.0
✓ ✓ ✓ ✓ 70.2 65.2 55.6 45.4 32.8 21.3 10.8 43.0
✓ ✓ ✓ ✓ ✓ 73.0 68.2 60.0 47.9 37.1 24.4 12.7 46.2

Table 3. Ablation study on the variants of loss function for THUMOS-14 dataset. The mAP is used as an evaluation criterion at t-IoU
thresholds 0.1:0.1:0.7, and AVG denotes their average.

Lfg
cls Lbg

cls Lct
cls Lgui Lsmt 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Avg

✓ 37.8 35.1 32.2 29.4 25.8 22.8 19.5 15.8 11.0 5.7 23.5
✓ ✓ 38.4 35.3 32.4 29.7 26.4 23.3 19.8 16.0 11.3 5.9 23.9
✓ ✓ ✓ 39.2 36.3 33.6 30.8 27.5 24.3 20.6 16.4 11.6 6.0 24.6
✓ ✓ ✓ ✓ 39.7 36.7 34.1 31.2 28.0 24.6 21.0 16.5 11.7 6.0 25.0
✓ ✓ ✓ ✓ ✓ 41.8 38.5 35.8 32.6 29.2 25.7 22.7 17.5 12.6 6.5 26.3

Table 4. Ablation study on the variants of loss function for ActivityNet-1.3 dataset. The mAP is used as an evaluation criterion at t-IoU
thresholds 0.5:0.05:0.95, and AVG denotes their average.

Method mAP@t-IoU(%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

Baseline 67.6 61.7 52.5 42.7 31.9 20.8 10.1 41.0
Attention-based 57.1 50.5 41.0 30.9 20.6 11.0 4.7 30.8

MIL-based 63.6 57.0 47.3 35.9 24.7 15.5 8.2 36.0

Table 5. Ablation study on network structure for THUMOS-14
dataset. Baseline represents a complete two-stream structure with
Lfg

cls, Lct
cls and Lbg

cls losses.

Method mAP@t-IoU(%)
0.5 0.55 0.6 0.65 0.70 0.75 0.8 0.85 0.9 0.95 Avg

Baseline 39.2 36.3 33.6 30.8 27.5 24.3 20.6 16.4 11.6 6.0 24.6
Attention-based 25.5 23.5 21.5 19.6 17.2 14.9 12.8 10.2 7.1 3.7 15.6

MIL-based 36.4 33.7 31.1 28.3 25.3 22.2 19.0 14.8 10.4 5.4 22.7

Table 6. Ablation study on network structure for ActivityNet-1.3
dataset. Baseline represents a complete two-stream structure with
Lfg

cls, Lct
cls and Lbg

cls losses.

to the existence of action-confusion phenomenons. Specifi-
cally, contextual actions with high-correlated semantics af-
ter “Swinging” appear in videos. Anyway, when our model
is equipped with Lsmt term, it successfully enhances pre-
diction coverage and suppresses the context frames, while
the other variants fail to do it. This result also indicates
the proposed semantic-aware module indeed perceives sub-
tle semantic discrepancies between frames.

5. Conclusion
In this article, a novel two-stream network for weakly-

supervised temporal action localization with a semantic-
aware mechanism is proposed. The well-designed two-
stream structure absorbs the merits of multiple instance
learning and attention-based strategies with a late-fusion
operation on the outputs of each branch to acquire clas-
sification results. Besides, to mine semantic relationships
between snippets, we set a learnable dictionary where en-

(a)

(b)

Figure 3. Qualitative results and comparisons of variants with dif-
ferent loss terms. (a) describes the actions of “Trimming branches
or hedges” . (b) shows a video containing actions of “Swinging”.
(1) Ground Truth (2) Lfg

cls (3) Lfg
cls + Lbg

cls (4) Lfg
cls + Lbg

cls + Lct
cls

(5) Lfg
cls+Lbg

cls+Lct
cls+Lgui (6) Lfg

cls+Lbg
cls+Lct

cls+Lgui+Lsmt

tries are the class centroids of the corresponding action
categories. The representations of snippets identified as
the same action are induced to be close to the same class
centroid. Finally, the developed model is evaluated on
THUMOS-14 and ActivityNet-1.3. Substantial experiments
and analyses proved the effectiveness of our method.
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