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Abstract

The task of 3D semantic scene graph (3DSSG) predic-
tion in the point cloud is challenging since (1) the 3D point
cloud only captures geometric structures with limited se-
mantics compared to 2D images, and (2) long-tailed re-
lation distribution inherently hinders the learning of unbi-
ased prediction. Since 2D images provide rich semantics
and scene graphs are in nature coped with languages, in
this study, we propose Visual-Linguistic Semantics Assisted
Training (VL-SAT) scheme that can significantly empower
3DSSG prediction models with discrimination about long-
tailed and ambiguous semantic relations. The key idea
is to train a powerful multi-modal oracle model to as-
sist the 3D model. This oracle learns reliable structural
representations based on semantics from vision, language,
and 3D geometry, and its benefits can be heterogeneously
passed to the 3D model during the training stage. By
effectively utilizing visual-linguistic semantics in training,
our VL-SAT can significantly boost common 3DSSG pre-
diction models, such as SGFN and SGGpoint, only with 3D
inputs in the inference stage, especially when dealing with
tail relation triplets. Comprehensive evaluations and ab-
lation studies on the 3DSSG dataset have validated the ef-
fectiveness of the proposed scheme. Code is available at
https://github.com/wz7in/CVPR2023-VLSAT.

1. Introduction
Structurally understanding 3D geometric scenes is par-

ticularly important for tasks that require interaction with
real-world environments, such as AR/VR [7, 21, 26–28, 49,
51] and navigation [4, 5, 10]. As one vital topic in this
field, predicting 3D semantic scene graph (3DSSG) in point
cloud [36] has received emerging attention in recent years.
Specifically, given the point cloud of a 3D scene that is as-
sociated with class-agnostic 3D instance masks, the 3DSSG
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Figure 1. Comparison between previous method and our VL-
SAT. (a) SGPN [36], as the 3D model, fails to find capture predi-
cates such as build in. (b) VL-SAT creates an oracle model by het-
erogeneously fusing 2D semantics, and language knowledge along
with the geometrical features, and the 3D model receives benefits
from the oracle model during training. During inference, the en-
hanced 3D model can correctly detect the tail predicates.

prediction task would like to construct a directed graph
whose nodes are semantic labels of the 3D instances and
the edges recognize the directional semantic or geometrical
relations between connected 3D instances.

However, in addition to common difficulties faced by
scene graph prediction, there are several challenges spec-
ified to the 3DSSG prediction task. (1) 3D data such as
point clouds only capture the geometric structures of each
instance and may superficially define the relations by rela-
tive orientations or distances. (2) Recent 3DSSG predica-
tion datasets [36, 47] are quite small and suffer from long-
tailed predicate distributions, where semantic predicates are
often rarer than geometrical predicates. For example, as
shown in Fig. 1, the pioneering work SGPN [36] usually
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prefers a simple and common geometric predicate standing
on between sink and bath cabinet, while the ground-truth re-
lation triplet ⟨sink, build in, bath cabinet⟩ cares more about
the semantics, and the frequency of build in in the training
dataset is quite low, as shown in Fig. 3(a). Even though
some attempts [38, 47, 48] have been proposed thereafter,
the inherent limitations of the point cloud data to some ex-
tent hinder the effectiveness of these methods.

Since 2D images provide rich and meaningful seman-
tics, and the scene graph prediction task is in nature aligned
with natural languages, we explore using visual-linguistic
semantics to assist the training, as another pathway to essen-
tially enhance the capability of common 3DSSG prediction
models with the aforementioned challenges.

How to assist 3D structural understanding with visual-
linguistic semantics remains an open problem. Previous
studies mainly focus on employing 2D semantics to en-
hance instance-level tasks, such as object detection [3, 20,
22,29], visual grounding and dense captioning [4,5,44,50].
Most of them require visual data both in training and in-
ference, but a few of them, such as SAT [42] and X -
Trans2Cap [44] treat 2D semantics as auxiliary training sig-
nals and thus offer more practical inference only with 3D
data. But these methods are specified to instance-level tasks
and require delicately designed networks for effective as-
sistance, thus they are less desirable to our structural pre-
diction problem. Thanks to the recent success of large-
scale cross-modal pretraining like CLIP [24], 2D semantics
in images can be well aligned with linguistic semantics in
natural languages, and the visual-linguistic semantics have
been applied for alleviating long-tailed issue in tasks related
to 2D scene graphs [1,31,32,45] and human-object interac-
tion [15]. But how to adapt similar assistance of visual-
linguistic semantics to the 3D scenario remains unclear.

