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Abstract

Adversarial training has been widely acknowledged as
the most effective method to improve the adversarial robust-
ness against adversarial examples for Deep Neural Net-
works (DNNs). So far, most existing works focus on en-
hancing the overall model robustness, treating each class
equally in both the training and testing phases. Although
revealing the disparity in robustness among classes, few
works try to make adversarial training fair at the class
level without sacrificing overall robustness. In this paper,
we are the first to theoretically and empirically investigate
the preference of different classes for adversarial configu-
rations, including perturbation margin, regularization, and
weight averaging. Motivated by this, we further propose
a Class-wise calibrated Fair Adversarial training frame-
work, named CFA, which customizes specific training con-
figurations for each class automatically. Experiments on
benchmark datasets demonstrate that our proposed CFA
can improve both overall robustness and fairness notably
over other state-of-the-art methods. Code is available at
https://github.com/PKU-ML/CFA.

1. Introduction
Deep Neural Networks (DNNs) have achieved remark-

able success in a variety of tasks, but their vulnerability
against adversarial examples [11, 20] have caused serious
concerns about their application in safety-critical scenar-
ios [6, 15]. DNNs can be easily fooled by adding small,
even imperceptible perturbations to the natural examples.
To address this issue, numerous defense approaches have
been proposed [2, 9, 17, 18, 28], among which Adversarial
Training (AT) [16, 25] has been demonstrated as the most
effective method to improve the model robustness against
such attacks [1, 27]. Adversarial training can be formulated
as the following min-max optimization problem:

min
θ

E(x,y)∼D max
∥x′−x∥≤ϵ

L(θ;x′, y), (1)

*Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn)

where D is the data distribution, ϵ is the margin of pertur-
bation and L is the loss function, e.g. the cross-entropy
loss. Generally, Projected Gradient Descent (PGD) at-
tack [16] has shown satisfactory effectiveness to find adver-
sarial examples in the perturbation bound B(x, ϵ) = {x′ :
∥x′−x∥ ≤ ϵ}, which is commonly used in solving the inner
maximization problem in (1):

xt+1 = ΠB(x,ϵ)(x
t + α · sign(∇xtL(θ;xt, y))), (2)

where Π is the projection function and α controls the step
size of gradient ascent. TRADES [30] is another variant of
AT, which adds a regularization term to adjust the trade-off
between robustness and accuracy [22, 24]:

min
θ

E(x,y)∼D {L(θ;x, y)+β max
∥x′−x∥≤ϵ

K(fθ(x), fθ(x′))},

(3)
where K(·) is the KL divergence and β is the robustness
regularization to adjust the robustness-accuracy trade-off.

Although certain robustness has been achieved by AT
and its variants, there still exists a stark difference among
class-wise robustness in adversarially trained models, i.e.,
the model may exhibit strong robustness on some classes
while it can be highly vulnerable on others, as firstly re-
vealed in [4, 21, 29]. This disparity raises the issue of ro-
bustness fairness, which can lead to further safety concerns
of DNNs, as the models that exhibit good overall robustness
may be easily fooled on some specific classes, e.g., the stop
sign in automatic driving. To address this issue, Fair Robust
Learning (FRL) [29] has been proposed, which adjusts the
margin and weight among classes when fairness constraints
are violated. However, this approach only brings limited
improvement on robust fairness while causing a drop on
overall robustness.

In this paper, we first present some theoretical insights on
how different adversarial configurations impact class-wise
robustness, and reveal that strong attacks can be detrimen-
tal to the hard classes (classes that have lower clean accu-
racy). This finding is further empirically confirmed through
evaluations of models trained under various adversarial con-
figurations. Additionally, we observe that the worst robust-
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ness among classes fluctuates significantly between differ-
ent epochs during the training process. It indicates that sim-
ply selecting the checkpoint with the best overall robustness
like the previous method [19] may result in poor robust fair-
ness, i.e., the worst class robustness may be extremely low.

