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Abstract

Recently, few-shot action recognition receives increasing
attention and achieves remarkable progress. However, pre-
vious methods mainly rely on limited unimodal data (e.g.,
RGB frames) while the multimodal information remains rel-
atively underexplored. In this paper, we propose a novel
Active Multimodal Few-shot Action Recognition (AMFAR)
framework, which can actively find the reliable modality for
each sample based on task-dependent context information
to improve few-shot reasoning procedure. In meta-training,
we design an Active Sample Selection (ASS) module to or-
ganize query samples with large differences in the reliabil-
ity of modalities into different groups based on modality-
specific posterior distributions. In addition, we design an
Active Mutual Distillation (AMD) to capture discrimina-
tive task-specific knowledge from the reliable modality to
improve the representation learning of unreliable modal-
ity by bidirectional knowledge distillation. In meta-test,
we adopt Adaptive Multimodal Inference (AMI) to adap-
tively fuse the modality-specific posterior distributions with
a larger weight on the reliable modality. Extensive experi-
mental results on four public benchmarks demonstrate that
our model achieves significant improvements over existing
unimodal and multimodal methods.

1. Introduction
Over the past years, action recognition [20, 34, 52, 73]

has achieved significant progress with the emerge of deep
learning. However, these existing deep methods require a
large amount of labeled videos to guarantee their perfor-
mance. In practice, it is sometimes expensive or even im-
possible to collect abundant annotated data, which limits the
effectiveness of supervised methods. In order to deal with
this problem, more and more researchers begin to focus on
the few-shot action recognition (FSAR) task, which aims at
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Figure 1. Illustration of multimodal few-shot action recognition
task. The main challenge is that the contribution of a specific
modality highly depends on task-specific contextual information.

classifying unlabeled videos (query set) from novel action
classes with the help of only a few annotated samples (sup-
port set).

Recently, researchers have proposed many promising
few-shot action recognition methods, which can be roughly
divided into two groups: data augmentation-based methods
and alignment-based methods. Data augmentation-based
methods try to generate additional training data [18], self-
supervision signals [72] or auxiliary information [22, 69] to
promote robust representation learning. Alignment-based
methods [5,8,44,58,66,69,72] focus on matching the video
frames or segments in the temporal or spatial dimension to
measure the distance between query and support samples in
a fine-grained manner.

Although existing few-shot action recognition methods
have achieved remarkable performance, they mainly rely on
limited unimodal data (e.g. RGB frames) that are always
insufficient to reflect complex characteristics of human ac-
tions. When learning novel concepts from a few samples,
humans have the ability to integrate the multimodal percep-
tions (e.g. appearance, audio and motion) to enhance the
recognition procedure. In addition, in conventional action
recognition, many top-performing methods [23, 46, 56, 60]
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always involve multiple modalities (e.g. vision, optical flow
and audio) which can provide complementary information
to comprehensively identify different actions. Whereas, the
multimodal information remains relatively underexplored
in few-shot action recognition where the data scarcity issue
magnifies the defect of unimodal data.

In this paper, we study multimodal few-shot action
recognition task, where the query and support samples are
multimodal as shown in Figure 1. With multimodal data,
we can alleviate the data scarcity issue through the com-
plementarity of different modalities. However, exploring
the multimodal complementarity in few-shot action recog-
nition is nontrivial. On the one hand, although there are
many widely used methods for fusing multimodal data, e.g.,
early fusion [47], late fusion [38, 64], it is still questionable
whether existing methods are suitable to be directly applied
in the few-shot scenario where only a few samples are avail-
able for each action class. On the other hand, the contri-
bution of a specific modality is not consistent for different
query samples and it highly depends on the contextual infor-
mation of both query and support samples in each few-shot
task. For example, as shown in Figure 1, if the few-shot task
is to identify query samples from the two action classes of
Snowboarding and Ballet dancing, the RGB data
and optical flow are equally important and they can com-
plement each other well to distinguish these two classes. In
contrast, for the two action classes of Snowboarding and
Skateboarding, the optical flow cannot provide use-
ful discriminative features to complement the vision infor-
mation or even harm the few-shot recognition performance
due to the motion resemblance between these two actions.
Therefore, we argue that it requires a task-dependent strat-
egy for exploring the complementarity between different
modalities in few-shot action recognition.

