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Abstract

We present ARTrack, an autoregressive framework for
visual object tracking. ARTrack tackles tracking as a co-
ordinate sequence interpretation task that estimates object
trajectories progressively, where the current estimate is in-
duced by previous states and in turn affects subsequences.
This time-autoregressive approach models the sequential
evolution of trajectories to keep tracing the object across
frames, making it superior to existing template matching
based trackers that only consider the per-frame localiza-
tion accuracy. ARTrack is simple and direct, eliminating
customized localization heads and post-processings. Despite
its simplicity, ARTrack achieves state-of-the-art performance
on prevailing benchmark datasets. Source code is available
at https://github.com/MIV-XJTU/ARTrack.

1. Introduction

Visual object tracking [5, 20, 34, 38, 48, 52] is a founda-
tional objective in the realm of computer vision, whereby
the tracker endeavors to estimate the location of an arbitrary
target in each video frame, based on its initial state. Despite
its ostensibly straightforward definition, the tracking task
poses a significant challenge in real-world settings due to
a variety of issues including but not limited to object de-
formation, scale variation, occlusion, and distraction from
similar objects. Fortunately, visual tracking capitalizes on
abundant temporal data as its input comprises a sequence
of video frames. Observationally, humans leverage temporal
information to gain a perception of the target’s deformation,
velocity, and acceleration trends, enabling them to maintain
consistent tracking results in the face of indiscriminative or
temporarily unavailable visual information.

The present mainstream approaches [10,13,45,61,64] for
visual object tracking typically view it as a per-frame tem-
plate matching problem, neglecting the potential temporal
dependencies among the video frames. These methods gen-
erally follow three primary stages: (i) deep neural network-
based feature extraction from the search and template images,
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Figure 1. Our ARTrack framework. First, we embed visual fea-
tures of template and search by an encoder. Then the coordinate
tokens at current time step are interpreted by the decoder, condi-
tioning on the previous estimates (as spatio-temporal prompts), and
the command and visual tokens.

(ii) an integration module using either convolution [2,4] or at-
tention mechanisms [10,61] for feature matching/fusion, and
(iii) bounding-box localization through customized heads
for corner [13, 61], center/scale [64] estimation, and target
classification [4, 61]. In some cases, the first two stages
can be combined using a unified architecture [13, 64]. Post-
processing techniques are usually employed during the local-
ization step, such as Hanning window penalty [10,56,64,68]
and box optimization [4, 56]. Some methods incorporate a
template update mechanism to improve the target feature
representation. Representative techniques in this category in-
clude template image selection [61], feature integration [56],
and time evolution [62, 66]. However, customized heads and
post-processing techniques are complex and may require
individual training and inference, which compromises the
simple end-to-end framework. Moreover, tracking empha-
sizes preserving localization accuracy across the sequence,
while conventional per-frame training methods prioritize
immediate localization accuracy, resulting in an objective
mismatch between training and inference [35].

This study proposes a novel framework to visual object
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tracking that differs from the mainstream methods, which
typically employ a per-frame template matching task. In-
stead, the authors propose to consider tracking as coordi-
nate sequence interpretation, with the objective of learning
a simple end-to-end model for direct trajectory estimation.
The proposed approach is based on the idea that given a se-
quence of frames and an initial object box, the tracker should
“interpret” a sequence of coordinates that trace the object,
in a manner similar to a language modeling task. The pro-
posed framework models the sequential evolution of object
trajectories across frames by decoding the entire trajectory
sequence step by step. The current estimate is influenced
by previous states and in turn influences the subsequences,
thus unifying the task objectives of training and inference.
Furthermore, the proposed approach simplifies the tracking
pipeline by avoiding customized heads and post-processings,
relying instead on direct coordinate regression.

The proposed autoregressive visual tracking framework,
called ARTrack, is depicted in Figure 1. The first step in this
framework is to construct discrete token sequences from
object trajectories using a quantization and serialization
scheme [8]. The framework then adopts an encoder-decoder
architecture to perceive visual information and generate tar-
get sequences gradually. In this autoregressive framework,
the previous outcomes serve as spatio-temporal prompts,
propagating preceding motion dynamics into succeeding
frames for more coherent tracking results. Notably, the
model is trained using a structured loss function that maxi-
mizes the likelihood of the target sequence, consistent with
the task objective at test time. The authors demonstrate the ef-
ficacy of this approach through extensive experiments, show-
ing that the simple and neat ARTrack framework achieves
state-of-the-art results on prevailing tracking benchmarks,
outperforming other highly customized trackers.