In this study, we propose the Visual-Linguistic Seman-
tics Assisted Training (VL-SAT) scheme to empower the
point cloud-based 3DSSG prediction model (termed as the
3D model) with sufficient discrimination about long-tailed
and ambiguous semantic relation triplets. In this scheme,
we simultaneously train a powerful multi-modal prediction
model as the oracle (termed as oracle model) that is het-
erogeneously aligned with the 3D model, which captures
reliable structural semantics by extra data from vision, ex-
tra training signals from language, as well as the geometri-
cal features from the 3D model. These introduced visual-
linguistic semantics have been aligned by CLIP. Conse-
quently, the benefits of the oracle model, especially the
multi-modal structural semantics, can be efficiently embed-
ded into the 3D model through the back-propagated gradi-
ent flows. In the inference stage, the 3D model can perform
superior 3DSSG prediction performance with only 3D in-
puts. For example, in Fig. 1(b), the predicate build in can
be reliably detected. To our best knowledge, VL-SAT is

the first visual-linguistic knowledge transfer work that is
applied to 3DSSG prediction in the point cloud. More-
over, VL-SAT can successfully enhance SGFN [38] and
SGGpoint [47], validating that this scheme is generalizable
to common 3DSSG prediction models.

We benchmark VL-SAT on the 3DSSG dataset [36].
Quantitative and qualitative evaluations, as well as compre-
hensive ablation studies, validate that the proposed training
scheme leads to significant performance gains, especially
for tail relations, as discussed in Sec. 4.

2. Related Work

Scene Graph Prediction in Point Cloud. Image-based se-
mantic scene graph prediction has been extensively stud-
ied [6, 30–32, 37, 40, 41, 46]in recent years, but only a few
works try to predict 3D semantic scene graph in the point
cloud. Armeni et al. [2] presented the first 3D scene graph
dataset, which maps 3D buildings into hierarchical struc-
tures. Wald et al. [36] constructed a point cloud-based se-
mantic scene graph dataset, namely 3DSSG, with a GNN-
based baseline model named SGPN. The follow-up work
SGFN [38] predicted 3DSSG incrementally from RGB-D
sequences. In recent years, a few methods were proposed
to improve the GNN-based baseline. SGGpoint [47] used an
edge-oriented graph convolution network to exploit multi-
dimensional edge features for relation modeling. Zhang et
al. [48] proposed a graph auto-encoder network to automati-
cally learn a group of embeddings for each class in advance,
and then perform the 3DSSG prediction to recognize credi-
ble relation triplets from pre-learned knowledge.

3D Scene Understanding with 2D Semantics. A list of
methods have employed 2D semantics to help 3D instance-
level tasks, such as 3D object detection, segmentation, vi-
sual grounding and dense captioning [3,20,22,29,34,43,52].
They can be coarsely divided into two categories, i.e., con-
catenating image features with each 3D point [3–5, 20,
34, 43, 50], and projecting object detection results into 3D
space [12, 19, 22, 39, 42, 44]. Most methods require 2D se-
mantics both in the training and inference stages. Recently,
SAT [42] and X -Trans2Cap [44] explore using 2D seman-
tics only in training to assist 3D visual grounding and dense
captioning. Both of them can learn enhanced models that
only use 3D inputs in inference. But these methods are re-
strained to instance-level tasks and the networks have to be
carefully designed. We follow similar ideas as [42, 44] and
use 2D semantics only in training, but we would like to en-
hance the 3DSSG prediction that requires structural under-
standing rather than instance-level perception.

Knowledge-inserted Methods in Scene Graph Predic-
tion. Zellers et al. [46] and Chen et al. [6] indicated that
the statistical co-occurrences between object pairs and rela-
tionships are useful for relation prediction. Besides, [25,48]
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generated class-level prototypical representations from all
previous perceptual outputs as the prior knowledge. These
methods explicitly encoded the data priors into the model.
[1, 13, 14, 18] attempted to combine language priors with
scene graph prediction. Zareian et al. [45] proposed a Graph
Bridging Network to propagate messages between scene
graphs and knowledge graphs. Our VL-SAT scheme uses
CLIP to encode the linguistic semantics, which is thus bet-
ter aligned with 2D semantics, and even the required 3D
structural semantics during the training stage.

3. Method
We first overview the formulation of 3D semantic scene

graph (3DSSG) prediction in point cloud (Sec. 3.1) and
then elaborate on a GNN-based network that we experi-
ment on as our 3D prediction model (Sec. 3.2). Since
then we highlight how our Visual-Linguistic Semantics As-
sisted Training (VL-SAT) scheme comprehensively trans-
fers the benefits of an oracle multi-modal prediction model
to the 3D prediction model in discriminating challenging re-
lations (Sec. 3.3). Finally, we depict the training objective
in Sec. 3.4.