In order to reasonably take advantage of the comple-
mentarity between different modalities, we propose an Ac-
tive Multimodal Few-shot Action Recognition (AMFAR)
framework inspired by active learning [6], which can ac-
tively find the more reliable modality for each query sam-
ple to improve the few-shot reasoning procedure. AMFAR
adopts the episode-wise learning framework [53,63], where
each episode has a few labeled support samples and the un-
labeled query samples that need to be recognized. In each
episode of the meta-training, we firstly adopt modality-
specific backbone networks to extract the multimodal rep-
resentations for query samples and the prototypes of differ-
ent actions for support samples. We further compute the
modality-specific posterior distributions based on query-to-
prototype distances. Then, we adopt Active Sample Se-
lection (ASS) to organize query samples with large differ-
ences in the reliability of two modalities into two groups,
i.e., RGB-dominant group that contains samples where the
RGB modality is more reliable for conducting action recog-

nition in the current episode, and Flow-dominant group
where the optical flow is more reliable. For each query
sample, the reliability of a specific modality is estimated ac-
cording to certainties of the modality-specific posterior dis-
tribution. Next, we design an Active Mutual Distillation
(AMD) mechanism to capture discriminative task-specific
knowledge from the reliable modality to improve the rep-
resentation learning of unreliable modality by bidirectional
knowledge guiding streams between modalities. For each
query in the RGB-dominant group, the RGB modality is
regarded as teacher while the optical flow is regarded as
student, and the query-to-prototype relation knowledge is
transferred from the teacher to the student with a distilla-
tion constraint. Simultaneously, for each query in the Flow-
dominant group, optical flow is regarded as teacher while
RGB is regarded as student, and the knowledge distillation
is conducted in the opposite direction. In the meta-test
phase, we adopt Adaptive Multimodal Inference (AMI)
to conduct the few-shot inference for each query sample
by adaptively fusing the posterior distributions predicted
from different modalities with a larger weight on the reli-
able modality.

In summary, the main contributions of this paper are
fourfold: 1) We exploit the natural complementarity be-
tween different modalities to enhance the few-shot action
recognition procedure by actively finding the more reli-
able modality for each query sample. To our best knowl-
edge, we are the first to adopt the idea of active learn-
ing to explore the multimodal complementarity in few-shot
learning. 2) We propose an active mutual distillation strat-
egy to transfer task-dependent knowledge learned from the
reliable modality to guide the representation learning for
the unreliable modality, which can improve the discrimi-
native ability of the unreliable modality with the help of the
multimodal complementarity. 3) We propose an adaptive
multimodal few-shot inference approach to fuse modality-
specific results by paying more attention to the reliable
modality. 4) We conduct extensive experiments on four
challenging datasets and the results demonstrate that the
proposed method outperforms existing unimodal and mul-
timodal methods.

2. Related Work
Few-shot Learning. Few-shot learning aims to recog-

nize unseen concepts with only a few labeled training sam-
ples. The majority of few-shot learning methods can be di-
vided into two main groups: optimization-based [1, 21, 36,
55] and metric-based methods [11,12,51,53,57,63,68,71].
Optimization-based methods (e.g., MAML [21]) learn an
optimizer to adapt to new tasks with limited training sam-
ples. Metric-based methods (e.g., Prototypical [53] and
Matching [63] Networks) learn a common metric space for
both seen and novel classes and compare query and sup-
port samples through a distance in the learned metric space.
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In recent years, few-shot learning has achieved great suc-
cess in many conventional tasks, such as image classifi-
cation [3, 16], object detection [19, 30, 31], and segmenta-
tion [35, 65]. However, most existing methods focus on
unimodal data, while only a few works consider multi-
modal data [17, 39–41, 43, 61]. For example, several meth-
ods [39, 40] enrich the low populated visual embedding by
leveraging auxiliary text data during training to deal with
few-shot image classification at test time. Dong et al. [17]
focus on modeling the relationship between images and
texts to solve few-shot image captioning and visual question
answering. Tsimpoukelli et al. [61] transfer the few-shot
learning ability of pretrained language models to down-
stream tasks (e.g. VQA).

Few-shot Action Recognition. Most existing few-shot
action recognition methods [5, 8, 22, 33, 44, 58, 66, 72, 74]
adopt the metric learning strategy to help estimate the dis-
tances between the query and support samples in a unified
metric/feature space for few-shot inference. For example,
OTAM [8] aligns the query-support pair with a DTW algo-
rithm that exploits long-term temporal ordering. TRX [44]
and STRM [58] model temporal relations by representing
the video as tuples consisting of a few sparse frames and
compare the similarity of the query-support pair in a part-
based manner. Inspired by data augmentation, there are
also methods to learn distinguishable action-specific char-
acteristics with extra self-supervisory information or gener-
ated training data. For example, ARN [72] introduces spa-
tial and temporal self-supervision to learn a robust video
representation. Other methods [18, 70] leverage generative
adversarial network (GAN) to synthesize additional exam-
ples for novel categories. Perhaps the most related works
to our paper are [22,69] that generate auxiliary information
to promote the visual representation of image sequences in
videos. Specifically, AMeFu-Net [22] introduces depth as a
carrier of the scene information for few-shot action recogni-
tion, and MTFAN [69] improves the transferability of video
embedding by leveraging motion patterns extracted from
videos. Unlike the above methods that enhance the video
representation with the help of auxiliary modality, this pa-
per explicitly investigates the natural complementarity be-
tween different modalities based on the modality-specific
posterior distributions.

