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Abstract

We introduce Power Bundle Adjustment as an expansion
type algorithm for solving large-scale bundle adjustment
problems. It is based on the power series expansion of the
inverse Schur complement and constitutes a new family of
solvers that we call inverse expansion methods. We theo-
retically justify the use of power series and we prove the
convergence of our approach. Using the real-world BAL
dataset we show that the proposed solver challenges the
state-of-the-art iterative methods and significantly acceler-
ates the solution of the normal equation, even for reaching a
very high accuracy. This easy-to-implement solver can also
complement a recently presented distributed bundle adjust-
ment framework. We demonstrate that employing the pro-
posed Power Bundle Adjustment as a sub-problem solver
significantly improves speed and accuracy of the distributed
optimization.

1. Introduction
Bundle adjustment (BA) is a classical computer vision

problem that forms the core component of many 3D recon-
struction and Structure from Motion (SfM) algorithms. It
refers to the joint estimation of camera parameters and 3D
landmark positions by minimization of a non-linear repro-
jection error. The recent emergence of large-scale internet
photo collections [1] raises the need for BA methods that
are scalable with respect to both runtime and memory. And
building accurate city-scale maps for applications such as
augmented reality or autonomous driving brings current BA
approaches to their limits.

As the solution of the normal equation is the most time
consuming step of BA, the Schur complement trick is usu-
ally employed to form the reduced camera system (RCS).
This linear system involves only the pose parameters and is
significantly smaller. Its size can be reduced even more by
using a QR factorization, deriving only a matrix square root
of the RCS, and then solving an algebraically equivalent
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(a) Ladybug-1197

(b) Venice-1102

Figure 1. Power Bundle Adjustment (PoBA) is a novel solver
for large-scale BA problems that is significantly faster and more
memory-efficient than existing solvers. (a) Optimized 3D recon-
struction of a Ladybug BAL problem with 1197 poses. PoBA-32
(resp. PoBA-64) is 41% (resp. 36%) faster than the best competing
solver to reach a cost tolerance of 1%. (b) Optimized 3D recon-
struction of a Venice BAL problem with 1102 poses. PoBA-32
(resp. PoBA-64) is 71% (resp. 69%) faster than the best compet-
ing solver to reach a cost tolerance of 1%. PoBA is five times (resp.
twice) less memory-consuming than

√
BA (resp. Ceres).

problem [4]. Both the RCS and its square root formulation
are commonly solved by iterative methods such as the pop-
ular preconditioned conjugate gradients algorithm for large-
scale problems or by direct methods such as Cholesky fac-
torization for small-scale problems.

In the following, we will challenge these two families
of solvers by relying on an iterative approximation of the
inverse Schur complement. In particular, our contributions
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are as follows:

• We introduce Power Bundle Adjustment (PoBA) for ef-
ficient large-scale BA. This new family of techniques
that we call inverse expansion methods challenges the
state-of-the-art methods which are built on iterative
and direct solvers.

• We link the bundle adjustment problem to the theory
of power series and we provide theoretical proofs that
justify this expansion and establish the convergence of
our solver.

• We perform extensive evaluation of the proposed ap-
proach on the BAL dataset and compare to several
state-of-the-art solvers. We highlight the benefits
of PoBA in terms of speed, accuracy, and memory-
consumption. Figure 1 shows reconstructions for two
out of the 97 evaluated BAL problems.

• We incorporate our solver into a recently proposed
distributed BA framework and show a significant im-
provement in terms of speed and accuracy.

• We release our solver as open source to facili-
tate further research: https://github.com/
simonwebertum/poba

2. Related Work
Since we propose a new way to solve large-scale bundle

adjustment problems, we will review works on bundle ad-
justment and on traditional solving methods, that is, direct
and iterative methods. We also provide some background
on power series. For a general introduction to series expan-
sion we refer the reader to [14].

Scalable bundle adjustment.