3.1. Problem Formulation

Suppose we have a point cloud P ∈ RN×3 with N 3D
points, and a set of class-agnostic instance masks M =
{M1, ...,MK} that associate the point cloud P with K se-
mantic instances, as indicated by SGPN [36], we aim at
predicting a 3D semantic scene graph as a directed graph
G = {O,R}. The set of objects O = {oi}Ki=1 are all named
object instances that are specified by instance masks M.
Each edge rij in R depicts the predicate in a relation triplet
⟨subject, predicate, object⟩, where the head node oi of this
edge is the subject and the tail node oj is the object. To
be specific, oi indicates an object label from Nobj semantic
classes. rij is a predicate label from Nrel predicate classes.

3.2. 3D Prediction Model

As depicted in Fig. 2, our employed 3D prediction model
shares a similar network structure as those GNN-based
scene graph prediction methods, such as SGFN [38] and
SGGpoint [47], which mainly consists of node encoder, edge
encoder, and scene graph reasoning modules.
Node Encoder. Based on one class-agnostic instance mask
Mi along with the input point cloud P, we can extract the
set of points Pi that correspond to one semantic instance.
We employ a simple PointNet [23] to extract instance-
level features. The node features o3d

i ∈ RD before the
GNN-based scene graph reasoning are thus given by these
instance-level features.
Edge Encoder. We follow the same practice as in
SGFN [38] to encode the edge features for the GNN-based

scene graph reasoning. It requires calculating the differ-
ences between several attributes between the linked in-
stances. For each instance, these attributes include the
mean µ and standard deviation σ of the 3D points, the size
b = (bx, by, bz), the volumn v = bxbybz , and the maxi-
mum side length l = max(bx, by, bz) of the bounding box.
Thus the edge features r3d

ij ∈ RD are encoded by projecting
the concatenated differences of these attributes between two
instances, via multi-layer perceptron (MLP) layers, i.e.,

r3d
ij = MLP(cat(µi − µj ,σi − σj ,bi − bj , ln

li
lj
, ln

vi
vj

)),

(1)
where the subscript i indicates the instance Pi in the head
node, and the j means the instance Pj in the tail node.

Scene Graph Reasoning. In our experiment, we apply
a similar GNN structure as in SGFN [38], which utilizes
a Feature-wise Attention (FAT) module [38] to pass mes-
sages between nodes and edges, and then gets the updated
node and edge features. Each GNN module is paired with
a multi-head self-attention (MHSA) module, and they are
repeated for T times to extract the final node and edge fea-
tures {õ3d

i }i=1,...,K and {r̃3d
ij}i̸=j,i,j=1,...,K . Since then, an

object classifier and a predicate classifier are to predict the
elements {oi, rij , oj} of each possible relation triplet from
the triplet features {õ3d

i , r̃3d
ij , õ

3d
j }. These relation triplets fi-

nally construct the semantic scene graph G = {Q,R}.

Note that the 3D prediction model does not have to
strictly follow the network of SGFN [38]. More recent
GNN-based models, such as SGGpoint [47] can also be ap-
plied. In Sec. 4.4, we show that the proposed VL-SAT
scheme can also enhance both baselines with significant
gains, validating that our method is generalizable to com-
mon 3DSSG prediction models.

3.3. Visual-Linguistic Semantics Assisted Training

In this subsection, we elaborate on how the visual-
linguistic semantics assisted training (VL-SAT) scheme can
empower the 3D prediction model with sufficient discrimi-
nation about long-tailed and ambiguous semantic relation
triplets. The key idea is that this discriminative power
comes from auxiliarily learning a powerful multi-modal
prediction model that receives structural semantics from vi-
sion, and language, as well as the 3D geometry from the 3D
prediction model. The multi-modal semantics are expected
to be heterogeneously aligned with the 3D semantics at the
node and edge levels, and the benefits from the oracle model
can be efficiently absorbed by the 3D prediction model dur-
ing the training process. To be specific, we first introduce
the applied multi-modal prediction model that has heteroge-
neous collaboration with the 3D prediction model, and then
the auxiliary training strategies that boost the performance
of the oracle model and eventually enhance the 3D predic-