Inspired by these observations, we propose to dynam-
ically customize different training configurations for each
class. Note that unlike existing instance-wise customized
methods that aim to enhance overall robustness [3,7,10,26,
31], we also focus on the fairness of class-wise robustness.
Furthermore, we modify the weight averaging technique to
address the fluctuation issue during the training process.
Overall, we name the proposed framework as Class-wise
calibrated Fair Adversarial training (CFA).

Our contributions can be summarized as follows:

• We show both theoretically and empirically that differ-
ent classes require appropriate training configurations.
In addition, we reveal the fluctuating effect of the worst
class robustness during adversarial training, which in-
dicates that selecting the model with the best overall
robustness may result in poor robust fairness.

• We propose a novel approach called Class-wise cali-
brated Fair Adversarial training (CFA), which dynam-
ically customizes adversarial configurations for differ-
ent classes during the training phase, and modifies the
weight averaging technique to improve and stabilize
the worst class robustness.

• Experiments on benchmark datasets demonstrate that
our CFA outperforms state-of-the-art methods in terms
of both overall robustness and fairness, and can be also
easily incorporated into other adversarial training ap-
proaches to further improve their performance.

2. Theoretical Class-wise Robustness Analysis
In this section, we present our theoretical insights on the

influence of different adversarial configurations on class-
wise robustness.

2.1. Notations

For a K-classification task, we use f : X → Y to denote
the classification function which maps from the input space
X to the output labels Y = {1, 2, · · · ,K}. For an example
x ∈ X , we use B(x, ϵ) = {x′|∥x′ − x∥ ≤ ϵ} to restrict
the perturbation. In this paper, we mainly focus on the l∞
norm ∥ · ∥∞, and note that our analysis and approach can be
generalized to other norms similarly.

We use A(f) and R(f) to denote the clean and robust
accuracy of the trained model f :

A(f) = E(x,y)∼D 1(f(x) = y),

R(f) = E(x,y)∼D 1(∀x′ ∈ B(x, ϵ), f(x′) = y).
(4)

We use Ak(f) and Rk(f) to denote the clean and robust
accuracy of the k-th class respectively to analyze the class-
wise robustness.

2.2. A Binary Classification Task
We consider a simple binary classification task that is

similar to the data model used in [22], but the properties
(hard or easy) of the two classes are different.
Data Distribution. Consider a binary classification task
where the data distribution D consists of input-label pairs
(x, y) ∈ Rd+1 × {−1,+1}. The label y is uni-
formly sampled, i.e., y

u.a.r.∼ {−1,+1}. For input x =
(x1, x2, · · · , xd+1), let x1 ∈ {−1,+1} be the robust fea-
ture, and x2, · · · , xd+1 be the non-robust features. The
robust feature x1 is labeled as x1 = y with probabil-
ity p and x1 = −y with probability 1 − p where 0.5 ≤
p < 1. For the non-robust features, they are sampled from
x2, · · · , xd+1

i.i.d∼ N (ηy, 1) where η < 1/2 is a small posi-
tive number. Intuitively, as discussed in [22], x1 is robust to
perturbation but not perfect (as p < 1), and x2, · · · , xd+1

are useful for classification but sensitive to small perturba-
tion. In our model, we introduce some differences between
the two classes by letting the probability of x1 = y correlate
with its label y. Overall, the data distribution is

x1 =

{
+y, w.p. py
−y, w.p. 1− py

and x2, · · · , xd+1
i.i.d∼ N (ηy, 1).

(5)
We set p+1 > p−1 in our model. Therefore, the robust fea-
ture x1 is more reliable for class y = +1, while for class
y = −1, the robust feature x1 is noisier and their classifica-
tion depends more on the non-robust features x2, · · · , xd+1.
Hypothesis Space. Consider a SVM classifier (without bias
term) f(x) = sign(w1x1+w2x2+· · ·+wd+1xd+1). For the
sake of simplicity, we assume w1, w2 ̸= 0, and w2 = w3 =
· · · = wd+1 since x2, · · · , xd+1 are equivalent. Then, let
w = w1

w2
, the model can be simplified as fw(x) = sign(x1+

x2+···+xd+1

w ). Without loss of generality, we further assume
w > 0 since x2, · · · , xd+1 ∼ N (ηy, 1) tend to share the
same sign symbol with y.