Active Learning. Active learning (AL) [49] is proposed
to reduce the expensive labeling cost in machine learning
via acquiring most informative data from unlabeled pool for
annotation. Numerous AL approaches leverage uncertainty
sampling to select data points that the model produces low
confidence [4,9,59]. Diversity sampling is another common
method used in AL, which picks a set of typical samples via
clustering [6] or core-set selection [25, 48]. Since few-shot
learning shares the same goal of improving performance
with limited labeled samples as AL, researchers began to

consider employing AL in few-shot learning. For example,
there are methods to select examples worth labeling during
meta-test or meta-training by clustering approach [2, 7] or
reinforcement learning [67]. Pezeshkpour et al. [45] attempt
to seek the most informative samples to add into the support
set during meta-test. Different from these methods, in this
paper, we adopt the idea of active learning to find the more
reliable modality for each sample to help the meta-training
and meta-test.

Knowledge Distillation. Knowledge distillation [29,
42, 62] is proposed to distill knowledge from well-learned
teacher networks to student networks, which has shown its
potential in cross-modal tasks recently. For example, Gupta
et al. [27] transfer supervision from labeled RGB images to
unlabeled depth and optical flow images to learn rich repre-
sentations with knowledge distillation. Garcia et al. [24]
propose a distillation framework for action classification
with a four-step process that hallucinates depth features into
RGB frames. MARS [13] distills knowledge from the op-
tical flow data to the RGB by matching high-level features
and trains the network to simulate motion flow with RGB
to avoid the computation of optical flow at test time. Dai
et al. [14] learn an augmented RGB representation with
the knowledge distilled from optical flow for action detec-
tion. Different from previous methods, we design a bidirec-
tional knowledge distillation to actively transfer discrimi-
native task-specific knowledge across different modalities.

3. Method
3.1. Problem Definition

In this paper, we conduct multimodal few-shot action
recognition by utilizing meta-learning paradigm which con-
sists of two stages: meta-training and meta-test. In the
meta-training phase, we have a multimodal video data set
Dtrain from base action classes Ctrain. We randomly
construct multiple meta-tasks (also called episodes) from
Dtrain to learn a meta-learner that can generalize well
to novel action classes. Each meta-task T is comprised
of a query set Q ⊂ Dtrain and a support set S ⊂
Dtrain. In the N -way K-shot setting, the query set Q =

{(xri , x
f
i , yi)}

M

i=1
contains M multimodal query samples,

where xri and xfi denote two modalities (i.e., RGB and op-
tical flow in this work) of the ith query sample xi, and
yi ∈ {1, 2, ..., N} denotes the class label. The support set
S = {(xri , x

f
i , yi)}

M+NK

i=M+1
contains K multimodal samples

for each of the N classes. In the meta-test phase, we have
a multimodal test set Dtest from novel classes Ctest, and
Ctest∩Ctrain = ∅. We construct the support and query set
for each test task in a similar way as in the meta-training.
Note that the class label of each query sample is invisible
during meta-test. The meta-learner needs to correctly clas-
sify each sample in the query set based on only the labeled
samples in the support set.
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Figure 2. Illustration of the proposed AMFAR framework in the 3-way 3-shot setting. Firstly, query representations (i.e., qri and qfi )
and prototypes (i.e., trk and tfk) are obtained from modality-specific backbone networks for both RGB and optical flow. Secondly, Active
Sample Selection (ASS, Sec. 3.3) is adopted to organize query samples with large differences in the reliability of two modalities into RGB-
dominant groupQr and Flow-dominant groupQf . Thirdly, Active Mutual Distillation (AMD, Sec. 3.4) is adopted to capture discriminative
task-specific knowledge from the reliable modality to improve the representation learning of the unreliable modality. Finally, Adaptive
Multimodal Inference (AMI, Sec. 3.5) is adopted to combine the predictions of different modalities by paying more attention to the reliable
modality. Best viewed in color.