2. Related Work
Tracking framework. Current prevailing trackers [2, 10,
15, 23, 36, 37, 54, 69] typically rely on the matching between
the template and search images. The core design is the in-
tegration module for feature fusion. To address the issue of
target appearance variations along the temporal dimension,
some online methods [4,12,15,16,29,34,38,44] learn a target-
dependent model for online template update, which usually
needs separate training. They also require post-processings,
such as Hanning window penalty [10, 56, 64, 68], and box
optimization [4, 56].

By comparison, few single-object tracking methods [40]
in recent years focus on utilizing the motion information,
while it is prevalent in multi-object tracking [3, 11, 21, 26,
27, 59]. These methods usually integrate a motion model to
utilize the motion information, generating proposals which
are then associated with the results from a pre-defined de-
tector, e.g. RAN [21] use a recurrent autoregressive network

for online multi-object tracking. Very recently, the improved
version of SwinTrack [40] add a novel motion token to in-
corporate temporal context for tracking. In this paper, we
propose a simple approach to conduct visual template match-
ing and motion modeling in a unified framework.

Transformer in visual tracking. The attention mecha-
nisms have been employed in recent trackers, including those
mentioned in references [6, 10, 13, 56, 61, 64]. For instance,
TransT [10] utilizes attention to fuse features and establish
long-distance feature associations while adaptively focus-
ing on relevant information. MixFormer [13] uses iterative
mixed attention to integrate feature extraction and target
information. OSTrack [64] applies an early candidate elimi-
nation module to eliminate unnecessary search region tokens.
In contrast, our model is a straightforward encoder-decoder
architecture without any specialized heads, resulting in a
straightforward and pure transformer-based tracker.

Language modeling for vision. In recent years, there has
been significant progress in language modeling. Some meth-
ods aim to create a joint representation model for language
and vision tasks, such as those proposed in [1, 39, 43]. One
particular method, Pix2Seq [8, 9], formulates vision tasks as
language modeling tasks conditioned on pixel token input.
By representing bounding boxes and class labels as discrete
sequences, this method unifies computer vision tasks. In-
spired by Pix2Seq, we introduce the language modeling
framework into visual object tracking, constructing a time-
autoregressive model for direct trajectory estimation. Our
approach simplifies the tracking framework, eliminating un-
necessary post-processing, and decodes object coordinates
step by step with coherent spatio-temporal prompts.

3. Tracking as Sequence Interpretation
We cast visual tracking as a sequential coordinate inter-

pretation task, formulated as a conditional probability:

𝑃
(
Y 𝑡 |Y 𝑡−𝑁 :𝑡−1 , (C ,Z ,X 𝑡)

)
, (1)

where Z and X 𝑡 are the given template and search images
at time step 𝑡, C is the command token, and Y denotes
the target sequence associated with X . Template Z could
also be renewed at each time step with an updating mech-
anism [13, 56], or simply being the initial one [40, 64]. As
can be seen, we formulate tracking as a time-autoregressive
process where the current outcome is a function of the re-
cent 𝑁 pasts, conditioned on the template and the search
image. This is an autoregressive model [32, 63] of order
𝑁 , referred to as the AR(𝑁) model for short. Specifically
when 𝑁 = 0, Equation (1) degenerates to a per-frame model
𝑃(Y 𝑡 |C ,Z ,X 𝑡), which is not conditioned on the previous
states. The introduced autoregressive model is compatible
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with visual tracking as it is a sequence prediction task per se.
The estimated target state in the current frame is influenced
by adjacent preceding target states and also affects subse-
quent frames. We term this tracking framework ARTrack,
and it consists of the following main components.

• Sequence construction: Given a video sequence and an
initial object box, the visual tracker predicts a sequence
of bounding boxes. They are mapped into a unified
coordinate system and converted into discrete token
sequences with a shared vocabulary.

• Network architecture: We use an encoder-decoder ar-
chitecture, where the encoder embeds visual features
and the decoder interprets the target sequence.

• Objective function: The model is trained over video
frames with a structured loss function to maximize the
log-likelihood of the target sequence. We also explore
a task-specific objective to improve performance.