2.3. Theoretical Insights
Illustration Example. An example of the data distribution
for the case d = 1 is visualized in Fig. 1(a). The data
points for class y = +1 are colored red and for y = −1
are colored blue. We can see that the robust feature x1

of class y = −1 seems to be noisier than y = +1, since
the frequency of blue dots appearing on the line x1 = 1
is higher compared to the frequency of red dots appearing
on the line x1 = −1, with p+1 > p−1. Therefore, class
y = −1 might be more difficult to learn. Furthermore, we
plot the clean and robust accuracy of the two classes of
fw for different w in Fig. 1(b). Implementation details of
this example can be found in Appendix A. The parameter
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(a) (b)
Figure 1. An visualization of the toy model for the case d = 1. (a):
Sampled data from the distribution. Red dots are labeled y = +1
and blue dots are labeled y = −1. (b): Clean and robust accuracy
of the two classes. Solid lines indicate robust accuracy and dotted
lines indicate clean accuracy.

w can be regarded as the strength of adversarial attack in
adversarial training, since larger w indicates the classifier
fw bias less weight on non-robust features w2, · · · , wd+1

and pay more attention on robust feature w1. We can see
that as w increases, the clean accuracy of y = −1 drops sig-
nificantly faster than y = +1, but the robustness improves
slower. We formally prove this observation in the following.

The Intrinsically Hard Class. First we formally distinct
class y = −1,+1 as the hard and easy class in Theorem 1.

Theorem 1 For any w > 0 and the classifier fw =
sign(x1+

x2+···+xd+1

w ), we haveA+1(fw) > A−1(fw) and
R+1(fw) > R−1(fw).

Theorem 1 shows that the class y = −1 is more difficult to
learn than class y = +1 both in robust and clean settings.
This reveals the potential reason why some classes are
intrinsically difficult to learn in the adversarial setting, that
is, their robust features are less reliable.

Relation Between w and Attack Strength. Consider the
model is adversarially trained with perturbation margin ϵ.
The following Theorem 2 shows using larger ϵ enlarges w.

Theorem 2 For any 0 ≤ ϵ ≤ η, let w∗ = argmax
w
R(fw)

be the optimal parameter for adversarial training with per-
turbation bound ϵ, then w∗ is monotone increasing at ϵ.

Theorem 2 bridges the gap between model parameter
and attack strength in adversarial training. Next, we can
implicitly investigate the influence of attack strength on
class-wise robustness by analyzing the parameter w.

Impact of Attack Strength on Class-wise Robustness.
Here, we demonstrate how adversarial strength influences
class-wise clean and robust accuracy.

Theorem 3 Let w∗
y = argmax

w
Ay(fw) be the parameter

for the best clean accuracy of class y, then w∗
+1 > w∗

−1.

Theorem 3 shows that the clean accuracy of the hard class
y = −1 reaches its best performance earlier than y =
+1. In other words, A−1(fw) starts dropping earlier than
A+1(fw). As the model further distracts its attention from
its clean accuracy to robustness by increasing the parameter
w, the hard class y = −1 losses more clean accuracy yet
gains less robust accuracy as shown in Theorem 4.

Theorem 4 Suppose ∆w > 0, then for ∀w > w∗
+1,

A−1(fw+∆w
)−A−1(fw) < A+1(fw+∆w

)−A+1(fw) <
0, and for ∀w > 0, 0 < R−1(fw+∆w

) − R−1(fw) <
R+1(fw+∆w

)−R+1(fw).

The proof of the theorems can be found in Appendix B.
In this section, we demonstrate the unreliability of robust
features is a possible explanation for the intrinsic difficulty
in learning some classes. Then, by implicitly expressing the
attack strength with parameter w, we analyze how adver-
sarial configuration influence class-wise robustness. Theo-
rems 3 and 4 highlight the negative impact of strong attack
on the hard class y = −1.