3.2. Overview
The overall architecture of AMFAR is illustrated in Fig-

ure 2. In each episode, we adopt a backbone network
ϕm(Q,S; θm) to obtain the representations of query sam-
ples {qmi }M

i=1
, qmi ∈ Rdm

, and prototypes of support sam-
ples {tmk }N

k=1
, tmk ∈ Rdm

, for each modality m ∈ {r, f}.
Note that the modality-specific backbone networks will be
elaborated in the experiment. We further compute the
modality-specific posterior distribution for each query sam-
ple according to query-to-prototype distances in modality-
specific feature space. In the meta-training phase, we firstly
adopt Active Sample Selection to select query samples
with large differences in the reliability of two modalities and
organize them into two groups, i.e., RGB-dominant group
Qr and Flow-dominant group Qf . The RGB-dominant
group contains samples where RGB is more reliable, and
the Flow-dominant group is defined in the same way. The
reliability of a specific modality for each sample is esti-
mated based on the certainty of the modality-specific pos-

terior distribution. Then, for the selected samples in Qr

and Qf , we adopt Active Mutual Distillation to capture
discriminative task-specific knowledge from the reliable
modality to enhance the representation learning of unre-
liable modality through a bidirectional distillation mecha-
nism. In the meta-test phase, we adopt Adaptive Mul-
timodal Inference to make the adaptive fusion decision
based on modality-specific posterior distributions by pay-
ing more attention to the reliable modality.

3.3. Active Sample Selection
In this module, we select query samples with large reli-

ability differences between the two modalities, where the
more reliable modality is considered to be the sample-
specific dominant modality. We define the reliable modality
for each query sample as the one that can reflect more task-
specific discriminative characteristic, and thus deserves
more attention in few-shot learning. For a query sample, the
reliable modality may be inconsistent in different tasks, be-
cause the contribution of a specific modality highly depends
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on the contextual information of both query and support
samples in each few-shot task. To deal with this problem,
we propose to estimate the reliability of different modal-
ities based on the certainty of modality-specific posterior
distributions. In each episode, the modality-specific poste-
rior distribution pmi ∈ RN for the ith query sample can be
computed as:

P(ŷi = k|xmi ) =
exp

(
− ψ(qmi , t

m
k )

)∑N
k′=1 exp

(
− ψ(qmi , t

m
k′)

) ,
k ∈ {1, ..., N}, m ∈ {r, f},

where qmi ∈ Rdm

denotes the modality-specific repre-
sentation of the ith query sample and and tmk ∈ Rdm

de-
notes the prototype of the kth class. ψ is a distance mea-
surement function, i.e., Euclidean distance is used in this
work. Inspired by uncertainty-based active learning algo-
rithms [4, 9, 59], we consider estimating the modality reli-
ability with two measurements: absolute certainty and rel-
ative certainty. We define the absolute certainty cmi as the
maximum element of the modality-specific posterior distri-
bution:

cmi = max
k

P(ŷi = k|xmi ). (1)

In addition, we define the relative certainty hmi as the nega-
tive self-entropy of the modality-specific posterior distribu-
tion:

hmi =

N∑
k=1

P(ŷi = k|xmi ) logP(ŷi = k|xmi ). (2)

For each query sample, if a specific modality achieves high
absolute certainty and relative certainty, this modality is re-
liable enough to express discriminative action characteris-
tic in the few-shot task. Conversely, if the certainty is low,
the modality is probably unreliable to identify actions in the
few-shot task. To facilitate the exploring of cross-modal
complementarity, we select query samples with large differ-
ences in the reliability of two modalities and organize them
into two groups:

Qr =
{
(xri , x

f
i )

∣∣ (xri , xfi ) ∈ Q, cri > cfi , h
r
i > hfi

}
,

Qf =
{
(xri , x

f
i )

∣∣ (xri , xfi ) ∈ Q, cfi > cri , h
f
i > hri

}
,

(3)

where Qr denotes the RGB-dominant group, that contains
query samples whose RGB modality has higher certainty
in the few-shot task. Analogously, Qf denotes the Flow-
dominant group, where Flow is more reliable to identify
different query samples.

3.4. Active Mutual Distillation
In this section, we propose an active mutual distillation

strategy to improve the representation learning of the un-
reliable modality by exploiting task-specific discriminative
knowledge from the reliable modality. Before introducing

the proposed active mutual distillation, we review the con-
ventional knowledge distillation methods that utilize a well-
trained teacher model to guide the learning of the student
model with consistency constraint. One of the popularly
used consistency constraints is KL divergence computed
based on logits:

DKL(p
1, p2) =

N∑
i=1

p1i log
p1i
p2i
, (4)

where p1 and p2 denote the logits produced by the teacher
and the student respectively. In existing methods, the above
teacher-student distillation is conducted on individual sam-
ples consistently.