3.1. Sequence Construction from Object Trajectory

We describe the object trajectories as discrete token se-
quences with a shared vocabulary.

Tokenization. Inspired by the Pix2Seq framework [8],
we discretize continuous coordinates to avoid a large num-
ber of parameters required to describe the continuous co-
ordinates, which is called tokenization. Specifically, the
object box at time step 𝑡 is composed of four tokens, i.e.
[𝑥𝑡min , 𝑦

𝑡
min , 𝑥

𝑡
max , 𝑦

𝑡
max], each of which is an integer between

[1, 𝑛bins]. When the number of bins is greater than or equal to
the image resolution, zero quantization error can be achieved.
Then we use the quantized term to index a learnable vocabu-
lary to get the token corresponding to the coordinate. This
allows the model to depict the location of object in terms of
discrete tokens, and also allows the off-the-shelf decoders
in the language model to be used for coordinate regression.
This novel regression avoids direct non-linear mapping from
image features to coordinates, which is often difficult. In
detokenization, we match the output token feature with the
shared vocabulary to find the most likely location.

Trajectory coordinate mapping. Most trackers crop a
search region to reduce computation cost instead of tracking
on the full-resolution frame [10, 13, 40, 61, 64]. This means
that the network outputs the coordinates of the object in the
current frame, relative to the search region [28]. To obtain
a unified representation, it is necessary to map the boxes
of different frames into the same coordinate system. In our
method, we cache the box coordinates in the global coor-
dinate system for the preceding 𝑁 frames and map them
to the current coordinate system after the search region is
cropped. However, if we use the full frame for searching,
this coordinate mapping step is no more necessary.

�������
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-200 125 -200 374    -165 137 -18 379    111 111 231 319    282 43 395 303    405 78 579 319    580 217 600 378
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Figure 2. Sequence construction and coordinate mapping. The
object trajectory is constructed by using coordinates from previous
frames in the global coordinate system. During tracking, the tra-
jectory is mapped to the current coordinate system to construct a
sequence. Any coordinates that are out-of-range are clamped and
masked in green . To index a vocabulary, we discretize continuous
coordinates into quantized terms. The representation range of the
vocabulary covers the range of the search region.

Representation range of vocabulary. The representation
range of the vocabulary can be set based on the size of
the search region, but the preceding trajectory sequence may
sometimes extend beyond the boundaries of the search region
due to rapid object movement. To account for this, we expand
the representation range by a multiple of the search region
range (for instance, if the search region range is [0.0, 1.0],
we expand it to [−0.5, 1.5]). This enables the vocabulary to
include coordinates that lie outside the search region, which
in turn allows the model to capture more preceding motion
cues for tracking and to predict bounding boxes that extend
beyond the search region.

3.2. Network Architecture

Given the target sequences that have constructed from
object trajectories, we use an encoder-decoder structure for
learning and inference. Such a network architecture is widely
used in modern visual recognition [7, 50, 65] and language
modeling [49, 53].

Encoder. The encoder can be a general image encoder that
encodes pixels into hidden feature representations, such as
ConvNet [25, 51], vision Transformer (ViT) [17, 24, 58], or
a hybrid architecture [60]. In this work, we use the same
ViT encoder as OSTrack [64] for visual feature encoding.
The template and search images are first split into patches,
flattened and projected to generate a sequence of token em-
beddings. Then we add template and search tokens with
positional and identity embeddings, concatenate and feed
them into a plain ViT backbone to encode visual features.

Decoder. We use a Transformer decoder for target se-
quence generation. It decodes the whole sequence progres-
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Figure 3. The default and altered decoders. We explore two types of decoders: (a) decodes the whole sequence progressively, conditioned
on preceding coordinate tokens, a command token, and visual features. (b) is similar to (a), whose self- and cross- attention layers are
decoupled and stacked individually. And it conducts the cross-attention with visual features in parallel.