3. Observations on Class-wise Robustness
In this section, we present our empirical observations

on the class-wise robustness of models adversarially trained
under different configurations. Taking vanilla AT [16] and
TRADES [30] as examples, we compare two key factors
in the training configurations: the perturbation margin ϵ in
vanilla AT and the regularization β in TRADES. We also
reveal the fluctuation effect of the worst class robustness
during the training process, which has a significant impact
on the robust fairness in adversarial training.

3.1. Different Margins
Following the vanilla AT [16], we train 8 models on the

CIFAR10 dataset [14] with l∞-norm perturbation margin ϵ
from 2/255 to 16/255 and analyze their overall and class-
wise robustness.

The comparison of overall robustness is shown in
Fig. 2(a). The robustness is evaluated under PGD-10 at-
tack bounded by ϵ0 = 8/255, which is commonly used for
robustness evaluation. Intuitively, using a larger margin can
lead to better robustness. For ϵ < ϵ0, the attack is too weak
and hence the robust accuracy of the trained model is not
comparable with ϵ ≥ ϵ0. However, for the three models
trained with ϵ > ϵ0, although their robustness outperforms
the case of ϵ = ϵ0 at the last epoch, they do not make sig-
nificant progress on the best-case robustness (around 100-th
epoch).

We take a closer look at this phenomenon by investigat-
ing their class-wise robustness in Fig. 2(b) and Fig. 2(c).
For each class, we calculate the average class-wise robust
accuracy among the 101−120-th epochs (where the model
performs the best robustness) and 181−200-th epochs, re-
spectively. From Fig. 2(b), we can see that a larger training
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(a) (b) (c)
Figure 2. Comparison of overall and class-wise robustness of models adversarially trained on CIFAR10 with different perturbation margin
ϵ. (a): Overall robust accuracy with different perturbation margin ϵ from 2/255 to 16/255. (b): Average class-wise robust accuracy at epoch
101− 120 (each line represents a class). (c): Average class-wise robust accuracy at epoch 181− 200 (each line represents a class).

margin ϵ does not necessarily result in better class-wise ro-
bustness. For the easy classes which perform higher robust-
ness, their robustness monotonously increase as ϵ enlarges
from 2/255 to 16/255. By contrast, for the hard classes (es-
pecially class 2, 3, 4), their robustness drop when ϵ enlarges
from 8/255. However, for the last several checkpoints in
Fig. 2(c), we can see a consistent increase on class-wise
robustness when the ϵ enlarges. Revisiting the overall ro-
bustness, we can summarize that the class-wise robustness
is boosted mainly by reducing the robust over-fitting prob-
lem in the last checkpoint. This can explain why Fair Ro-
bust Learning (FRL) [29] can improve robust fairness by
enlarging the margin for the hard classes, since the model
reduces the over-fitting problem on these classes. Consid-
ering the overall robustness is lower in the last checkpoint
(robust fairness is better though), we hope to improve the
best-case robust fairness in the situation of a relatively high
overall robustness.

In summary, larger perturbation is harmful to the hard
classes in the best case, while can marginally improve the
class-wise robustness in the later stage of training. For easy
classes, larger perturbation is useful at whatever the best and
last checkpoints. Therefore, a specific and proper perturba-
tion margin is needed for each class.

3.2. Different Regularizations

In this section, we also conduct a similar experiment on
the selection of robustness regularization β in TRADES.
We compare models trained on CIFAR10 with β from 1
to 8, and plot the average class-wise robust and clean ac-
curacy among the 151 − 170-th epochs (where TRADES
performs the best performance) in Fig. 3. We can see that
bias more weight on robustness (use larger β) cause differ-
ent influences among classes. Specifically, for easy classes,
improving β can improve their robustness at the cost of lit-
tle clean accuracy reduction, while for hard classes (e.g.,
classes 2, 3, 4), improving β can only obtain limited robust-
ness improvement but drop clean accuracy significantly.

This result is consistent with the Theorem 4. Recall that

(a) (b)
Figure 3. Comparison of class-wise robustness trained by
TRADES with different robustness regularization parameters β.
(a) Class-wise robust accuracy. (b) Class-wise clean accuracy.

