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Abstract

Real-time object detection is one of the most important
research topics in computer vision. As new approaches re-
garding architecture optimization and training optimization
are continually being developed, we have found two re-
search topics that have spawned when dealing with these
latest state-of-the-art methods. To address the topics, we
propose a trainable bag-of-freebies oriented solution. We
combine the flexible and efficient training tools with the
proposed architecture and the compound scaling method.
YOLOv7 surpasses all known object detectors in both speed
and accuracy in the range from 5 FPS to 120 FPS and
has the highest accuracy 56.8% AP among all known real-
time object detectors with 30 FPS or higher on GPU V100.
Source code is released in https://github.com/
WongKinYiu/yolov7.

1. Introduction

Real-time object detection is a very important topic in
computer vision, as it is often a necessary component in
computer vision systems. For example, multi-object track-
ing [90, 91], autonomous driving [17, 39], robotics [34, 55],
medical image analysis [33, 44], etc. The computing de-
vices that execute real-time object detection is usually some
mobile CPUs or GPUs, as well as various neural process-
ing units (NPUs). For example, the Apple neural engine
(Apple), the neural compute stick (Intel), Jetson AI edge
devices (Nvidia), the edge TPU (Google), the neural pro-
cessing engine (Qualcomm), the AI processing unit (Medi-
aTek), and the AI SoCs (Kneron), are all NPUs. Some of
edge devices focus on speeding up different operations such
as vanilla convolution, depth-wise convolution, or MLP op-
erations. In this paper, the real-time object detector we pro-
posed mainly hopes that it can support both mobile GPU
and GPU devices from the edge to the cloud.

In recent years, the real-time object detector is still devel-
oped for different edge devices. For example, the develop-

Figure 1. Comparison with other real-time object detectors, our
proposed methods achieve state-of-the-arts performance.

ment of MCUNet [46,47] and NanoDet [51] focused on pro-
ducing low-power single-chip and improving the inference
speed on edge CPU. As for methods such as YOLOX [20]
and YOLOR [79], they focus on improving the inference
speed of various GPUs. More recently, the development of
real-time object detector has focused on the design of ef-
ficient architecture. As for real-time object detectors that
can be used on CPU [51, 81, 82, 86], their design is mostly
based on MobileNet [26, 27, 63], ShuffleNet [52, 89], or
GhostNet [24]. Another real-time object detectors are de-
veloped for GPU [20, 79, 94], they mostly use ResNet [25],
DarkNet [60], or DLA [85], and then use the CSPNet [77]
strategy to optimize the architecture. The development di-
rection of the proposed methods in this paper are different
from that of the current real-time object detectors. In ad-
dition to architecture optimization, our proposed methods
will focus on the optimization of the training process. Our
focus will be on some optimized modules and optimization
methods which may strengthen the training cost for improv-
ing the accuracy of object detection, but without increasing
the inference cost. We call these modules and optimization
methods trainable bag-of-freebies.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Recently, model re-parameterization [11, 12, 28] and dy-
namic label assignment [16, 19, 40] have become important
topics in network training and object detection. Mainly af-
ter the above new concepts are proposed, the training of
object detector evolves many new issues. In this paper, we
will present some of the new issues we have discovered and
devise effective methods to address them. For model re-
parameterization, we analyze the model re-parameterization
strategies applicable to layers in different networks with the
concept of gradient propagation path, and propose planned
re-parameterization model. In addition, when we discover
that with dynamic label assignment technology, the train-
ing of model with multiple output layers will generate new
issues. That is: “How to assign dynamic targets for the out-
puts of different branches?” For this problem, we propose
a new label assignment method called coarse-to-fine lead
guided label assignment.

The contributions of this paper are summarized as fol-
lows: (1) we design several trainable bag-of-freebies meth-
ods, so that real-time object detection can greatly improve
the detection accuracy without increasing the inference
cost; (2) for the evolution of object detection methods,
we found two new issues, namely how re-parameterization
module replaces original module, and how dynamic label
assignment strategy deals with assignment to different out-
put layers. In addition, we also propose methods to address
the difficulties arising from these issues; (3) we propose
“extend” and “compound scaling” methods for the real-time
object detector that can effectively utilize parameters and
computation; and (4) the method we proposed can effec-
tively reduce large amount of parameters and computation
of state-of-the-art real-time object detector, and has faster
inference speed and higher detection accuracy.