A detailed survey of bundle adjustment can be found
in [16]. The Schur complement [20] is the prevalent way
to exploit the sparsity of the BA Problem. The choice of
resolution method is typically governed by the size of the
normal equation: With increasing size, direct methods such
as sparse and dense Cholesky factorization [15] are outper-
formed by iterative methods such as inexact Newton algo-
rithms. Large-scale bundle adjustment problems with tens
of thousands of images are typically solved by the conju-
gate gradient method [1, 2, 8]. Some variants have been de-
signed, for instance the search-space can be enlarged [17] or
a visibility-based preconditioner can be used [9]. A recent
line of works on square root bundle adjustment proposes
to replace the Schur complement for eliminating landmarks
with nullspace projection [4, 5]. It leads to significant per-
formance improvements and to one of the most performant
solver for the bundle adjustment problem in term of speed

and accuracy. Nevertheless these methods still rely on tradi-
tional solvers for the reduced camera system, i.e. precondi-
tioned conjugate gradient method (PCG) for large-scale [4]
and Cholesky decomposition for small-scale [5] problems,
besides an important cost in term of memory-consumption.
Even with PCG, solving the normal equation remains the
bottleneck and finding thousands of unknown parameters
requires a large number of inner iterations. Other authors try
to improve the runtime of BA with PCG by focusing on effi-
cient parallelization [13]. Recently, Stochastic BA [22] was
introduced to stochastically decompose the reduced cam-
era system into subproblems and solve the smaller normal
equation by dense factorization. This leads to a distributed
optimization framework with improved speed and scalabil-
ity. By encapsulating the general power series theory into
a linear solver we propose to simultaneously improve the
speed, the accuracy and the memory-consumption of these
existing methods.

Power series solver.

While power series expansion is common to solve dif-
ferential equations [3], to the best of our knowledge it has
never been employed for solving the bundle adjustment
problem. A recent work [21] links the Schur complement
to Neumann polynomial expansion to build a new precondi-
tioner. Although this method presents interesting results for
some physics problems such as convection-diffusion or at-
mospheric equations, it remains unsatisfactory for the bun-
dle adjustment problem (see Figure 2). In contrast, we pro-
pose to directly apply the power series expansion of the in-
verse Schur complement for solving the BA problem. Our
solver therefore falls in the category of expansion methods
that – to our knowledge – have never been applied to the BA
problem. In addition to being an easy-to-implement solver
it leverages the special structure of the BA problem to si-
multaneously improve the trade-off speed-accuracy and the
memory-consumption of the existing methods.

3. Power Series
We briefly introduce power series expansion of a matrix.

Let ρ(A) denote the spectral radius of a square matrix A,
i.e. the largest absolute eigenvalue and denote the spectral
norm by ∥A∥ = ρ(A). The following proposition holds:

Proposition 1. Let M be a n × n matrix. If the spectral
radius of M satisfies ∥M∥ < 1, then

(I −M)−1 =

m∑
i=0

M i +R , (1)

where the error matrix

R =

∞∑
i=m+1

M i , (2)
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(a) Condition number (b) Number of CG iterations (c) Total runtime of the CG algorithm

Figure 2. Although [21] explores the use of power series as a preconditioner for some physics problems it suffers from the special structure
of the BA formulation. Given a preconditioner M−1 and the Schur complement S, the condition number κ(M−1S) is linked to the
convergence of the conjugate gradients algorithm. (a) illustrates the behaviour of κ for the ten first iterations of the LM algorithm for
the real problem Ladybug-49 with 49 poses from BAL dataset and for different orders m of the power series expansion (22) used as
preconditioner for the CG algorithm. The condition number associated to the popular Schur-Jacobi preconditioner is reduced with this
power series preconditioner, that is illustrated by a better convergence of the CG algorithm and then a smaller number of CG iterations (b).
Nevertheless each supplementary order m is more costly in terms of runtime as the application of the power series preconditioner involves
4m matrix-vector product, whereas the Schur-Jacobi preconditioner can be efficiently stored and applied. (c) It leads to an increase of the
overall runtime when solving the normal equation (6).

satisfies

∥R∥ ≤ ∥M∥m+1

1− ∥M∥
. (3)

A proof is provided in Appendix and an illustration with
real problems is given in Figure 5.