(a) (b)
Figure 4. Comparison of overall robustness, the worst class ro-
bustness, and the absolute variation of the worst class robustness
between adjacent checkpoints. (a): Vanilla AT. (b): AT with fair-
ness aware weight averaging (FAWA), start from epoch 50.

in the toy model, hard class y = −1 costs more clean ac-
curacy to exchanges for little robustness improvement than
easy class y = +1. Therefore, similar to the analysis on
perturbation margin ϵ, we also point out that there exists a
proper βy for each class.

3.3. Fluctuation Effect
In this section, we reveal an intriguing property regard-

ing the fluctuation of class-wise robustness during adver-
sarial training. In Fig. 4(a), we plot the overall robustness,
the worst class robustness, and the variance of the worst
robustness between adjacent epochs in vanilla adversarial
training. While the overall robustness tends to be more sta-
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ble between adjacent checkpoints (except when the learning
rate decays), the worst class robustness fluctuates signifi-
cantly. Particularly, many adjacent checkpoints between the
101− 120-th epochs exhibit a nearly 10% difference in the
worst class robustness, while changes in overall robustness
are negligible (less than 1%). Therefore, previously widely
used selecting the best checkpoint based on overall robust-
ness may result in an extremely unfair model. Taking the
plotted training process as an example, the model achieves
the highest robust accuracy of 53.2% at the 108-th epoch,
which only has 23.5% robust accuracy on the worst class.
In contrast, the checkpoint at epoch 110, which has 52.6%
overall and 28.1% worst class robust accuracy, is preferred
when considering fairness.

4. Class-wise Calibrated Fair Adversarial
Training

With the above analysis, we introduce our proposed
Class-wise calibrated Fair Adversarial training (CFA)
framework in this section. Overall, the CFA framework
consists of three main components: Customized Class-wise
perturbation Margin (CCM), Customized Class-wise Reg-
ularization (CCR), and Fairness Aware Weight Averaging
(FAWA). The CCM and CCR customize appropriate train-
ing configurations for different classes, and FAWA modifies
weight averaging to improve and stabilize fairness.

4.1. Class-wise Calibrated Margin (CCM)

In Sec. 3.1, we have demonstrated that different classes
prefer specific perturbation margin ϵ in adversarial training.
However, it is impractical to directly find the optimal class-
wise margin. Inspired by a series of instance-wise adaptive
adversarial training approaches [3,10,26], which customize
train setting for each instance according to the model per-
formance on current example, we propose to leverage the
class-wise training accuracy as the measurement of diffi-
culty.

Suppose the k-th class achieved train robust accuracy
tk ∈ [0, 1] in the last training epoch. In the next epoch, we
aim to update the margin ϵk for class k based on tk. Based
on our analysis in Sec. 3.1, we consider using a relatively
smaller margin for the hard classes which are more vulner-
able to attacks, and identify the difficulty among classes by
the train robust accuracy tracked from the previous epoch.
To avoid ϵk too small, we add a hyper-parameter λ1 (called
base perturbation budget) on all tk and set the calibrated
margin ϵk by multiply the coefficient on primal margin ϵ:

ϵk ← (λ1 + tk) · ϵ, (6)

where ϵ is the original perturbation margin, e.g., 8/255 that
is commonly used for CIFAR-10 dataset. Note that the cali-
brated margin ϵk can adaptively converge to find the proper
range during the training phase, for example, if the margin

is too small for class k, the model will perform high train
robust accuracy tk and then increase ϵk by schedule (6).

4.2. Class-wise Calibrated Regularization (CCR)

We further customize different robustness regularization
β of TRADES for different classes. Recall the objective
function (3) of TRADES, we hope the hard classes tend to
bias more weight on its clean accuracy. Still, we measure
the difficulty by the train robust accuracy tk for class k, and
propose the following calibrated robustness regularization
βk:

βk ← (λ2 + tk) · β. (7)

where β is the originally selected parameter. The objective
function (3) can be rewritten as:

Lθ(β;x, y) =

L(θ;x, y) + βy max
∥x′−x∥≤ϵ

K(fθ(x), fθ(x′))

1 + βy
.