2. Related work

2.1. Real-time object detectors

Currently state-of-the-art real-time object detectors are
mainly based on YOLO [58–60] and FCOS [73, 74], which
are [2, 20, 22, 51, 76, 79, 83]. Being able to become a state-
of-the-art real-time object detector usually requires the fol-
lowing characteristics: (1) a faster and stronger network ar-
chitecture; (2) a more effective feature integration method
[8, 21, 29, 36, 43, 56, 71, 94]; (3) a more accurate detec-
tion method [66, 73, 74]; (4) a more robust loss function
[5, 53, 54, 61, 92, 93]; (5) a more efficient label assignment
method [16, 19, 40, 80, 96]; and (6) a more efficient training
method. In this paper, we do not intend to explore self-
supervised learning or knowledge distillation methods that
require additional data or large model. Instead, we will de-
sign new trainable bag-of-freebies method for the issues de-
rived from the state-of-the-art methods associated with (4),
(5), and (6) mentioned above.

2.2. Model re-parameterization

Model re-parametrization techniques [3,9–13,18,23,28,
30, 32, 68, 72, 75] merge multiple computational modules
into one at inference stage. The model re-parameterization
technique can be regarded as an ensemble technique, and
we can divide it into two categories, i.e., module-level en-
semble and model-level ensemble. There are two common
practices for model-level re-parameterization to obtain the
final inference model. One is to train multiple identical
models with different training data, and then average the
weights of multiple trained models. The other is to per-
form a weighted average of the weights of models at differ-
ent iteration number. Module-level re-parameterization is a
more popular research issue recently. This type of method
splits a module into multiple identical or different module
branches during training and integrates multiple branched
modules into a completely equivalent module during infer-
ence. However, not all proposed re-parameterization mod-
ule can be perfectly applied to different architectures. With
this in mind, we have developed new re-parameterization
module and designed related application strategies for vari-
ous architectures.

2.3. Model scaling

Model scaling [1, 14, 15, 49, 57, 69–71] is a way to scale
up or down an already designed model and make it fit in dif-
ferent computing devices. The model scaling method usu-
ally uses different scaling factors, such as resolution (size
of input image), depth (number of layer), width (number
of channel), and stage (number of feature pyramid), so as
to achieve a good trade-off for the amount of network pa-
rameters, computation, inference speed, and accuracy. Net-
work architecture search (NAS) is one of the commonly
used model scaling methods. NAS can automatically search
for suitable scaling factors from search space without defin-
ing too complicated rules. The disadvantage of NAS is
that it requires very expensive computation to complete the
search for model scaling factors. In [14], the researcher
analyzes the relationship between scaling factors and the
amount of parameters and operations, trying to directly es-
timate some rules, and thereby obtain the scaling factors re-
quired by model scaling. Checking the literature, we found
that almost all model scaling methods analyze individual
scaling factor independently, and even the methods in the
compound scaling category also optimized scaling factor
independently. The reason for this is because most popular
NAS architectures deal with scaling factors that are not very
correlated. We observed that all concatenation-based mod-
els, such as DenseNet [31] or VoVNet [38], will change the
input width of some layers when the depth of such models
is scaled. Since the proposed architecture is concatenation-
based, we have to design a new compound scaling method
for this model.
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Figure 2. Extended efficient layer aggregation networks. The proposed extended ELAN (E-ELAN) does not change the gradient transmis-
sion path of the original architecture at all, but use group convolution to increase the cardinality of the added features, and combine the
features of different groups in a shuffle and merge cardinality manner. This way of operation can enhance the features learned by different
feature maps and improve the use of parameters and calculations.

3. Architecture

3.1. Extended efficient layer aggregation networks

In most of the literature on designing the efficient ar-
chitectures, the main considerations are no more than the
number of parameters, the amount of computation, and
the computational density. Starting from the characteris-
tics of memory access cost, Ma et al. [52] analyzed the
influence of the input/output channel ratio, the number of
branches of the architecture, and the element-wise opera-
tion on the network inference speed. Dollár et al. [14] addi-
tionally considered activation when performing model scal-
ing, that is, to put more consideration on the number of el-
ements in the output tensors of convolutional layers. The
design of CSPVoVNet [76] in Figure 2 (b) is a variation of
VoVNet [38]. In addition to considering the aforementioned
basic designing concerns, the architecture of CSPVoVNet
[76] also analyzes the gradient path, in order to enable the
weights of different layers to learn more diverse features.
The gradient analysis approach described above makes in-
ferences faster and more accurate. ELAN [78] in Figure 2
(c) considers the following design strategy – “How to design
an efficient network?.” They came out with a conclusion:
By controlling the longest shortest gradient path, a deeper
network can learn and converge effectively. In this paper,
we propose Extended-ELAN (E-ELAN) based on ELAN
and its main architecture is shown in Figure 2 (d).