4. Power Bundle Adjustment

We consider a general form of bundle adjustment with
np poses and nl landmarks. Let x = (xp, xl) be the state
vector containing all the optimization variables, where the
vector xp of length dpnp is associated to the extrinsic and
(possibly) intrinsic camera parameters for all poses and the
vector xl of length 3nl is associated to the 3D coordinates
of all landmarks. In case only the extrinsic parameters are
unknown then dp = 6 for rotation and translation of each
camera. For the evaluated BAL problems we additionally
estimate intrinsic parameters and dp = 9. The objective is
to minimize the total bundle adjustment energy

F (x) =
1

2
∥r(x)∥22 =

1

2

∑
i

∥ri(x)∥22 , (4)

where the vector r(x) = [r1(x)
⊤, ..., rk(x)

⊤]⊤ comprises
all residuals capturing the discrepancy between model and
observation.

4.1. Least Squares Problem

This nonlinear least squares problem is commonly
solved with the Levenberg-Marquardt (LM) algorithm,
which is based on the first-order Taylor approximation of
r(x) around the current state estimate x0 = (x0

p, x
0
l ). By

adding a regularization term to improve convergence the
minimization turns into

min
∆xp,∆xl

1

2

(∥∥∥r0 + (
Jp Jl

)(∆xp

∆xl

)∥∥∥2
2

+λ
∥∥∥ (Dp Dl

)(∆xp

∆xl

)∥∥∥2
2

)
,

(5)

with r0 = r(x0), Jp = ∂r
∂xp

|x0 , Jl = ∂r
∂xl

|x0 , λ a damping
coefficient, and Dp and Dc diagonal damping matrices for
pose and landmark variables. This damped problem leads
to the corresponding normal equation

H

(
∆xp

∆xl

)
= −

(
bp
bl

)
, (6)

where

H =

(
Uλ W
W⊤ Vλ

)
, (7)

Uλ = J⊤
p Jp + λD⊤

p Dp, (8)

Vλ = J⊤
l Jl + λD⊤

l Dl, (9)

W = J⊤
p Jl, (10)

bp = J⊤
p r0, bl = J⊤

l r0 . (11)

Uλ, Vλ and H are symmetric positive-definite [16].

4.2. Schur Complement

As inverting the system matrix H of size (dpnp + 3nl)
2

directly tends to be excessively costly for large-scale prob-
lems it is common to reduce it by using the Schur comple-
ment trick. The idea is to form the reduced camera system
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S∆xp = −b̃ , (12)

with

S = Uλ −WV −1
λ W⊤, (13)

b̃ = bp −WV −1
λ bl . (14)

(12) is then solved for ∆xp. The optimal ∆xl is obtained
by back-substitution:

∆xl = −V −1
λ (−bl +W⊤∆xp) . (15)

4.3. Power Bundle Adjustment

Factorizing (13) with the block-matrix Uλ

S = Uλ(I − U−1
λ WV −1

λ W⊤) (16)

leads to formulate the inverse Schur complement as

S−1 = (I − U−1
λ WV −1

λ W⊤)−1U−1
λ . (17)

In order to expand (17) into a power series as detailed in
Proposition 1, we require to bound the spectral radius of
U−1
λ WV −1

λ W⊤ by 1.
By leveraging the special structure of the BA problem

we prove an even stronger result:

Lemma 1. Let µ be an eigenvalue of U−1
λ WV −1

λ W⊤.
Then

µ ∈ [0, 1[ . (18)

Proof. On the one hand U
− 1

2

λ WV −1
λ W⊤U

− 1
2

λ is symmet-
ric positive semi-definite, as Uλ and Vλ are symmetric pos-
itive definite. Then its eigenvalues are greater than 0. As
U