(8)
To balance the weight between different classes, we add

a denominator 1 + βy since βy is distinct among classes.
Therefore, for the hard classes which have lower βy tend
to bias higher weight 1

1+βy
on its natural loss L(θ;x, y).

Note that simply replacing ϵ in (8) with ϵk can combine the
calibrated margin with this calibrated regularization. On the
other hand, for general adversarial training algorithms, our
calibrated margin schedule (6) can also be combined.

4.3. Fairness Aware Weight Average (FAWA)

As plotted in Fig. 4(a), the worst class robustness
changes largely, among which part of checkpoints performs
extremely poor robust fairness. Previously, there are a series
of weight averaging methods to make the model training
stable, e.g., exponential moving average (EMA) [13, 23],
thus we hope to further improve the worst class robustness
by fixing the weight average algorithm.

Inspired by the large fluctuation of the robustness fair-
ness among checkpoints, we consider eliminating the unfair
checkpoints out in the weight averaging process. To this
end, we propose a Fairness Aware Weight Average (FAWA)
approach, which sets a threshold δ on the worst class robust-
ness of the new checkpoint in the EMA process. Specifi-
cally, we extract a validation set from the dataset, and each
checkpoint is adopted in the weight average process if and
only if its worst class robustness is higher than δ. Fig. 4(b)
shows the effect of the proposed FAWA. The difference be-
tween adjacent epochs is extremely small (less than 1%),
and the overall robustness also outperforms vanilla AT.

4.4. Discussion

Overall, by combining the above components, we ac-
complish our CFA framework. An illustration of incorpo-
rating CFA to TRADES is shown in Alg. 1. Note that for
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Algorithm 1: TRADES with CFA
Input: A DNN classifier fθ(·) with parameter θ;

Train dataset D = {(xi, yi)}Ni=1; Batch size
m; Initial perturbation margin ϵ and
robustness regularization β; Train epochs N ;
Batch size m; Learning rate η; Weight
average decay rate α; Fairness threshold δ

Output: A fair and robust DNN classifier f̄θ̄(·)
/* Initialize parameters and

datasets */
Initialize θ ← θ0, θ̄ ← θ;
Split D = Dtrain ∪Dvalid;
for y ∈ Y do

/* Initialize ϵy and βy */
ϵy ← ϵ, βy ← β;

for T ← 1, 2, · · ·N do
for Every minibatch (x, y) in Dtrain do

/* Use ϵy and βy to train */
x′ ← arg max

x′∈B(x,ϵy)
K(fθ(x), fθ(x′));

θ ← θ − η∇θLθ(βy;x, y);

for y ∈ Y do
ty ← Train Acc(fθ, T );
/* Update ϵy, βy with ty */
ϵy ← (λ1 + tk) · ϵ;
βy ← (λ2 + tk) · ϵ;

/* Fairness Aware Weight Average

*/
if miny∈Y Ry(fθ, Dvalid) ≥ δ then

θ̄ ← αθ̄ + (1− α)θ;

return f̄θ̄;

other methods like AT, we can still incorporate CFA by re-
moving the CCR schedule specified for TRADES. More-
over, we discuss the difference between our proposed CFA
and other works.
Comparison with Fair Robust Learning (FRL) [29].
Here we highlight the differences between our CFA frame-
work and Fair Robust Learning (FRL), the only existing ad-
versarial training algorithm designed to improve the fair-
ness of class-wise robustness. The FRL framework consists
of two components: remargin and reweight. Initially, a ro-
bust model is trained, and a fairness constraint on the dif-
ference of robustness among classes is set. When the con-
straint is violated, the model is fine-tuned persistently by in-
creasing the perturbation bound ϵk and weighting the loss of
the hard classes. Although CFA also includes adaptive mar-
gin and regularization weight schedules, our work is funda-
mentally distinct from FRL. Firstly, as discussed in Sec. 3.1,
a larger margin only mitigates the robust over-fitting prob-
lem but does not provide higher peak performance. In con-