To take advantage of the complementarity between dif-
ferent modalities to promote the few-shot action recogni-
tion, a straightforward idea is to conduct distillation by re-
garding the prediction model learned on one modality as
teacher and another modality as student. However, it is diffi-
cult to determine which modality should be a teacher, since
the contribution of a specific modality varies on different
samples and it highly depends on the context information
of the few-shot task. Therefore, we propose to dynamically
conduct the knowledge distillation on each sample by ac-
tively assigning the more reliable modality as the teacher.
Specifically, we constrain the learning of the two modality-
specific models by actively transferring query-to-prototype
relation knowledge across different modalities:

Lf→r(θ
r) =

1∑
(xr

i ,x
f
i )∈Qf

cfi

∑
(xr

i ,x
f
i )∈Qf

cfi DKL(p
f
i , p

r
i ),

Lr→f (θ
f ) =

1∑
(xr

i ,x
f
i )∈Qr

cri

∑
(xr

i ,x
f
i )∈Qr

criDKL(p
r
i , p

f
i ),

(5)
where pri (or pfi ) denotes the modality-specific posterior dis-
tribution for the ith query sample as defined in Eq. (1). cri
(or cfi ) denotes the absolute certainty defined in Eq. (1),
which is used here to strengthen the distillation effect for
query samples with high decision certainty.

3.5. Adaptive Multimodal Inference
In this section, we introduce how to adaptively fuse mul-

timodal prediction results as the final decision in few-shot
inference. Considering the reliability difference between
the two modalities of each query sample, we design an
adaptive multimodal fusion strategy:

P(ŷi = k|xri , xfi ) =
exp

(
− wr

iψ(q
r
i , t

r
k)− wf

i ψ(q
f
i , t

f
k)
)

N∑
k′=1

exp
(
− wr

iψ(q
r
i , t

r
k′)− wf

i ψ(q
f
i , t

f
k′)

) ,
(6)

where ψ denotes Euclidean distance function. wr
i and wf

i are
adaptive fusion weights for RGB and optical flow respectively.
Considering that the modality-specific posterior distributions are
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not always accurate in meta-test and the relative certainty cannot
directly reflect the similarity between the query sample and a spe-
cific class prototype, we calculate the adaptive fusion weights with
the modality-specific absolute certainties cri and cfi :

wr
i =

cri

cri + cfi
, wf

i =
cfi

cfi + cri
. (7)

3.6. Optimization
The proposed AMFAR can be optimized with the following

objective function:

L = Lr
ce(θ

r) + Lf
ce(θ

f ) + λ
(
Lf→r(θ

r) + Lr→f (θ
f )
)
, (8)

where Lf→r and Lr→f are mutual distillation losses defined in
Eq. (5). λ is balance weight. Lr

ce and Lf
ce are cross-entropy losses

used to constrain the modality-specific predictions:

Lr
ce(θ

r) = CE(pri , yi), Lf
ce(θ

f ) = CE(pfi , yi). (9)

Note that the parameters of the modality-specific backbone net-
works, i.e., θr and θf , are updated with different losses:

θr ← θr − γ∇θr
(
Lr

ce(θ
r) + λLf→r(θ

r)
)
,

θf ← θf − γ∇θf

(
Lf

ce(θ
f ) + λLr→f (θ

f )
)
,

(10)

where γ denotes learning rate.

4. Experiments
4.1. Datasets

We evaluate our approach on four popularly used challeng-
ing few-shot action recognition benchmarks: Kinetics [10],
Something-Something V2 (SSv2) [26], HMDB51 [32], and
UCF101 [54]. We consistently extend each of these datasets to
multimodal by generating optical flow frame sequences from the
raw videos with dense optical flow algorithm [37]. For Kinet-
ics [10] and SSv2 [26], we follow the same splits as in [74]
and [8], which both randomly select 100 classes from the whole
dataset with 64/12/24 classes used for training/validation/test. For
HMDB51 [32] and UCF101 [54], we use the splits from [72],
where the 51 classes in HMDB51 are split into 31 training classes,
10 validation classes and 10 test classes, while the 101 classes in
UCF101 are split into 70/10/21 classes for training/validation/test.

4.2. Implementation Details
Data Pre-Processing. Following the pre-processing procedure

used in STRM [58], we sparsely and uniformly sample 8 moments
from the temporal sequence of each video. For each moment, we
utilize one RGB frame as the visual data, and two consecutive op-
tical flow frames as the motion data. The input of the multimodal
few-shot action recognition task are the sequences of the sampled
RGB and optical flow frames.