− 1
2

λ WV −1
λ W⊤U

− 1
2

λ and U−1
λ WV −1

λ W⊤ are similar,

µ ≥ 0 . (19)

On the other hand U
− 1

2

λ SU
− 1

2

λ is symmetric positive def-
inite as S and Uλ are. It follows that the eigenvalues of
U−1
λ S are all strictly positive due to its similarity with

U
− 1

2

λ SU
− 1

2

λ . As

U−1
λ WV −1

λ W⊤ = I − U−1
λ S , (20)

it follows that
µ < 1 , (21)

that concludes the proof.

Let be

S̃−1(m) =

m∑
i=0

(U−1
λ WV −1

λ W⊤)iU−1
λ , (22)

and
x(m) = −S̃−1(m)b̃ , (23)

for m ≥ 0. The following proposition confirms that the
approximation indeed converges with increasing order of
m:

Proposition 2. ∥x(m)−∆xp∥2 −→
m→+∞

0 .

Proof. We denote P = U−1
λ WV −1

λ W⊤. Due to Lemma 1

∥P∥ < 1 . (24)

The inverse Schur complement associated to (6) admits a
power series expansion:

S−1 = S̃−1(m) +Rm , (25)

where

Rm =

∞∑
i=m+1

P iU−1
λ (26)

satisfies

∥Rm∥≤ ∥P∥m+1

1− ∥P∥
∥U−1

λ ∥ . (27)

It follows that:

x(m)−∆xp = Rmb̃ . (28)

The consistency of the spectral norm with respect to the vec-
tor norm implies:

∥Rmb̃∥2 ≤ ∥Rm∥∥b̃∥2 . (29)

From (24), (27) and (29) we conclude the proof:

∥Rmb̃∥2 −→
m→+∞

0 , (30)

and then
∥x(m)−∆xp∥2 −→

m→+∞
0 . (31)

This convergence result proves that

• an approximation of ∆xp can be directly obtained by
applying (22) to the right-hand side of (12);

• the quality of this approximation depends on the order
m and can be as small as desired.

The power series expansion being iteratively derived, a
termination rule is necessary.

By analogy with inexact Newton methods [11, 12, 18]
such that the conjugate gradients algorithm we set a stop
criterion

(i+ 1) ∗ ∥(x(i)− x(i− 1))∥2/∥x(i)∥2 < ϵ , (32)

for a given ϵ. This criterion ensures that the power series
expansion stops when the refinement of the pose update by
expanding the inverse Schur complement into a supplemen-
tary order

∥(x(i)− x(i− 1))∥2 (33)

is much smaller than the average refinement when reaching
the same order

∥
∑i

j=1 (x(j)− x(j − 1)) + x(0)∥2
i+ 1

=
∥x(i)∥2
i+ 1

. (34)
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Figure 3. Performance profiles for all BAL problems show the percentage of problems solved to a given accuracy tolerance τ ∈
{0.1, 0.01, 0.003, 0.001} with relative runtime α. Our proposed solver PoBA using series expansion of the Schur complement signifi-
cantly outperforms all the competing solvers up to the high accuracy τ = 0.003.

Figure 4. Memory consumption for all BAL problems. The pro-
posed PoBA solver (orange and blue points) is five times less
memory-consuming than

√
BA solvers.

5. Implementation

We implement our PoBA solver in C++ in single (PoBA-
32) and double (PoBA-64) floating-point precision, directly
on the publicly available implementation1 of [4]. This re-
cent solver presents excellent performance to solve the bun-
dle adjustment by using a QR factorization of the landmark
Jacobians. It notably competes the popular Ceres solver.
We additionally add a comparison with Ceres’ sparse Schur
complement solvers, similarly as in [4]. Ceres-explicit and
Ceres-implicit iteratively solve (12) with the conjugate gra-
dients algorithm preconditioned by the Schur-Jacobi pre-
conditioner. The first one saves S in memory as a block-
sparse matrix, the second one computes S on-the-fly during
iterations.