sively, conditioned on preceding coordinate tokens, a com-
mand token, and visual features. The preceding coordinate
tokens (Y 𝑡−𝑁 :𝑡−1) serve as spatio-temporal prompts, propa-
gating motion dynamics into succeeding frames. The com-
mand token (C) provides a trajectory proposal and then
matches the template (Z) with the search (X 𝑡) for more
accurate coordinate prediction (Y 𝑡). This simple decoding
approach removes the complexity and customization in ar-
chitectures of modern visual trackers, e.g., localization heads
and post-processings, since the coordinate can be immedi-
ately detokenized from the shared vocabulary. The decoder
works with two kinds of attention. The self-attention (with
causal mask) is performed among coordinate tokens to con-
vey spatio-temporal information. And the cross-attention
combines motion cues with visual cues to make the final
prediction. The two operations are performed alternatively
in each decoder layer to mix the two kinds of embeddings.
We illustrate decoder’s structure in Figure 3a. To improve
tracking efficiency, we investigate an altered decoder by mod-
ifying the decoder layer. Specifically, the self- and cross- at-
tention layers are decoupled and stacked individually. In this
way, we can conduct the cross-attention on visual features in
parallel, which is the most time-consuming computation in
decoder. The altered decoder is illustrated in Figure 3b.

3.3. Training and Inference

ARTrack is a simple framework that enables end-to-end
training and inference.

Training. Beyond per-frame training and optimization,
ARTrack is learned over video sequences. It adopts a struc-
tured objective that maximizes the log-likelihood of token
sequences with a softmax cross-entropy loss function:

maximize
𝑇∑
𝑡=1

log𝑃
(
Y 𝑡 |Y 𝑡−𝑁 :𝑡−1 , (C ,Z ,X 𝑡)

)
, (2)

where 𝑇 is the length of the target sequence. This learning
method unifies the task objectives between training and in-
ference, i.e., maintaining the localization accuracy across

video frames. At startup (𝑡 ≤ 𝑁), the cached spatio-temporal
prompts (Y 𝑡−𝑁 :𝑡−1) are filled with the initial one (Y 1) and
gradually updated with new predictions.

This is generic objective function [8] that ignores token’s
physical properties, e.g., the spatial relation of coordinates.
Though we find such a task-agnostic objective is effective
to train the model, we investigate how to incorporate task
knowledge to improve performance. Specifically, we intro-
duce the SIoU loss [22] to better measure the spatial cor-
relation between the predicted and ground truth bounding
boxes. We first get the coordinate token from the estimated
probability distribution. As sampling is not differentiable,
we apply the expectation of distribution to express the coor-
dinate. We then get the predicted bounding box and calculate
its SIoU with the ground truth. The whole loss function can
be written as:

ℒ = ℒce + �ℒSIoU , (3)

where ℒce and ℒSIoU are the cross-entropy loss and SIoU
loss, respectively, and � is a weight to balance the two loss
terms.

Inference. At inference time, we sample tokens from the
model likelihood 𝑃

(
Y 𝑡 |Y 𝑡−𝑁 :𝑡−1 , (C ,Z ,X 𝑡)

)
using the

argmax sampling. We find that other stochastic sampling
techniques [30] or the expectation perform comparably with
argmax sampling. There is no need to end the sequence
prediction with an additional EOS token, since the sequence
length is fixed in our problem. After obtaining the discrete
tokens, we de-quantize them to get continuous coordinates.

4. Experiments
4.1. Implementation Details

Model variants. We train three variants of ARTrack with
different configurations as follows:

• ARTrack256. Backbone: ViT-Base; Template size:
[128×128]; Search region size: [256×256];

• ARTrack384. Backbone: ViT-Base; Template size:
[192×192]; Search region size: [384×384];
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Methods GOT-10k* TrackingNet LaSOT LaSOText

AO(%) 𝑆𝑅0.5(%) 𝑆𝑅0.75(%) AUC(%) 𝑃𝑁𝑜𝑟𝑚(%) 𝑃(%) AUC(%) 𝑃𝑁𝑜𝑟𝑚(%) 𝑃(%) AUC(%) 𝑃𝑁𝑜𝑟𝑚(%) 𝑃(%)

SiamFC255 [2] 34.8 35.3 9.8 57.1 66.3 53.3 33.6 42.0 33.9 23.0 31.1 26.9
MDNet107 [48] 29.9 30.3 9.9 60.6 70.5 56.5 39.7 46.0 37.3 27.9 34.9 31.8

ECO224 [16] 31.6 30.9 11.1 55.4 61.8 49.2 32.4 33.8 30.1 22.0 25.2 24.0
SiamRPN++255 [36] 51.7 61.6 32.5 73.3 80.0 69.4 49.6 56.9 49.1 34.0 41.6 39.6