Modality-Specific Backbones. For RGB modality, following
previous works [44, 58], we utilize ResNet-50 [28] pre-trained on
ImageNet [15] as the backbone to extract frame-level visual fea-
tures. For optical flow modality, we adopt I3D [10] pretrained on
Charades [50] to extract the frame-level motion features. Then,
following STRM [58], we obtain the video-level features for both

RGB and optical flow modalities with multiple enhanced frame-
level feature pairs and calculate the query-specific prototype via
aggregating video-level features of support samples from the cor-
responding action class. The dimensions of sample features are
2048 and 1024 for the RGB and optical flow modalities respec-
tively, i.e., dr = 2048 and df = 1024.

Learning. During meta-training, following [44, 58], we resize
each frame to 256×256 and randomly crop a 224×224 region for
both RGB and optical flow modalities. We set the balance weight
(i.e., λ defined in Eq.(8)) to 1.0 for all benchmarks. All models
are trained end-to-end with SGD optimizer. Following the set-
ting in [58], we firstly use cross-entropy loss to train RGB-specific
and Flow-specific networks separately until convergence. We fur-
ther optimize parameters of RGB-specific and Flow-specific net-
works with the objective defined in Eq.(8) for 5,000 episodes on
all datasets, where the learning rate (i.e., γ) is 10−7.

Evaluation. Following existing few-shot action recognition
methods [8, 44, 58], we conduct 5-way 1-shot and 5-way 5-shot
experiments on the four benchmarks. In meta-test, we follow prior
works [8,44,58] to construct 10,000 episodes and report the mean
accuracy. RGB and optical flow frames are directly resized to
224× 224 without cropping.

4.3. Comparison with State-of-the-Art Methods
We compare the proposed AMFAR with both unimodal and

multimodal methods on four benchmarks. For RGB modality,
we directly compare with existing state-of-the-art few-shot action
recognition methods. For optical flow, since there are no exist-
ing methods, we compare with several representative vision-based
methods by retraining them on optical flow data. For multimodal
baselines, besides comparing with several few-shot methods (i.e.,
AmeFu-Net [22] and MTFAN [69]) that utilize auxiliary modality
data, we extend representative vision-based methods through early
fusion, i.e., fusing multimodal features before conducting the few-
shot reasoning, or late fusion (LF), i.e., fusing the prediction re-
sults of independently learned modality-specific models. We use
two kinds of early fusion strategies including concatenation (EC)
and Co-Attention (EA).

The comparison results for the 5-way 1-shot and 5-way 5-shot
tasks are shown in Table 1. Based on the results, we have the fol-
lowing observations. (1) Comparison with unimodal methods.
In the 5-way 5-shot setting, our AMFAR outperforms the state-
of-the-art unimodal method HyRSM [66] on the RGB modal-
ity of SSv2 and HMDB51 by significant margins of 10.5% and
11.8% respectively. In the 5-way 5-shot setting on Kinetics, the
state-of-the-art unimodal method STRM [58] has the accuracy of
86.7% and 69.7% on RGB and optical flow respectively, while
our AMFAR obtains much better result of 92.6%. In the 5-way
1-shot setting, our AMFAR performs better than HyRSM [66]
on the RGB modality of Kinetics and SSv2 by 6.4% and 7.4%.
These significant improvements demonstrate the necessity of ex-
ploring the complementarity between different modalities in few-
shot action recognition. (2) Comparison with multimodal meth-
ods. Although the multimodal baselines achieve remarkable per-
formances on most benchmarks, they cannot consistently outper-
form all the unimodal methods. In contrast, our AMFAR performs
much better than existing multimodal methods, and performs con-
sistently better than all unimodal methods on all datasets. For ex-
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Table 1. Comparison with state-of-the-art few-shot action recognition methods. We use † to mark methods that are re-implemented by
ourselves. For multimodal approaches extended from existing unimodal methods, “EC” denotes the early fusion scheme of concatenation,
“EA” denotes the early fusion scheme of Co-Attention, and “LF” denotes late fusion. “-” means the result is not available in published
works.