Regardless of the gradient path length and the stacking
number of computational blocks in large-scale ELAN, it has
reached a stable state. If more computational blocks are
stacked unlimitedly, this stable state may be destroyed, and
the parameter utilization rate will decrease. The proposed
E-ELAN uses expand, shuffle, merge cardinality to achieve

the ability to continuously enhance the learning ability of
the network without destroying the original gradient path.
In terms of architecture, E-ELAN only changes the archi-
tecture in computational block, while the architecture of
transition layer is completely unchanged. Our strategy is
to use group convolution to expand the channel and car-
dinality of computational blocks. We will apply the same
group parameter and channel multiplier to all the compu-
tational blocks of a computational layer. Then, the feature
map calculated by each computational block will be shuf-
fled into g groups according to the set group parameter g,
and then concatenate them together. At this time, the num-
ber of channels in each group of feature map will be the
same as the number of channels in the original architec-
ture. Finally, we add g groups of feature maps to perform
merge cardinality. In addition to maintaining the original
ELAN design architecture, E-ELAN can also guide differ-
ent groups of computational blocks to learn more diverse
features.

3.2. Model scaling for concatenation-based models

The main purpose of model scaling is to adjust some at-
tributes of the model and generate models of different scales
to meet the needs of different inference speeds. For example
the scaling model of EfficientNet [69] considers the width,
depth, and resolution. As for the scaled-YOLOv4 [76], its
scaling model is to adjust the number of stages. In [14],
Dollár et al. analyzed the influence of vanilla convolution
and group convolution on the amount of parameter and
computation when performing width and depth scaling, and
used this to design the corresponding model scaling method.
The above methods are mainly used in architectures such as
PlainNet or ResNet. When these architectures are in execut-
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Figure 3. Model scaling for concatenation-based models. From (a) to (b), we observe that when depth scaling is performed on
concatenation-based models, the output width of a computational block also increases. This phenomenon will cause the input width
of the subsequent transmission layer to increase. Therefore, we propose (c), that is, when performing model scaling on concatenation-
based models, only the depth in a computational block needs to be scaled, and the remaining of transmission layer is performed with
corresponding width scaling.

ing scaling up or scaling down, the in-degree and out-degree
of each layer will not change, so we can independently an-
alyze the impact of each scaling factor on the amount of
parameters and computation. However, if these methods
are applied to the concatenation-based architecture, we will
find that when scaling up or scaling down is performed on
depth, the in-degree of a translation layer which is immedi-
ately after a concatenation-based computational block will
decrease or increase, as shown in Figure 3 (a) and (b).

It can be inferred from the above phenomenon that
we cannot analyze different scaling factors separately for
a concatenation-based model but must be considered to-
gether. Take scaling-up depth as an example, such an ac-
tion will cause a ratio change between the input channel and
output channel of a transition layer, which may lead to a de-
crease in the hardware usage of the model. Therefore, we
must propose the corresponding compound model scaling
method for a concatenation-based model. When we scale
the depth factor of a computational block, we must also cal-
culate the change of the output channel of that block. Then,
we will perform width factor scaling with the same amount
of change on the transition layers, and the result is shown
in Figure 3 (c). Our proposed compound scaling method
can maintain the properties that the model had at the initial
design and maintains the optimal structure.

4. Trainable bag-of-freebies
4.1. Planned re-parameterization model

Although RepConv [12] has achieved excellent per-
formance on the VGG [65], when we directly apply
it to ResNet [25] and DenseNet [31] and other non-
plain architectures, its accuracy will be significantly re-
duced. We use gradient flow propagation paths to ana-
lyze how re-parameterization convolution should be com-
bined with different network. We also designed planned
re-parameterization model accordingly.