√
BA and Ceres offer very competitive perfor-

mance to solve the bundle adjustment problem, that makes
them very challenging baselines to compare PoBA to. We
run experiments on MacOS 11.2 with an Intel Core i5 and
4 cores at 2GHz.

1https://github.com/NikolausDemmel/rootba

285



(a) Ladybug-49

(b) Trafalgar-193

Figure 5. Illustration of the inequality (3) in Proposition 1 for
the first LM iteration of two BAL problems: (a) Ladybug with 49
poses and (b) Trafalgar with 193 poses. The spectral norm of the
error matrix R is plotted in green for m < 20. The right-side
of the inequality plotted in blue represents the theoretical upper
bound of the spectral norm of the error matrix and depends on the
considered m and on the spectral norm of M = U−1

λ WV −1
λ W⊤.

With Spectra library [23] ρ(M) takes the values (a) 0.999858 for
L-49 and (b) 0.999879 for T-193. Both values are smaller than 1
and ρ(R) is always smaller than ρ(M)m+1/(1−ρ(M)), as stated
in Lemma 1.

Efficient storage.

We leverage the special structure of BA problem and design
a memory-efficient storage. We group the Jacobian matri-
ces and residuals by landmarks and store them in separate
dense memory blocks. For a landmark with k observations,
all pose Jacobian blocks of size 2 × dp that correspond to
the poses where the landmark was observed, are stacked and
stored in a memory block of size 2k×dp. Together with the
landmark Jacobian block of size 2k × 3 and the residuals
of length 2k that are also associated to the landmark, all
information of a single landmark is efficiently stored in a
memory block of size 2k × (dp + 4). Furthermore, oper-
ations involved in (15) and (23) are parallelized using the
memory blocks.

Performance Profiles.

To compare a set of solvers the user may be interested in
two factors, a lower runtime and a better accuracy. Per-
formance profiles [6] evaluate both jointly. Let S and P be
respectively a set of solvers and a set of problems. Let f0(p)
be the initial objective and f(p, s) the final objective that is
reached by solver s ∈ S when solving problem p ∈ P . The
minimum objective the solvers in S attain for a problem p is
f∗(p) = mins∈S f(p, s). Given a tolerance τ ∈ (0, 1) the
objective threshold for a problem p is given by

fτ (p) = f∗(p) + τ(f0(p)− f∗(p)) (35)

and the runtime a solver s needs to reach this threshold is
noted Tτ (p, s). It is clear that the most efficient solver s∗

for a given problem p reaches the threshold with a runtime
Tτ (p, s

∗) = mins∈S Tτ (p, s). Then, the performance pro-
file of a solver for a relative runtime α is defined as

ρ(s, α) =
100

|P |
|{p ∈ P |Tτ (p, s) ≤ αmin

s∈S
Tτ (p, s)}| (36)

Graphically the performance profile of a given solver is the
percentage of problems solved faster than the relative run-
time α on the x-axis.

5.1. Experimental Settings

Dataset.

For our extensive evaluation we use all 97 bundle adjust-
ment problems from the BAL project page. They are di-
vided within five problems families. Ladybug is composed
with images captured by a vehicle with regular rate. Images
of Venice, Trafalgar and Dubrovnik come from Flickr.com
and have been saved as skeletal sets [1]. Recombination of
these problems with additional leaf images leads to the Fi-
nal family. Details about these problems can be found in
Appendix.

LM loop.