Modality Method Kinetics SSv2 HMDB51 UCF101
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

RGB

Matching Net [74] 53.3 78.9 - - - - - -
ProtoNet † [53] 55.5 84.6 26.7 53.3 45.2 71.9 70.9 94.4
MAML [74] 54.2 78.9 - - - - - -
CMN [74] 60.5 78.9 - - - - - -
TARN [5] 66.6 78.5 - - - - - -
ARN [72] 63.7 82.4 - - 44.6 59.1 62.1 84.8
OTAM [8] 73.0 85.8 42.8 52.3 - - - -
TRX [44] 63.6 85.9 42.0 64.6 - 75.6 - 96.1
TA2N [33] 72.8 85.8 47.6 61.0 59.7 73.9 81.9 95.1
HyRSM [66] 73.7 86.1 54.3 69.0 60.3 76.0 83.9 94.7
STRM [58] - 86.7 - 68.1 - 77.3 - 96.9

Flow ProtoNet-F [53]† 45.2 69.5 32.9 51.1 43.7 65.0 69.7 89.6
TRX-F [44]† 44.8 69.7 30.7 52.4 43.0 67.6 65.6 90.6
STRM-F [58]† 47.8 69.7 36.3 55.7 52.2 67.9 79.7 91.6

Multimodal

ProtoNet-EC [53]† 63.8 84.1 33.0 49.5 56.9 73.8 78.3 93.9
ProtoNet-EA [53]† 61.7 83.9 31.1 50.5 53.2 76.3 76.7 94.3
ProtoNet-LF [53]† 58.5 86.9 33.3 59.5 52.0 78.0 81.5 97.4
AmeFu-Net [22] 74.1 85.8 - - 60.2 75.5 85.1 95.5
MTFAN [69] 74.6 87.4 45.7 60.4 59.0 74.6 84.8 95.1
TRX-LF [44]† 65.9 86.8 37.2 61.1 57.4 78.2 81.6 94.1
STRM-EC [58]† 68.3 87.4 45.5 66.7 59.3 78.3 87.4 96.3
STRM-EA [58]† 68.4 87.0 44.1 62.4 60.3 76.3 85.4 94.7
STRM-LF [58]† 66.9 87.7 41.4 70.4 55.0 81.3 83.8 98.4
AMFAR(ours) 80.1 92.6 61.7 79.5 73.9 87.8 91.2 99.0

Table 2. Ablation results on Kinetics and SSv2.

ASS AMD AMI Kinetics SSv2
AC RC 1-shot 5-shot 1-shot 5-shot
✘ ✔ ✔ ✔ 72.9 89.9 57.9 73.9
✔ ✘ ✔ ✔ 77.8 89.5 58.8 78.6
✔ ✔ ✘ ✔ 77.2 90.4 55.1 78.2
✔ ✔ ✔ ✘ 72.9 89.1 50.4 73.8
✔ ✔ ✔ ✔ 80.1 92.6 61.7 79.5

ample, our AMFAR achieves large improvements of 16.0% in the
1-shot setting on the challenging SSv2 dataset compared with the
second best multimodal approach, i.e., MTFAN [69]. And in the
5-shot setting on SSv2, AMFAR performs better than the second
best multimodal approach STRM-LF [58] by 9.1%. In addition,
AMFAR increases the performance by 11.7% and 13.6% in 1-shot
setting on Kinetics and HMDB51 compared with STRM-EA [58].
These results show that directly applying existing unimodal meth-
ods cannot well solve the multimodal few-shot action recognition,
and also show the importance of considering task-specific context
information in exploring the cross-modal complementarity.

4.4. Ablation Study
We analyze the impact of the three key components, i.e., ASS,

AMD and AMI, in our AMFAR on two challenging benchmarks
including Kinetics and SSv2. Ablation results in 5-way 1-shot and
5-way 5-shot settings are shown in Table 2. Compared with our
full model, removing the AMD module results in a performance
drop of 2.9% and 6.6% in 1-shot setting on Kinetics and SSv2 re-
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Figure 3. Comparison with conventional distillation strategies
in 5-way 5-shot setting. T-RGB (or T-Flow) denotes distillation
where RGB (or optical flow) is consistently regarded as teacher.

spectively. The performance of the variant model without AMI de-
creases by 3.5% and 5.7% in 5-shot setting on Kinetics and SSv2
respectively. In addition, we also analyze the impact of the two
modality reliability measurements in the ASS module, i.e., abso-
lute certainty and relative certainty, which are denoted as AC and
RC respectively. We observe that the performance of our approach
drops from 80.1% to 72.9% or 77.8% in 5-way 1-shot setting on
Kinetics, when the absolute certainty measurement or relative cer-
tainty measurement is removed. The accuracy drop is more signifi-
cant when the absolute certainty measurement is removed, indicat-
ing that absolute certainty is more effective than relative certainty
when only one measurement is used. The above results demon-
strate the importance of three components in our method.