RepConv actually combines 3×3 convolution, 1×1 con-
volution, and identity connection in one convolutional layer.
After analyzing the combination and corresponding perfor-

Figure 4. Planned re-parameterization model. In the proposed
planned re-parameterization model, we found that a layer with
residual or concatenation connections, its RepConv should not
have identity connection. Under these circumstances, it can be
replaced by RepConvN that contains no identity connections.

mance of RepConv and different architectures, we find that
the identity connection in RepConv destroys the residual in
ResNet and the concatenation in DenseNet, which provides
more diversity of gradients for different feature maps. For
the above reasons, we use RepConv without identity con-
nection (RepConvN) to design the architecture of planned
re-parameterization model. In our thinking, when a convo-
lutional layer with residual or concatenation is replaced by
re-parameterization convolution, there should be no iden-
tity connection. Figure 4 shows examples of how our de-
signed “planned re-parameterization model” is applied in
PlainNet and ResNet. As for the complete planned re-
parameterization model experiment in residual-based model
and concatenation-based model, it will be presented in the
ablation study session.

4.2. Coarse for auxiliary and fine for lead loss

Deep supervision [37] is a technique used for training
deep networks. Its main concept is to add extra auxiliary
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Figure 5. Coarse for auxiliary and fine for lead head label assigner. Compare with normal model (a), the schema in (b) has auxiliary head.
Different from the usual independent label assigner (c), we propose (d) lead head guided label assigner and (e) coarse-to-fine lead head
guided label assigner. The proposed label assigner is optimized by lead head prediction and the ground truth to get the labels of training
lead head and auxiliary head at the same time. The detailed implementation and constraint details will be elaborated in Appendix.

head in the middle layers of the network, and the shallow
network weights with assistant loss as the guide. Even for
architectures such as ResNet [25] and DenseNet [31] which
usually converge well, deep supervision [45, 48, 62, 64, 67,
80, 84, 95] can still significantly improve the performance
of the model on many tasks. Figure 5 (a) and (b) show,
respectively, the object detector architecture “without” and
“with” deep supervision. In this paper, we call the head
responsible for the final output as the lead head, and the
head used to assist training is called auxiliary head.

Next we want to discuss the issue of label assignment. In
the past, in the training of deep network, label assignment
usually refers directly to the ground truth and generate hard
label according to the given rules. However, in recent years,
if we take object detection as an example, researchers often
use the quality and distribution of prediction output by the
network, and then consider together with the ground truth to
use some calculation and optimization methods to generate
a reliable soft label [7, 16, 19, 35, 40–42, 58, 87, 88, 96]. For
example, YOLO [58] use IoU of prediction of bounding box
regression and ground truth as the soft label of objectness.
In this paper, we call the mechanism that considers the net-
work prediction results together with the ground truth and
then assigns soft labels as “label assigner.”

Deep supervision needs to be trained on the target ob-
jectives regardless of the circumstances of auxiliary head or
lead head. During the development of soft label assigner re-
lated techniques, we accidentally discovered a new deriva-
tive issue, i.e., “How to assign soft label to auxiliary head
and lead head ?” To the best of our knowledge, the rele-
vant literature has not explored this issue so far. The results
of the most popular method at present is shown in Figure 5
(c), which is to separate auxiliary head and lead head, and
then use their own prediction results and the ground truth
to execute label assignment. The method proposed in this
paper is a new label assignment method that guides both
auxiliary head and lead head by the lead head prediction.
In other words, we use lead head prediction as guidance to
generate coarse-to-fine hierarchical labels, which are used
for auxiliary head and lead head learning, respectively. The

two proposed deep supervision label assignment strategies
are shown in Figure 5 (d) and (e), respectively.

Lead head guided label assigner is mainly calculated
based on the prediction result of the lead head and the
ground truth, and generate soft label through the optimiza-
tion process. This set of soft labels will be used as the tar-
get training model for both auxiliary head and lead head.
The reason to do this is because lead head has a relatively
strong learning capability, so the soft label generated from it
should be more representative of the distribution and corre-
lation between the source data and the target. Furthermore,
we can view such learning as a kind of generalized residual
learning. By letting the shallower auxiliary head directly
learn the information that lead head has learned, lead head
will be more able to focus on learning residual information
that has not yet been learned.