PoBA is in line with the implementation [4] and with Ceres.
Starting with damping parameter 10−4 we update λ depend-
ing on the success or failure of the LM loop. We set the
maximal number of LM iterations to 50, terminating earlier
if a relative function tolerance of 10−6 is reached. Con-
cerning (23) and (32) we set the maximal number of inner
iterations to 20 and a threshold ϵ = 0.01. Ceres and

√
BA

use same forcing sequence for the inner CG loop, where
the maximal number of iterations is set to 500. We add a
small Gaussian noise to disturb initial landmark and camera
positions.
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Figure 6. Convergence plots of Ladybug-1197 (left) from BAL dataset with 1197 poses and Venice-1102 (right) from BAL dataset with
1102 poses. Fig. 1 shows a visualization of 3D landmarks and camera poses for these problems. The dotted lines correspond to cost
thresholds for the tolerances τ ∈ {0.1, 0.01, 0.003, 0.001}.

Figure 7. Performance profiles for all BAL problems with stochastic framework. Our proposed solver PoST outperforms the challenging
STBA across all accuracy tolerances τ ∈ {0.1, 0.01, 0.003}, both in terms of speed and precision, and rivals STBA for τ = 0.001.
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Figure 8. Convergence plots of Ladybug-138 (left) from BAL dataset with 138 poses and Dubrovnik-356 (right) from BAL dataset with
356 poses. The dotted lines correspond to cost thresholds for the tolerances τ ∈ {0.1, 0.01, 0.003, 0.001}.

5.2. Analysis

Figure 3 shows the performance profiles for all BAL
datasets with tolerances τ ∈ {0.1, 0.01, 0.003, 0.001}. For
τ = 0.1 and τ = 0.01 PoBA-64 clearly outperforms all
challengers both in terms of runtime and accuracy. PoBA-
64 remains clearly the best solver for the excellent accu-
racy τ = 0.003 until a high relative time α = 4. For
higher relative time it is competitive with

√
BA − 32 and

still outperforms all other challengers. Same conclusion
can be drawn from the convergence plot of two differently
sized BAL problems (see Figure 6). Figure 4 highlights
the low memory consumption of PoBA with respect to its
challengers for all BAL problems. Whatever the size of the
problem PoBA is much less memory-consuming than

√
BA

and Ceres. Notably it requires almost five times less mem-
ory than

√
BA and almost twice less memory than Ceres-

implicit and Ceres-explicit.

5.3. Power Stochastic Bundle Adjustment (PoST)

Stochastic Bundle Adjustment.

STBA decomposes the reduced camera system into clusters
inside the Levenberg-Marquardt iterations. The per-cluster
linear sub-problems are then solved in parallel with dense
LL⊤ factorization due to the dense connectivity inside cam-
era clusters. As shown in [22] this approach outperforms
the baselines in terms of runtime and scales to very large
BA problems, where it can even be used for distributed op-
timization. In the following we show that replacing the sub-
problem solver with our Power Bundle Adjustment can sig-
nificantly boost runtime even further.

We extend STBA2 by incorporating our solver instead
of the dense LL⊤ factorization. Each subproblem is then
solved with a power series expansion of the inverse Schur

2https://github.com/zlthinker/STBA

complement with the same parameters as in Section 5.1. In
accordance to [22] we set the maximal cluster size to 100
and the implementation is written in double in C++.

Analysis.

Figure 7 presents the performance profiles with all BAL
problems for different tolerances τ . Both solvers have sim-
ilar accuracy for τ = 0.001. For τ ∈ {0.1, 0.01, 0.003},
PoST clearly outperforms STBA both in terms of runtime
and accuracy, most notably for τ = 0.01. Same observa-
tions are done when we plot the convergence for differently
sized BAL problems (see Figure 8).

6. Conclusion
We introduce a new class of large-scale bundle adjust-

ment solvers that makes use of a power expansion of the in-
verse Schur complement. We prove the theoretical validity
of the proposed approximation and the convergence of this
solver. Moreover, we experimentally confirm that the pro-
posed power series representation of the inverse Schur com-
plement outperforms competitive iterative solvers in terms
of speed, accuracy, and memory-consumption. Last but not
least, we show that the power series representation can com-
plement distributed bundle adjustment methods to signifi-
cantly boost its performance for large-scale 3D reconstruc-
tion.
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