21562



Oracle 
Node

Encoder

3D Segmented Objects

2D Images frames
Oracle 
Edge

Encoder

3D Node 
Encoder

3D Edge 
Encoder

Node-Level 
Enhancem

ent

Mimic

Self 
Attention

GNN

Enhanced Object
Features

Edge-Level 
Enhancem

ent

3D Relation
Features

2D Edge Features

3D Edge 
Features

3D Object
Features

Triplet-Level 
Enhancement

Oracle 
Relation 
Classifier

Oracle 
Object 

Classifier

3D Object
Classifier

3D Relation
Classifier

3D Model

×"

×"

3D Node 
Features

GNN

Oracle Model

Oracle
Relation Logits

Oracle
Object Logits

3D Object Logits

3D Relation Logits

Oracle Relation
Initialize Feature 

(Copy) 

3D Relation 
Initialize Feature

…

Project & Select

…

Frozen CLIP
Text Encoder

“A scene of a [sofa] 
[close by] a [coffee 

table]”

Language Model

Enhanced Relation
Features

Oracle 
Node

Encoder

3D Segmented Objects

2D Images frames
Oracle 
Edge

Encoder

3D 
Node 

Encoder

3D 
Edge 

Encoder

Mimic

GNN

Enhanced Object
Features

Edge-Level 
Collaboration

3D Predicate
Features

Oracle Edge Features

3D Edge Features

3D Object
Features

Triplet-Level 
Regularization

Oracle
Predicate 
Classifier

Oracle 
Object 

Classifier

3D Model

×#

×#

3D Node Features

GNN

Oracle Model

Oracle
Predicate Logits

Oracle
Object Logits

3D Object Logits

3D Predicate Logits

Cloned Predicate
Feature Init 

Predicate 
Feature Init

…

Project & Select

…

Frozen CLIP
Text Encoder

“A scene of a sofa close 
by a coffee table.”

Language Model

Enhanced Predicate
Features

Oracle Node 
Features

Node-Level 
Collaboration

3D Object
Classifier

3D Predicate
Classifier

Figure 2. The proposed Visual-Linguistic Semantics Assisted Training (VL-SAT) for 3D scene graph prediction. In training, VL-
SAT takes 2D and language semantics as extra inputs and helps 3D scene graph prediction with node and edge-level collaboration and
triplet-level regularization. In inference, VL-SAT only takes the 3D point cloud to predict reliable 3D scene graphs.

tion model. We present the pipeline of VL-SAT in Fig. 2.

Multi-modal Prediction Model as the Oracle. This multi-
modal prediction model acts as the oracle to our 3D predic-
tion model. It copies the 3D prediction network in Sec. 3.2
and also learns to predict 3D semantic scene graphs, but its
node features are represented by visual features. These vi-
sual features are extracted by a fixed 2D instance encoder,
describing RGB image patches that are associated with each
point cloud instance Pi

1. The edge features of the multi-
modal prediction model are encoded in the same way in
Sec. 3.2, thus still capturing 3D spatial structures in under-
standing relations.

The features of this oracle model heterogeneously col-
laborate with those in the 3D prediction model at the node
and edge levels, which are conducted before and after each
GNN layer in the scene graph reasoning module. The
former is a node-level collaboration, and the latter is an
edge-level collaboration. To be specific, these collaboration
operations are implemented by multi-head cross-attention
(MHCA) modules [33], where the keys and values are
node/edge features from the 3D model, and the queries are
their counterparts from the multi-modal model. The node-
level collaboration has a distance-aware masking strategy to
remove unnecessary attention between instances that are far
apart without valid relations. The mask value between two
instances Pi and Pj are learned by

Dnode
ij = MLP(cat(µi − µj , ∥µi − µj∥2)), (2)

1Please refer to the supplementary for the details about how to gather
associated image patches with each point cloud instance.

with respect to the mean coordinates µi and µj of the point
cloud instances Pi and Pj . The edge-level collaboration
does not use a distance-aware masking strategy since the
distance between edges is hard to define, thus it is safer to
incorporate all edges into attention calculation.

Note that the heterogeneous collaboration is unidirec-
tional from the 3D model to the oracle model, while the
benefits of the oracle model are passed to the 3D model
through the back-propagated gradient flows. It favors that
in the inference stage, predicting 3D semantic scene graphs
will not need extra data from other modalities.
Auxiliary Training Strategies. Since the oracle multi-
modal model would like to perceive scene graphs from
both the visual and linguistic perspective, it is natural to
enhance the oracle model using visual-linguistic knowl-
edge captured by CLIP [9]. Specifically, we can gener-
ate CLIP text embedding etext

ij for each groundtruth rela-
tion triplet, and regularize the corresponding triplet fea-
tures {õoracle

i , r̃oracle
ij , õoracle

j } at the end of each GNN layer
of the scene graph reasoning module. The CLIP text em-
beddings are offline extracted by the template “A scene of
a/an [subject][predicate] a/an [object]” for each GT relation
Thus, the regularization becomes to minimize the embed-
ding distances between the text embeddings etext

ij and the
fused triplet features toracle

ij , i.e.,

Ltri-emb =

K∑
i=1

K∑
j=1,j ̸=i

ρ(toracle
ij , etext

ij ) · I[etext
ij is from GT triplet]