Coarse-to-fine lead head guided label assigner also
used the predicted result of the lead head and the ground
truth to generate soft label. However, in the process we gen-
erate two different sets of soft label, i.e., coarse label and
fine label, where fine label is the same as the soft label gen-
erated by lead head guided label assigner, and coarse label
is generated by allowing more grids to be treated as posi-
tive target by relaxing the constraints of the positive sample
assignment process. The reason for this is that the learning
ability of an auxiliary head is not as strong as that of a lead
head, and in order to avoid losing the information that needs
to be learned, we will focus on optimizing the recall of aux-
iliary head in the object detection task. As for the output
of lead head, we can filter the high precision results from
the high recall results as the final output. However, we must
note that if the additional weight of coarse label is close to
that of fine label, it may produce bad prior at final predic-
tion. Therefore, in order to make those extra coarse positive
grids have less impact, we put restrictions in the decoder, so
that the extra coarse positive grids cannot produce soft label
perfectly. This mechanism allows the importance of fine la-
bel and coarse label to be dynamically adjusted during the
learning process, and makes the optimizable upper bound
of fine label always higher than coarse label.
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Table 1. Comparison of baseline object detectors.

Model #Param. FLOPs Size APval APval
50 APval

75 APval
S APval

M APval
L

YOLOv4 [2] 64.4M 142.8G 640 49.7% 68.2% 54.3% 32.9% 54.8% 63.7%
YOLOR-u5 (r6.1) [79] 46.5M 109.1G 640 50.2% 68.7% 54.6% 33.2% 55.5% 63.7%
YOLOv4-CSP [76] 52.9M 120.4G 640 50.3% 68.6% 54.9% 34.2% 55.6% 65.1%
YOLOR-CSP [79] 52.9M 120.4G 640 50.8% 69.5% 55.3% 33.7% 56.0% 65.4%
YOLOv7 36.9M 104.7G 640 51.2% 69.7% 55.5% 35.2% 56.0% 66.7%
improvement -43% -15% - +0.4 +0.2 +0.2 +1.5 = +1.3

YOLOR-CSP-X [79] 96.9M 226.8G 640 52.7% 71.3% 57.4% 36.3% 57.5% 68.3%
YOLOv7-X 71.3M 189.9G 640 52.9% 71.1% 57.5% 36.9% 57.7% 68.6%
improvement -36% -19% - +0.2 -0.2 +0.1 +0.6 +0.2 +0.3

YOLOv4-tiny [76] 6.1 6.9 416 24.9% 42.1% 25.7% 8.7% 28.4% 39.2%
YOLOv7-tiny 6.2 5.8 416 35.2% 52.8% 37.3% 15.7% 38.0% 53.4%
improvement +2% -19% - +10.3 +10.7 +11.6 +7.0 +9.6 +14.2

YOLOv4-tiny-3l [76] 8.7 5.2 320 30.8% 47.3% 32.2% 10.9% 31.9% 51.5%
YOLOv7-tiny 6.2 3.5 320 30.8% 47.3% 32.2% 10.0% 31.9% 52.2%
improvement -39% -49% - = = = -0.9 = +0.7

YOLOR-E6 [79] 115.8M 683.2G 1280 55.7% 73.2% 60.7% 40.1% 60.4% 69.2%
YOLOv7-E6 97.2M 515.2G 1280 55.9% 73.5% 61.1% 40.6% 60.3% 70.0%
improvement -19% -33% - +0.2 +0.3 +0.4 +0.5 -0.1 +0.8

YOLOR-D6 [79] 151.7M 935.6G 1280 56.1% 73.9% 61.2% 42.4% 60.5% 69.9%
YOLOv7-D6 154.7M 806.8G 1280 56.3% 73.8% 61.4% 41.3% 60.6% 70.1%
YOLOv7-E6E 151.7M 843.2G 1280 56.8% 74.4% 62.1% 40.8% 62.1% 70.6%
improvement = -11% - +0.7 +0.5 +0.9 -1.6 +1.6 +0.7

4.3. Other trainable bag-of-freebies

In this section we will list some trainable bag-of-
freebies. These freebies are some of the tricks we used
in training, but the original concepts were not proposed
by us. The training details of these freebies will be elab-
orated in the Appendix, including (1) Batch normalization
in conv-bn-activation topology: This part mainly connects
batch normalization layer directly to convolutional layer.
The purpose of this is to integrate the mean and variance
of batch normalization into the bias and weight of convolu-
tional layer at the inference stage. (2) Implicit knowledge
in YOLOR [79] combined with convolution feature map in
addition and multiplication manner: Implicit knowledge in
YOLOR can be simplified to a vector by pre-computing at
the inference stage. This vector can be combined with the
bias and weight of the previous or subsequent convolutional
layer. (3) EMA model: EMA is a technique used in mean
teacher [72], and in our system we use EMA model purely
as the final inference model.