DiMP288 [44] 61.1 71.7 49.2 74.0 80.1 68.7 56.9 65.0 56.7 39.2 47.6 45.1
SiamR-CNN255 [54] 64.9 72.8 59.7 81.2 85.4 80.0 64.8 72.2 - - - -
MAMLTrack263 [55] - - - 75.7 82.2 72.5 52.3 - - - - -

LTMU288 [14] - - - - - - 57.2 - 57.2 41.4 49.9 47.3
Ocean255 [68] 61.1 72.1 47.3 - - - 56.0 65.1 56.6 - - -

TrDiMP352 [56] 67.1 77.7 58.3 78.4 83.3 73.1 63.9 - 61.4 - - -
SLT-TrDiMP352 [35] 67.5 78.8 58.7 78.1 83.1 73.1 64.4 73.5 - - - -

TransT256 [10] 67.1 76.8 60.9 81.4 86.7 80.3 64.9 73.8 69.0 - - -
AutoMatch255 [67] 65.2 76.6 54.3 76.0 - 72.6 58.3 - 59.9 - - -
KeepTrack352 [45] - - - - - - 67.1 77.2 70.2 48.2 - -

STARK320 [61] 68.8 78.1 64.1 82.0 86.9 - 67.1 77.0 - - - -
SwinTrack-T224 [40] 71.3 81.9 64.5 81.1 - 78.4 67.2 - 70.8 47.6 - 53.9
SwinTrack-B384 [40] 72.4 80.5 67.8 84.0 - 82.8 71.3 - 76.5 49.1 - 55.6

MixFormer-22k320 [13] 70.7 80.0 67.8 83.1 88.1 81.6 69.2 78.7 74.7 - - -
MixFormer-L320 [13] - - - 83.9 88.9 83.1 70.1 79.9 76.3 - - -

OSTrack256 [64] 71.0 80.4 68.2 83.1 87.8 82.0 69.1 78.7 75.2 47.4 57.3 53.3
OSTrack384 [64] 73.7 83.2 70.8 83.9 88.5 83.2 71.1 81.1 77.6 50.5 61.3 57.6

ARTrack256 73.5 82.2 70.9 84.2 88.7 83.5 70.4 79.5 76.6 46.4 56.5 52.3
ARTrack384 75.5 84.3 74.3 85.1 89.1 84.8 72.6 81.7 79.1 51.9 62.0 58.5

ARTrack-L384 78.5 87.4 77.8 85.6 89.6 86.0 73.1 82.2 80.3 52.8 62.9 59.7

Table 1. State-of-the-art comparison on GOT-10k [31], TrackingNet [47], LaSOT [19] and LaSOText [18]. Where * denotes for tracker only
trained on GOT-10k. The number in subscript denotes the search region resolution. Best in bold, second best underlined.

• ARTrack-L384. Backbone: ViT-Large; Template size:
[192×192]; Search region size: [384×384];

Training strategy. We follow the conventional protocols
to train our models. The training set consists of GOT-
10k [31] (we removed 1k sequences in GOT-10k train split
according to [61]), LaSOT [19] and TrackingNet [47]. For
performance evaluation on GOT-10k especially, the models
are trained on the full GOT-10k training split. Unlike the
traditional per-frame training which uses random translation
and scale transformation for ground truth to simulate spatial
dithering, our sequential training allows us to interpret a
sequence of coordinates tracing the target frame by frame
without any augmentations. We optimized the model with
AdamW [42], the learning rate of the backbone is 4 × 10−7

and 4 × 10−6 for other parameters.We train the network
for 60 epochs with 960 video sequences every epoch. Each
sequence contains 16 frames due to the GPU memory con-
straint.

More about, to compare with mainstream trackers fairly,
we first pre-train the AR(0) model that can leverage im-
age datasets such as COCO2017 [41] to align with other
per-frame trained trackers. The AR(0) training set consists
of four datasets, which are the same as DiMP [44] and
STARK [61]. We utilize the same data augmentations as
OSTrack [64], including horizontal flip and brightness jit-
tering. With optimized by AdamW, the learning rate of the

backbone is 8× 10−6 and 8× 10−5 for other parameters. Our
AR(0) model is trained with 240 epochs and 60k matching
pairs per epoch.