4.5. Further Remarks
Influence of Different Distillation Strategies. To further in-

vestigate the effectiveness of the proposed active mutual distilla-
tion, we study the impact of different distillation strategies on Ki-
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Figure 4. N-way 1-shot performance on Kinetics and SSv2.

61.7 
70.1 75.1 77.0 79.5 

30
40
50
60
70
80

1-shot 2-shot 3-shot 4-shot 5-shot

A
cc

ur
ac

y(
%

) SSv2

80.1 
86.9 88.6 90.8 92.6 

40
50
60
70
80
90

1-shot 2-shot 3-shot 4-shot 5-shot

A
cc

ur
ac

y(
%

) Kinetics
STRM-F STRM STRM-LF AMFAR

Figure 5. Comparison results with different number of support
samples in 5-way K-shot setting.

netics and SSv2. We compare our AMD with two conventional
distillation strategies including T-RGB and T-Flow, where the for-
mer consistently regards the RGB modality as teacher and the flow
modality as student for each sample, and the later conducts the
distillation in the opposite direction. As shown in Figure 3, the
proposed AMD performs much better than conventional distilla-
tion strategies on two benchmarks. For example, our approach
achieves the performance gain of 1.2% over the T-RGB on both
Kinetics and SSv2. These results demonstrate the advantage of
the proposed AMD.

N-way Few-Shot Classification. To investigate the perfor-
mance of the proposed AMFAR under more challenging condi-
tions, we show the results of our model when using more action
classes on Kinetics and SSv2 in Figure 4. As shown, on the chal-
lenging SSv2 dataset, with the increase ofN , our model has much
larger performance gains compared with the competitive base-
lines, i.e., STRM [58], STRM-F [58], and STRM-LF [58], which
demonstrates the generalization ability of our model.

Performance with Different Number of Support Samples.
To more comprehensively analyze the performance of our model
in different few-shot scenarios, we conduct extra experiment on
Kinetics and SSv2 by increasing the number of support samples
from 1-shot to 5-shot. As shown in Figure 5, too few support sam-
ples limit the performance of AMFAR and baselines, but AMFAR
performs consistently better than baselines in all settings. For ex-
ample, AMFAR outperforms the second best method by more than
5.6% on all settings of SSv2 dataset. Note that, AMFAR outper-
forms the second best method by a large margin of 21.6% and
15.3% in the extremely challenging few-shot setting (i.e., K=1)
on Kinetics and SSv2 respectively, which further demonstrates the
generalization ability of our model.

Parameter Analysis. In Figure 6, we analyze the impact of
the balance weight λ in objective function (8). When λ is small
(i.e., λ < 0.5), the performance of AMFAR is worse, because the
contribution of the AMD module is restricted and the discrimina-
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Figure 7. Visualization of the similarity between query samples
(rows) and prototypes (columns) in a meta-test episode from Ki-
netics. The action classes, from left to right, are shearing sheep,
throwing axe, busking, diving cliff and blasting sand. The blue
box indicates correct prediction and red box indicates incorrect
prediction.

tive knowledge cannot be well distilled across different modalities.
On the contrary, a too large balance weight might reduce the influ-
ence of the cross-entropy loss, leading to the slight degradation on
performance. In practice, our AMFAR achieves best performance
(i.e., 92.6% and 79.5%) on Kinetics and SSv2 with the balance
weight of 1.0.

4.6. Qualitative Results
To qualitatively compare our method with competitive base-

lines, i.e., STRM, STRM-F, and STRM-LF, we visualize the de-
tailed query-to-prototype similarities for an episode in Figure 7.
As shown, multimodal methods (i.e., STRM-LF and AMFAR) can
make more accurate decisions than unimodal methods (i.e., STRM
and STRM-F). Specifically, for the second query sample in Fig-
ure 7, the incorrect decision obtained by the unimodal method
STRM based on the RGB modality can be rectified by fusing
the results of different modalities. Additionally, the multimodal
method STRM-LF produces a wrong decision for the third query
sample because it cannot identify the reliable modality, while our
model can produce correct result because it regards RGB as the
reliable modality and avoids the negative effect of the incorrect re-
sult made based on optical flow. These results further demonstrate
the effectiveness of our method.

5. Conclusion
We propose a novel Active Multimodal Few-shot Action

Recognition (AMFAR) framework, which is the first attempt to
apply the idea of active learning in exploring the multimodal com-
plementarity for few-shot action recognition. The proposed AM-
FAR can actively find the more reliable modality based on the task-
specific context information to improve the representation learning
of the unreliable modality and also improve the few-shot inference
in meta-test through adaptive fusion. Experiments on four public
datasets demonstrate that the proposed method significantly out-
performs existing unimodal and multimodal methods.
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