5. Experiments

5.1. Experimental setup

MS COCO dataset is used to conduct experiments. All
our models were trained from scratch. We used train 2017
set for training, and then used val 2017 set for verification
and choosing hyperparameters. Finally, test 2017 set is used
to compare with the state-of-the-art object detectors. De-
tailed training settings are described in Appendix.

We designed basic model for edge GPU, normal GPU,
and cloud GPU, and they are respectively called YOLOv7-
tiny, YOLOv7, and YOLOv7-W6. We also use basic
model for model scaling for different service requirements.
For YOLOv7, we do stack scaling on neck, and use the
proposed compound scaling method to perform scaling-
up of the depth and width of the entire model to obtain
YOLOv7-X. As for YOLOv7-W6, we use the newly pro-
posed compound scaling method to obtain YOLOv7-E6 and
YOLOv7-D6. In addition, we use the proposed E-ELAN for
YOLOv7-E6, and thereby complete YOLOv7-E6E. Since
YOLOv7-tiny is an edge GPU-oriented architecture, it will
use leaky ReLU as activation function. As for other models
we use SiLU as activation function. We will describe the
scaling factor of each model in detail in Appendix.

5.2. Baselines

We choose previous version of YOLO [2, 76] and state-
of-the-art object detector YOLOR [79] as our baselines. Ta-
ble 1 shows the comparison of our proposed YOLOv7 mod-
els and those baseline that are trained with the same settings.

From the results we see that YOLOv7-based models out-
perform the baseline models in terms of number of pa-
rameters, amount of computation, and accuracy. For mod-
els designed for normal GPU, YOLOv7 and YOLOv7x re-
duce about 40% parameters and 20% computations, and
still achieve higher AP. For model designed for edge GPU,
YOLOv7-tiny reduce 39% parameters and 49% computa-
tion and achieve same AP as YOLOv4-tiny-3l.
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Table 2. Comparison of state-of-the-art object detectors. (no-TRT, without extra object detection training data)

Model #Param. FLOPs Size FPSV 100 APtest / APval APtest
50 APtest

75

YOLOv7-tiny-SiLU 6.2M 13.8G 640 273 38.7% / 38.7% 56.7% 41.7%
PPYOLOE-S [83] 7.9M 17.4G 640 208 43.1% / 42.7% 60.5% 46.6%

YOLOv5-N (r6.1) [22] 1.9M 4.5G 640 159 - / 28.0% - -
YOLOv5-S (r6.1) [22] 7.2M 16.5G 640 156 - / 37.4% - -
PPYOLOE-M [83] 23.4M 49.9G 640 123 48.9% / 48.6% 66.5% 53.0%
YOLOv5-N6 (r6.1) [22] 3.2M 18.4G 1280 123 - / 36.0% - -
YOLOv5-S6 (r6.1) [22] 12.6M 67.2G 1280 122 - / 44.8% - -
YOLOv5-M (r6.1) [22] 21.2M 49.0G 640 122 - / 45.4% - -
YOLOv7 36.9M 104.7G 640 118 51.4% / 51.2% 69.7% 55.9%
YOLOR-CSP [79] 52.9M 120.4G 640 106 51.1% / 50.8% 69.6% 55.7%
YOLOX-S [20] 9.0M 26.8G 640 102 40.5% / 40.5% - -