4.2. Main Results

We evaluate the performance of our proposed
ARTrack256, ARTrack384 and ARTrack-L384 on sev-
eral benchmarks, including GOT-10k [31], TrackingNet [47],
LaSOT [19], LaSOText [18], TNL2K [57], UAV123 [46]
and NFS [33].

GOT-10k [31]. GOT-10k is a large-scale dataset that con-
tains over 10,000 video sequences of frames with high-
precision bounding boxes. It promotes the one-shot tracking
rule, which means that the classes between the training and
test sets do not overlap. In accordance with this protocol,
we trained our ARTrack solely on the GOT-10k train split
and evaluated the test results. As reported in Table 1, our
ARTrack384 outperformed the state-of-the-art trackers on all
indicators. Moreover, our ARTrack-L384 model, trained only
on the GOT-10k train split, has achieved better performance
than other mainstream trackers trained on additional datasets.
This strongly verifies that our tracker has strong generaliza-
tion and is not sensitive to categories. It also demonstrates
that our model can capture more precise details, which en-
ables it to perform well in one-shot datasets.
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Figure 4. State-of-the-art comparison on TNL2K [57], NFS [33] and UAV123 [46].

TrackingNet [47]. TrackingNet is a dataset for tracking
that covers a diverse range of object classes and scenes in the
real world. Its test set contains 511 sequences for which only
the primary frame’s annotations are provided. We evaluated
our trackers on the TrackingNet test set and submitted the
results to the official evaluation server. The results are pre-
sented in Table 1, and we observed that even our ARTrack256
achieved a new state-of-the-art performance on this large-
scale benchmark. When using higher input resolution, our
ARTrack384 and ARTrack-L384 models surpassed all other
trackers and achieved the best performance.

LaSOT [19]. LaSOT is a large-scale benchmark consisting
of 280 videos in its test set, which is effective in detecting the
performance of long-term tracking. We evaluated our AR-
Track on the test set and the results are shown in Table 1. Our
ARTrack256 already outperforms MixFormer-L, which has a
larger backbone. Furthermore, our ARTrack384 achieved the
top-ranked performance on AUC, reaching 72.6%, surpass-
ing all other trackers without the use of any online template
update strategy or post-processing.

LaSOText [18]. LaSOText is an extended subset of LaSOT
that includes 150 additional videos from 15 new categories.
These videos feature numerous similar interfering objects
and fast-moving small objects, which significantly increase
the tracking difficulty. Although our ARTrack256’s perfor-
mance is lower than the state-of-the-art trackers, we believe
that due to the lower resolution causes the lack of utilizing
motion information. We can observe our ARTrack384 and
ARTrack-L384 outperforms OSTrack384 by 1.4% AUC and
2.3% AUC with higher resolution.

TNL2K [57], NFS [33] and UAV123 [46]. In order to
demonstrate the robustness of our model to deal with com-
plex scenarios, we evaluated on other three benchmarks: (i)
TNL2K is a high quality and multimodal dataset with natural
language tagging, (ii) NFS is a dataset with higher frame
rate (240fps) video, and (iii) UAV123 composed of complex
scene video clips shot by different UAVs. Figure 4 shows
that our ARTrack-L384 ( ) and ARTrack384 ( ) perform
better than other trackers in general.

voc. range: [1×] voc. range: [2×] voc. range: [3×]
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Figure 5. Performance vs. the order of autoregression. The ,
, and curves denote the representation ranges of vocabulary,

which are 1×, 2×, and 3× long to the search region, respectively.

4.3. Analysis of the Autoregressive Model

We analyze the main properties of the ARTrack frame-
work. For the following experimental studies, we follow
GOT-10k test protocol unless otherwise noted. Default set-
tings are marked in gray .

Order of autoregression. The core of ARTrack is autore-
gression, which is controlled by the length of the spatio-
temporal prompts, or the order (𝑁). This parameter deter-
mines how much preceding trajectory information can be
utilized. For instance, with 𝑁 = 1, we can infer the target
scale and aspect ratio based on the previous time step, and
with 𝑁 = 2, we can also learn a coarse moving direction.
Increasing 𝑁 provides more motion information. We experi-
ment with different values of 𝑁 to examine its impact on the
model.