(3)
where toracle

ij = MLP(cat(õoracle
i , r̃oracle

ij , õoracle
j )) is the fused
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embedding of the concatenated features õoracle
i , r̃oracle

ij , and
õoracle
j . ρ(·, ·) is a distance metric, we can apply ℓ1 norm or

negative cosine distance. I[·] is an indicator function that
equals to 1 when the argument is true, and 0 otherwise.
Thus Eq. (3) only regularizes the node and edge features
whose triplets have ground-truth relations.

In addition, before being put into the scene graph reason-
ing modules, the 3D node features o3d

i from the 3D model
and the 2D node features o2d

i from the oracle model can be
aligned. We apply a same distance measurement as Eq. (3),

Lnode-init =

K∑
i=1

ρ(o3d
i ,o2d

i ). (4)

To enhance the representation ability of the initialized 2D
node features, the 2D instance encoder is a fixed CLIP-
pretrained vision encoder. Moreover, to enhance the object
classifiers of both models, we use the CLIP object embed-
dings to initialize the weights of the object classifiers both
at the 3D prediction model and the oracle multi-modal pre-
diction model, as in [15, 24].

3.4. The Training Objective

The training objective of the entire network is defined as:

L = λobj(L
3d
obj + Loracle

obj ) + λpred(L
3d
pred + Loracle

pred )+

λaux(Ltri-emb + Lnode-init) (5)

Lobj indicates object classification loss and is implemented
with cross-entropy loss. L3d/oracle

obj is applied on 3D/oracle
object classifier. Lpred indicates predicate classification loss
and is formulated as per-class binary cross-entropy loss as
in [36]. L3d/oracle

pred is applied on 3D/oracle predicate classi-
fier. λnode, λedge, λaux are hyper-parameters to balance each
loss in the same scale.

4. Experiments and Discussions
4.1. Setups and Implementation Details

Datasets. We conduct experiments on 3DSSG [36]. It is
a 3D semantic scene graph dataset drawn from the 3RScan
dataset [35], with rich annotations about instance segmen-
tation masks and relation triplets. It has 1553 3D recon-
structed indoor scenes, 160 classes of objects, and 26 types
of predicates. In the experiments, we use the same data
preparation and training/validation split as in 3DSSG [36].
Metrics and Tasks. We follow the experiment settings in
3DSSG [36] . In both training and testing stages, 3D scenes
are placed in the same 3D coordinate. The view-dependent
spatial relation predicates are not ambiguous. To evaluate
the prediction of the object and predicate, we use the top-k
accuracy (A@k) metric. As for the triplets, we first mul-
tiply the subject, predicate, and object scores to get triplet

scores, and then compute the top-k accuracy (A@k) as the
evaluation metric. The triplet is considered correct only if
the subject, predicate, and object are all correct2. To fairly
evaluate the performance of long-tailed predicate distribu-
tion, we also compute the average top-k accuracy of the
predicate across all predicate classes, denoted as the mean
top-k accuracy (mA@k).

We also conduct two 2D scene graph tasks proposed
in [40] in the 3D scenario, as what Zhang et al. [48] did, i.e.,
(1) Scene Graph Classification (SGCls) that evaluates the
triplet together. (2) Predicate Classification (PredCls) that
only evaluates the predicate with the ground-truth labels of
object entities. Following Zhang et al. [48], we compute
the recall at the top-k (R@k) triplets. The triplet is consid-
ered correct when the subject, predicate, and object are all
valid. Additionally, we also adopt mean recall (mR@k) to
evaluate the performance on the unevenly sampled relations
using a similar strategy as mA@k.

Implementation Details. Our network is end-to-end opti-
mized using AdamW optimizer [11, 17] with the batch size
as 8. We train the network for 100 epochs, and the base
learning rate is set as 0.001 with a cosine annealing learning
rate decay strategy [16]. Nobj = 160 and Nrel = 26 in our
experiments. GNN modules are repeated for T = 2 times in
both 3D and oracle multi-modal models. λobj = λaux = 0.1,
λpred = 1 in Eq. (5). All experiments are carried out on
the PyTorch platform equipped with one NVIDIA GeForce
RTX 2080 Ti GPU card, and each experiment takes about
48 hours until model convergence. Note that 2D inputs are
only used during the training stage. During the inference
stage, we follow the same strategy in [40], which selects
the top@1 class of both object and predicate while giving
an object instance index tuple. Please refer to the supple-
mentary for the details of the network structures.