YOLOv5-L (r6.1) [22] 46.5M 109.1G 640 99 - / 49.0% - -
YOLOv7-X 71.3M 189.9G 640 98 53.1% / 52.9% 71.2% 57.8%
YOLOv5-M6 (r6.1) [22] 35.7M 200.0G 1280 90 - / 51.3% - -
YOLOR-CSP-X [79] 96.9M 226.8G 640 87 53.0% / 52.7% 71.4% 57.9%
YOLOv5-X (r6.1) [22] 86.7M 205.7G 640 83 - / 50.7% - -
YOLOX-M [20] 25.3M 73.8G 640 81 47.2% / 46.9% - -
YOLOv7-W6 70.4M 360.0G 1280 80 54.9% / 54.6% 72.6% 60.1%
PPYOLOE-L [83] 52.2M 110.1G 640 78 51.4% / 50.9% 68.9% 55.6%
YOLOR-P6 [79] 37.2M 325.6G 1280 76 53.9% / 53.5% 71.4% 58.9%
YOLOX-L [20] 54.2M 155.6G 640 69 50.1% / 49.7% - -
YOLOR-W6 [79] 79.8G 453.2G 1280 66 55.2% / 54.8% 72.7% 60.5%
YOLOv5-L6 (r6.1) [22] 76.8M 445.6G 1280 63 - / 53.7% - -

YOLOX-X [20] 99.1M 281.9G 640 58 51.5% / 51.1% - -
YOLOv7-E6 97.2M 515.2G 1280 54 56.0% / 55.9% 73.5% 61.2%
YOLOR-E6 [79] 115.8M 683.2G 1280 45 55.8% / 55.7% 73.4% 61.1%
PPYOLOE-X [83] 98.4M 206.6G 640 45 52.2% / 51.9% 69.9% 56.5%
YOLOv7-D6 154.7M 806.8G 1280 43 56.6% / 56.3% 74.0% 61.8%
YOLOv5-X6 (r6.1) [22] 140.7M 839.2G 1280 38 - / 55.0% - -
YOLOv7-E6E 151.7M 843.2G 1280 35 56.8% / 56.8% 74.4% 62.1%
YOLOR-D6 [79] 151.7M 935.6G 1280 34 56.5% / 56.1% 74.1% 61.9%

Deformable DETR [97] 40.0M 173.0G - 19 - / 46.2% - -
Swin-B (C-M-RCNN) [50] 145.0M 982.0G 1333 11.6 - / 51.9% - -
EfficientDet-D7x [71] 77.0M 410.0G 1536 6.5 55.1% / 54.4% 72.4% 58.4%
ViT-Adapter-B [6] 122.0M 997.0G - 4.4 - / 50.8% - -
Dual-Swin-B (HTC) [45] 235.0M - 1600 2.5 58.7% / 58.4% - -

5.3. Comparison with state-of-the-arts

We compare the proposed method with state-of-the-art
object detectors, and the results are shown in Table 2. From
Table 2 we know that the proposed method has the best
speed-accuracy trade-off comprehensively.

5.4. Ablation study

5.4.1 Proposed compound scaling method

Table 3 shows the results obtained when using different
model scaling strategies for scaling up. Among them, our
proposed compound scaling method is to scale up the depth
of computational block by 1.5 times and the width of tran-
sition block by 1.25 times. It can be seen from the results
of Table 3 that our proposed compound scaling strategy can
utilize parameters and computation more efficiently.
5.4.2 Proposed planned re-parameterization model

In order to verify the generality of our proposed planed re-
parameterization model, we use it on concatenation-based

Table 3. Ablation study on proposed model scaling.

Model #Param. FLOPs Size APval APval
50 APval

75

base (v7-X light) 47.0M 125.5G 640 51.7% 70.1% 56.0%
width only (1.25 w) 73.4M 195.5G 640 52.4% 70.9% 57.1%
depth only (2.0 d) 69.3M 187.6G 640 52.7% 70.8% 57.3%
compound (v7-X) 71.3M 189.9G 640 52.9% 71.1% 57.5%
improvement - - - +1.2 +1.0 +1.5

model and residual-based model respectively for verifica-
tion. The concatenation-based model and residual-based
model we chose for verification are 3-stacked ELAN and
CSPDarknet, respectively.

In the experiment of concatenation-based model, we re-
place the 3× 3 convolutional layers in different positions in
3-stacked ELAN with RepConv, and the detailed configura-
tion is shown in Figure 6. From the results shown in Table 4
we see that all higher AP values are present on our proposed
planned re-parameterization model.

In the experiment of residual-based model, we design a
reversed dark block to fit our design strategy for the exper-
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Figure 6. Planned RepConv 3-stacked ELAN. Blue circles are the
position we replace Conv by RepConv.