One way to set the range of vocabulary representation
is to use the same range as the search region, which is il-
lustrated by the ( ) curves (voc. range: [1×]) in Figure 5.
As shown, incorporating spatio-temporal prompts through
ARTrack improves the AO score by almost 1.0% compared
to using 𝑁 = 0, which is a pure per-frame model. Moreover,
increasing 𝑁 leads to a significant boost in AO score from
71.6% to 73.1%. However, when 𝑁 > 3, the precision de-
clines due to a higher number of invalid coordinates falling
outside the representation range.
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(a) search (b) 𝑥min (c) 𝑦min (d) 𝑥max (e) 𝑦max

Figure 6. Decoder’s cross-attention. (a): Search region and tem-
plate image (in the top-left corner). (b)-(e): Corresponding coordi-
nates token-to-search attention maps in the last layer of decoder.

As suggested in Section 3.1, we expand the vocabulary
range appropriately to mitigate the truncation of trajectories
caused by coordinates beyond the representation range. The
effect of this expansion is demonstrated in Figure 5 with the
( ) curves (voc. range: [2×]). By doing so, the model is not
only able to capture more preceding motion cues for more
coherent tracking results but also predict bounding boxes
that exceed the search region. This approach proves to be
effective and outperforms the naive [1×] setting by 0.4%
(73.1% vs. 73.5%).

However, expanding the representation range poses a chal-
lenge to the localization of bounding boxes. As the range
increases, it becomes increasingly difficult to assign the ap-
propriate 𝑏𝑖𝑛 to its corresponding coordinate accurately.
This is why the [2×] setting results in a lower AO score
when 𝑁 is small. Similarly, although the precision of the
[3×] setting improves with increased synchronization with
𝑁 , as depicted in the ( ) curves, it still falls short of the
best performance. Unfortunately, due to hardware memory
constraints, we were unable to train using a larger 𝑁 .

Qualitative comparison. To gain a better understanding of
our time-autoregressive model, we generate cross-attention
maps while predicting coordinate tokens sequentially. In
order to test the robustness of our model, we use complex
scenarios encountered in real-world tracking, such as motion
blur, rotation, aspect change, and camera motion, as shown
in Figure 6. Interestingly, in each scenario, our tracker fo-
cuses on the appropriate extremities when predicting each
coordinate, demonstrating our model’s ability for precise
localization.

When faced with more challenging scenarios like occlu-
sion and distraction, per-frame template matching can be

O
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(a) time 𝑡 − 2 (b) time 𝑡 − 1 (c) time 𝑡 (d) (e)

Figure 7. (a)-(c): Search region and predicted boxes. The blue and
red boxes denote the predictions of ours and OSTrack, respectively.
(d): Attention map of ARTrack. (e): Attention map of OSTrack.

unreliable. The target in the former may become invisible,
while the presence of various similar objects in the latter
can confuse the tracker. To overcome these problems, our
method leverages preceding motion cues to generate a rea-
sonable prediction in situations where visual features are not
discriminative.

In Figure 7, we present the cross-attention maps gener-
ated by ARTrack frame-by-frame and compare them with
the attention map estimated by OSTrack [64]. To obtain an
instance-level visualization, we sum over the cross-attention
maps at the last layer when predicting each coordinate. The
first two rows of the figure demonstrate the occlusion sce-
nario. Our method can predict a reasonable target bounding
box even when encountering full occlusion by conditioning
on the preceding trajectory sequence. On the other hand, the
attention in OSTrack is wrongly assigned to other instances,
which is understandable since it is difficult for humans to
locate targets without observing them. However, humans
can track invisible objects given the preceding trajectory se-
quence of the target. Similar findings can be inferred in the
case of the distraction scenario, which is depicted in the last
two rows. When there are numerous similar objects in the
search image, the attention of OSTrack gets distracted, lead-
ing to erroneous tracking. In contrast, ARTrack can maintain
the focus on the target by considering the prior states. This
supports our claim that our method can effectively model the
sequential evolution of object trajectories across frames.