4.2. Comparison with the State-of-the-art Methods

We compare our method with a list of reference meth-
ods, i.e. SGPN [36], SGGpoint [47], SGFN [38], Co-
Occurrence [48], KERN [6], Schemata [25], Zhang et
al. [48]. In addition, to gain a deeper understanding of
our approach, we also report the performances of the ora-
cle multi-modal prediction model (termed as VL-SAT (ora-
cle)), as well as the baseline performance of the 3D predic-
tion model that is trained purely by 3D data (term as non-
VL-SAT). The proposed method is term as VL-SAT.

Quantitative Results. The comparison results are summa-
rized in Tab. 1. The baseline “non-VL-SAT” has a sim-
ilar performance as SGFN. The only difference between
them is that “non-VL-SAT” adds a multi-head self-attention
(MHSA) module [33] before each GNN module in SGFN.

2However, the metric top-k accuracy is written as the top-k recall or
R@k in 3DSSG [36] and SGFN [38].
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Table 1. Quantitative Results of 3D semantic scene graph prediction on the 3DSSG validation set [36]. Evaluations are conducted in terms
of object, predicate, and triplet. The results of SGPN, SGGpoint, and SGFN are based on our reproduced model with point cloud-only
inputs, since they don’t compute the mA@k metric in their papers.

Model Object Predicate Triplet
A@1 A@5 A@10 A@1 A@3 A@5 mA@1 mA@3 mA@5 A@50 A@100 mA@50 mA@100

SGPN [36] 48.28 72.94 82.74 91.32 98.09 99.15 32.01 55.22 69.44 87.55 90.66 41.52 51.92
SGGpoint [47] 51.42 74.56 84.15 92.4 97.78 98.92 27.95 49.98 63.15 87.89 90.16 45.02 56.03
SGFN [38] 53.67 77.18 85.14 90.19 98.17 99.33 41.89 70.82 81.44 89.02 91.71 58.37 67.61
non-VL-SAT 54.79 77.62 85.84 89.59 97.63 99.08 41.99 70.88 81.67 88.96 91.37 59.58 67.75
VL-SAT (ours) 55.66 78.66 85.91 89.81 98.45 99.53 54.03 77.67 87.65 90.35 92.89 65.09 73.59
VL-SAT (oracle) 66.39 86.53 91.46 90.66 98.37 99.40 55.66 76.28 86.45 92.67 95.02 74.10 81.38
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Figure 3. The line chart shows the predicate frequency in the train
set of 3DSSG [36]. The bar chart shows the results on mA@1 of
the predicate prediction of SGPN [36] and our VL-SAT.

Thanks to the delicate visual-linguistic assisted training
scheme, our “VL-SAT” tremendously improves the base-
line, according to the evaluation with respect to the pred-
icate, and the triplet. Moreover, according to the less bi-
ased mA@k metrics with respect to long-tailed distribution,
when evaluating the predicate, the proposed “VL-SAT” out-
performs the baseline “non-VL-SAT” with around 12.0%,
6.8% and 6.0% gains at mA@1, mA@3, and mA@5 re-
spectively. Our method reaches new state-of-the-art results
on triplet prediction, with 6.8% gain on mA@50 and 5.9%
gain on mA@100 over SGFN [38]. Note that the results
of object classification just have a marginal improvement,
which means that a simple PointNet-based 3D encoder may
not be able to convey similar instance-level representative
power as the 2D vision encoder.

As illustrated in Tab. 2 and Tab. 3, we also compare
our “VL-SAT” with the reference methods, with respect to
two tasks named SGCls and PredCls, according to the set-
tings introduced by Zhang et al. [48]. Our method outper-
forms Zhang et al. [48] by a large margin. For example,
with graph constraint [40] (as a more rigorous testing sce-
nario [45]), “VL-SAT” has 2.5% gain on R@20 in SGCls,
8.5% gain on R@20 in PredCls. Moreover, with respect to
the less biased metrics in Tab. 3, “VL-SAT” even achieves

Table 2. Quantitative results of the compared methods with respect
to the SGCls and PredCls tasks, with and without graph constraint.
The evaluation metric is top-k recall.