Table 4. Ablation study on planned RepConcatenation model.

Model APval APval
50 APval

75 APval
S APval

M APval
L

base (3-S ELAN) 52.26% 70.41% 56.77% 35.81% 57.00% 67.59%
Figure 6 (a) 52.18% 70.34% 56.90% 35.71% 56.83% 67.51%
Figure 6 (b) 52.30% 70.30% 56.92% 35.76% 56.95% 67.74%
Figure 6 (c) 52.33% 70.56% 56.91% 35.90% 57.06% 67.50%
Figure 6 (d) 52.17% 70.32% 56.82% 35.33% 57.06% 68.09%
Figure 6 (e) 52.23% 70.20% 56.81% 35.34% 56.97% 66.88%

iment, whose architecture is shown in Figure 7. The ex-
periment results illustrated in Table 5 fully confirm that the
proposed planned re-parameterization model is equally ef-
fective on residual-based model. We find that the design of
RepCSPResNet [83] also fits our design pattern.

Figure 7. Reversed CSPDarknet. We reverse the position of 1× 1
and 3 × 3 convolutional layer in dark block to fit our planned re-
parameterization model design strategy.

Table 5. Ablation study on planned RepResidual model.

Model APval APval
50 APval

75 APval
S APval

M APval
L

base (YOLOR-W6) 54.82% 72.39% 59.95% 39.68% 59.38% 68.30%
RepCSP 54.67% 72.50% 59.58% 40.22% 59.61% 67.87%
RCSP 54.36% 71.95% 59.54% 40.15% 59.02% 67.44%
RepRCSP 54.85%72.51%60.08%40.53% 59.52% 68.06%

base (YOLOR-CSP) 50.81% 69.47% 55.28% 33.74% 56.01% 65.38%
RepRCSP 50.91%69.54%55.55%34.44% 55.74% 65.46%

5.4.3 Proposed assistant loss for auxiliary head

In the assistant loss for auxiliary head experiments, we com-
pare the general independent label assignment for lead head
and auxiliary head methods, and we also compare the two
proposed lead guided label assignment methods. We show
all comparison results in Table 6. From the results listed in
Table 6, it is clear that any model that increases assistant
loss can significantly improve the overall performance.

Table 6. Ablation study on proposed auxiliary head.

Model Size APval APval
50 APval

75

base (v7-E6) 1280 55.6% 73.2% 60.7%
independent 1280 55.8% 73.4% 60.9%
lead guided 1280 55.9% 73.5% 61.0%
coarse-to-fine lead guided 1280 55.9% 73.5% 61.1%

In Table 7 we further compared the results of
with/without the introduction of upper bound constraint.
Judging from the numbers in the Table, the method of con-
straining the upper bound of objectness by the distance from
the center of the object can achieve better performance.

Table 7. Ablation study on constrained auxiliary head.

Model Size APval APval
50 APval

75

base (v7-E6) 1280 55.6% 73.2% 60.7%
aux without constraint 1280 55.9% 73.5% 61.0%
aux with constraint 1280 55.9% 73.5% 61.1%

Directly connect auxiliary head to the pyramid in the
middle layer for training can make up for information that
may be lost in the next level pyramid prediction. To solve
this issue, our approach is to connect auxiliary head after
one of the sets of feature map before merging cardinality of
E-ELAN. Table 8 shows the results obtained using coarse-
to-fine lead guided and partial coarse-to-fine lead guided
methods. Obviously, the partial coarse-to-fine lead guided
method has a better auxiliary effect.

Table 8. Ablation study on partial auxiliary head.

Model Size APval APval
50 APval

75

base (v7-E6E) 1280 56.3% 74.0% 61.5%
aux 1280 56.5% 74.0% 61.6%
partial aux 1280 56.8% 74.4% 62.1%

6. Conclusions
In this paper we propose a new architecture of real-

time object detector and the corresponding model scaling
method. Furthermore, we find that the evolving process
of object detection methods generates new research top-
ics. During the research process, we found the replacement
problem of re-parameterization module and the allocation
problem of dynamic label assignment. To solve the prob-
lem, we propose the trainable bag-of-freebies method to en-
hance the accuracy of object detection. Based on the above,
we have developed the YOLOv7 series of object detection
systems, which receives the state-of-the-art results.
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