Bins per pixel. To investigate the impact of the resolution
of bins (i.e., bins per pixel) on performance, we fixed the
resolution of the search region to 256 pixels and used a
vocabulary with a representation range twice as long as the
range of the search region. We then varied the number of
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Bins per pixel AO(%) 𝑆𝑅0.5(%) 𝑆𝑅0.75(%)

512/[2 × 256] 71.8 80.2 68.3
800/[2 × 256] 73.5 82.2 70.9

1200/[2 × 256] 72.6 80.8 69.3
1600/[2 × 256] 71.9 80.1 68.5

Table 2. Experimental studies on bins per pixel.

bins per pixel, as shown in Table 2.
As there is no significant error caused by quantization

when the number of bins is larger than the longer side of the
cropped image, we first use 512 bins (512/[2× 256] bins per
pixel) and then increase the number. As shown in Table 2,
increasing the number of bins that enable subpixel quan-
tization accuracy can improve performance. However, the
conclusion differs slightly from that of [8], which suggests
that a smaller number of bins is sufficient for accurate object
detection. We believe that this difference may be due to the
need for more quantization accuracy for precise motion mod-
eling. Using much more bins (e.g. 1600) can significantly
increase the vocabulary size and slow down training.

�CE �SIoU AO(%) 𝑆𝑅0.5(%) 𝑆𝑅0.75(%)

✓ 72.6 81.2 69.5
✓ 72.2 81.1 67.6

✓ ✓ 73.5 82.2 70.9

Table 3. A task-specific loss function can improve performance.

Loss function. Table 3 showcases the effectiveness of in-
tegrating specific tracking knowledge with task-agnostic
objectives. We observed that combining SIoU and CE loss
resulted in better performance than using either of them
alone. This can be attributed to the fact that when comput-
ing SIoU, we consider the expected bounding box location,
which accounts for the spatial relationships, thereby enhanc-
ing the robustness of supervision. Using only the SIoU loss
without CE led to a significant decrease in 𝑆𝑅0.75, but 𝑆𝑅0.5
remained the same as when using the CE loss. We speculate
that this is because the model was solely supervised by the
expected coarse-grained location and lacked the ability to
generate more precise bounding boxes.

4.4. Limitation Analysis

Architecture AO(%) 𝑆𝑅0.5(%) 𝑆𝑅0.75(%) FPS

default decoder 73.5 82.2 70.9 26
altered decoder 73.2 81.7 70.6 45

Table 4. Performance comparison of decoder variants. The altered
decoder can improve tracking speed significantly.

Speed analysis and architecture variant. A major lim-
itation of the ARTrack framework is that it is not as effi-

cient as recently proposed trackers, due to its serial com-
putation in the decoder. We investigate an altered decoder
composed of self- and cross- attention layers stacked indi-
vidually. Specifically, several self-attention layers process
coordinate tokens in an autoregressive manner, followed by
parallel cross-attention layers to aggregate visual features.
The altered decoder can improve inference speed signifi-
cantly (73% speed-up) with a bit of sacrifice on the accuracy
(diminished by 0.3% on AO score), as reported in Table 4.

Training Strategy LaSOT

AUC(%) 𝑃𝑛𝑜𝑟𝑚 (%) 𝑃(%)

w/ AR(0) pre-train 70.4 79.5 76.6
w/o AR(0) pre-train 69.2 78.6 75.5

Table 5. Training strategy. Pre-train obtains better performance.

Training strategy and command token analysis. In
order to make a fair comparison with previous track-
ers [10, 13, 40, 61, 64] that have been trained on diverse
image datasets such as COCO2017 [41], we first pre-trained
our model with 𝑁 = 0. This allowed our time-autoregressive
model to function like a per-frame model temporarily, with-
out relying on previous states. We then tested our model on
the LaSOT benchmark, and the results are shown in Table
5, which reported a 1.2% improvement on the AUC score
with pre-training. However, the cost is that we needed to
use a learnable command token to initiate the autoregres-
sive process, and this token had to be preserved to ensure
consistency between the per-frame and sequential training.

5. Conclusion
We propose ARTrack, a simple and direct end-to-end

autoregressive framework for visual object tracking. We re-
gard visual tracking as a coordinate sequence interpretation
task, thus we employ language modeling for simultaneous
visual template matching and motion information modeling.
The tracker is a general encoder-decoder architecture that
eliminates customized heads and post-processings to sim-
plify the tracking pipeline. More about, we present spatio-
temporal prompts modeling the sequential evolution of tra-
jectory propagating motion cues for more coherent tracking
results. Extensive experiments prove our tracker outperforms
other mainstream trackers and achieves state-of-the-art on
prevailing benchmark datasets. In the future, we hope this
framework could be extended to other video tasks.
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