SGCls PredCls
Model R@20/50/100 R@20/50/100

with Graph Constraints
Co-Occurrence [48] 14.8/19.7/19.9 34.7/47.4/47.9

KERN [6] 20.3/22.4/22.7 46.8/55.7/56.5
SGPN [36] 27.0/28.8/29.0 51.9/58.0/58.5

Schemata [25] 27.4/29.2/29.4 48.7/58.2/59.1
Zhang et al. [48] 28.5/30.0/30.1 59.3/65.0/65.3

SGFN [38] 29.5/31.2/31.2 65.9/78.8/79.6
VL-SAT (ours) 32.0/33.5/33.7 67.8/79.9/80.8

without Graph Constraints
Co-Occurrence [48] 14.1/20.2/25.8 35.1/55.6/70.6

KERN [6] 20.8/24.7/27.6 48.3/64.8/77.2
SGPN [36] 28.2/32.6/35.3 54.5/70.1/82.4

Schemata [25] 28.8/33.5/36.3 49.6/67.1/80.2
Zhang et al. [48] 29.8/34.3/37.0 62.2/78.4/88.3

SGFN [38] 31.9/39.3/45.0 68.9/82.8/91.2
VL-SAT (ours) 33.8/41.3/47.0 70.5/85.0/92.5

Table 3. Quantitative results of the compared methods with re-
spect to the SGCls and PredCls tasks, with graph constraint. The
evaluation metric is top-k mean recall.

SGCls PredCls
Model mR@20/50/100 mR@20/50/100

Co-Occurrence [48] 8.8/12.7/12.9 33.8/47.4/47.9
KERN [6] 9.5/11.5/11.9 18.8/25.6/26.5
SGPN [36] 19.7/22.6/23.1 32.1/38.4/38.9

Schemata [25] 23.8/27.0/27.2 35.2/42.6/43.3
Zhang et al. [48] 24.4/28.6/28.8 56.6/63.5/63.8

SGFN [38] 20.5/23.1/23.1 46.1/54.8/55.1
VL-SAT(ours) 31.0/32.6/32.7 57.8/64.2/64.3

6.6% gains on mR@20 in SGCls than Zhang et al. [48].

Qualitative Results. We provide some qualitative results
between SGFN and our “VL-SAT” in Fig. 4. These results
demonstrate that our method can predict more reliable scene
graphs with more accurate edges and nodes. For example,
our method successfully distinguishes some similar predi-
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Figure 4. Qualitative results from SGFN [38] and our method on the 3DSSG [36] dataset. Red edge: miss-classified edges from SGFN,
green edge: edges corrected by our method, red node: miss-classified node.
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cate, like standing on versus supported by and further dis-
ambiguates related instances, such as shower curtain versus
bath cabinet. The results conducted on ScanNet [8] in Fig. 5
validate that VL-SAT is generalizable to more datasets.

4.3. More Evaluations about Predicate and Triplet

Tail Predicates. In Fig. 3, we visualize the frequency of
the predicates in the train set as the line chart, which shows
the long-tail distribution. We also show the per-class predi-
cate prediction performances of “VL-SAT” and SGFN [36]
in the bar chart. Compared with SGFN, our method gets
a significant improvement in the tail categories. To further
explore the improvements brought by “VL-SAT”, we split

the 26 predicate classes into three parts: head, body, and tail
according to their frequencies in the train set, and calculate
mA@k metric. In Tab. 4, we obtain 13.71% improvement
on mA@3 when predicting the predicate on tail categories.
Compared with SGFN, our method slightly drops on some
head classes but significantly increases on tail classes. Since
our VL-SAT boosts the overall performance by a large mar-
gin, such a slight performance degradation in head predi-
cates is acceptable. We also provide some examples of tail
predicates in Fig. 4. In the top row, our method correctly
predicts tail predicates like supported by. In the bottom
row, our method corrects the relation between the kitchen
counter and the kitchen cabinet from attached to to part of.
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Table 4. Based on the distribution of the predicates in the train set of the 3DSSG dataset [36], we split the 26 predicate classes into the
head, body, and tail classes, and then compute mA@3 and mA@5 metrics on each split. Moreover, we test several methods on unseen and
seen triplets in the validation set to evaluate the generalization ability of these methods.

Model
Predicate Triplet

Head Body Tail Unseen Seen
mA@3 mA@5 mA@3 mA@5 mA@3 mA@5 A@50 A@100 A@50 A@100

SGPN [36] 96.66 99.17 66.19 85.73 10.18 28.41 15.78 29.60 66.60 77.03
SGFN [38] 95.08 99.38 70.02 87.81 38.67 58.21 22.59 35.68 71.44 80.11
non-VL-SAT 95.32 99.01 71.88 88.64 40.01 58.33 21.99 35.44 71.52 80.34
VL-SAT (ours) 96.31 99.21 80.03 93.64 52.38 66.13 31.28 47.26 75.09 82.25

Table 5. Results of our method when different modules are ab-
lated. CI means CLIP-initialized object classifier. NC means
node-level collaboration. EC means edge-level collaboration. TR
means triplet-level CLIP-based regularization.

CI NC EC TR Object Predicate Triplet
A@5 A@10 mA@3 mA@5 mA@50 mA@100
77.62 85.84 70.88 81.67 59.58 67.75

✓ 79.03 86.81 72.50 83.59 60.65 69.71
✓ ✓ 79.28 86.82 73.92 84.78 62.88 71.84
✓ ✓ ✓ 78.71 86.17 76.92 87.08 64.00 72.42
✓ ✓ ✓ ✓ 78.66 85.91 77.67 87.65 65.09 73.59

Table 6. Our method with different cross-modal collaboration op-
erations. NC means node-level collaboration. EC means edge-
level collaboration. CT means concatenation. CA means cross-
attention in our method.

NC EC Object Predicate Triplet
A@1 A@5 mA@1 mA@3 mA@50 mA@100

CT CT 55.78 77.58 51.64 74.13 60.37 72.66
CT CA 56.14 78.38 52.28 75.04 61.50 73.80
CA CT 56.00 77.68 52.14 73.54 63.92 73.10
CA CA 55.66 78.66 54.03 77.67 65.09 73.59

Table 7. Performance gains brought by our VL-SAT scheme with
two reference 3DSSG prediction models.

Object Predicate Triplet
A@1 A@5 mA@1 mA@3 mA@50 mA@100

SGGpoint [47] 51.42 74.56 27.95 49.98 45.02 56.03
+VL-SAT 52.08 75.76 38.04 60.36 52.51 64.31
SGFN [38] 53.67 77.18 41.89 70.82 58.37 67.61
+VL-SAT 55.43 78.88 52.91 72.37 63.57 72.02

Unseen Triplets. We consider relation triplets that do not
appear in the train set as unseen triplets. In Tab. 4, our
method gains about 8.69% on A@50 on unseen triplets
compared with SGFN [36]. The results validate that thanks
to the VL-SAT scheme, our model can convey more robust
feature representations based on the 3D point cloud, which
leads to a better generalization ability on unseen triplets.

4.4. Ablation Study and Analysis

Ablation Study. In Tab. 5, we conduct a comprehensive
ablation study. The first row denotes the baseline method
“no-VL-SAT”. From Tab. 5, we could observe that the
CLIP-initialized object classifier brings about 1.41% gains

on object A@5. Node and edge-level collaboration and
triplet-level CLIP-based regularization steadily bring gains
on triplet prediction, with 2.23%, 1.12%, and 1.09% boost
on mA@50 metric. It is worth noting that regularizing the
training of predicates and triplets may bring bias to the rep-
resentation of objects, which leads to a slight drop in object
prediction when EC/TR is employed. Thanks to the NC/CI
modules, this degradation is not severe, which validates the
effectiveness of our VL-SAT training scheme.

Different Cross-modal Collaboration Strategies. We in-
vestigate the effects of different cross-modal collaboration
operations in Tab. 6. We compare a simple operation named
CT, in which we just concatenate corresponding features be-
tween two models. When CT is applied, the mA@50 metric
of the triplet prediction drops significantly. By employing
our multi-head cross-attention (termed as CA) in both col-
laborations, significant gains can be observed.

Generalization Ability. In Tab. 7, we also show the per-
formance gains brought by our VL-SAT scheme with two
reference 3DSSG prediction models, namely SGGpoint [47]
and SGFN [38]. VL-SAT shows consistent performance
gains with different 3D prediction models, especially with
respect to the evaluation of predicate and triplet.

5. Conclusions
We have introduced a visual-linguistic semantics as-

sisted training (VL-SAT) scheme to boost 3D semantic
scene graph prediction in the point cloud. We build a strong
oracle multi-modal model, which captures structural se-
mantics using extra input data from vision, auxiliary train-
ing signals from language, and geometric features from the
3D model. The oracle multi-modal model enhances the
3D prediction model via back-propagated gradient flows.
Consequently, the 3D prediction model can predict reliable
scene graphs with only a 3D point cloud as input. Quali-
tative and quantitative results demonstrate that our method
remarkably outperforms the existing methods.
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