trast, our approach aims to customize the proper margin for
each class, which boosts the best performance. Secondly,
FRL improves robust fairness at the cost of reducing overall
robustness, which could be seen as unfair to other classes.
However, our CFA framework improves both overall and
worst class performance. In addition, FRL requires an ini-
tial robust model before fairness fine-tuning, resulting in
extra computational burden. Finally, the fluctuation effect
discussed in Sec. 3.3 is not considered in FRL.
Comparison with Instance-wise Adversarial Training.
Though there exists a series of instance-wise adaptive ad-
versarial training [3, 5, 7, 10, 25, 26, 31, 32] toward better
robust generalization, to the best of our knowledge, we
are the first work to pursue this from a class-wise perspec-
tive. Here we demonstrate several differences between our
class-wise and other instance-wise adversarial training al-
gorithms. First of all, CFA focuses on improve both over-
all and the worst class robust accuracy, while all existing
instance-wise approaches only focus on overall robustness.
Unfortunately, as shown in Sec. 5, the instance-wise ones
are not comparable with our CFA from the perspective of
fairness. In addition, instance-wise methods can be seen
as to find the solution for each individual sample, while
class-wise ones are to find the solution for multiple samples.
Thus, class-wise methods can alleviate the frequent fluctu-
ation while remaining the specificity (a class of samples)
of configurations among training samples. Therefore, our
class-wise calibration achieves a better trade-off between
flexibility and stability. Finally, some instance-wise ap-
proaches can be well-combined with our CFA framework
to further boost their performance.

5. Experiment
In this section, we demonstrate the effectiveness of our

proposed CFA framework to improve both overall and
class-wise robustness.

5.1. Experimental Setup

We conduct our experiments on the benchmark dataset
CIFAR-10 [14] using PreActResNet-18 (PRN-18) [12]
model. Experiments on Tiny-ImageNet can be found in Ap-
pendix C.1.
Baselines. We select vanilla adversarial training (AT) [16]
and TRADES [30] as our baselines. Additionally, since our
Fairness Aware Weight Average (FAWA) method is a vari-
ant of the weight average method with Exponential Mov-
ing Average (EMA), we include baselines with EMA as
well. For instance-wise adaptive adversarial training ap-
proaches, we include FAT [31], which adaptively adjusts at-
tack strength on each instance. Finally, we compare our ap-
proach with FRL [29], the only existing adversarial training
algorithm that focuses on improving the fairness of class-
wise robustness.
Training Settings. Following the best settings in [19], we
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Table 1. Overall comparison of our proposed CFA framework with original methods.

Best (Avg. / Worst) Last (Avg. / Worst)
Method Clean Accuracy AA. Accuracy Clean Accuracy AA. Accuracy

AT 82.3 ±0.8 / 63.9 ±1.6 46.7 ±0.5 / 20.1 ±1.3 84.1 ±0.2 / 65.1±2.4 43.0 ±0.4 / 15.5 ±1.8

AT + EMA 81.9 ±0.3 / 61.6 ±0.5 49.6 ±0.2 / 21.3 ±0.8 84.8 ±0.1 / 67.7 ±0.7 44.3 ±0.5 / 18.1 ±0.5

AT + CFA 80.8 ±0.3 / 64.6 ±0.4 50.1 ±0.3 / 24.4 ±0.3 83.6 ±0.2 / 68.7 ±0.7 47.7 ±0.4 / 20.5 ±0.4

TRADES 82.3 ±0.1 / 67.8 ±0.6 48.3 ±0.3 / 21.7 ±0.5 83.9 ±0.3 / 66.9 ±1.5 46.9 ±0.3 / 18.5 ±1.3

TRADES + EMA 81.2 ±0.4 / 65.0 ±0.7 49.7 ±0.3 / 24.2 ±0.6 84.5 ±0.1 / 67.9 ±0.1 48.3 ±0.2 / 20.7 ±0.3

TRADES + CFA 80.4 ±0.2 / 66.2 ±0.5 50.1 ±0.2 / 26.5 ±0.4 83.0 ±0.1 / 68.1 ±0.3 49.3 ±0.1 / 21.5 ±0.3

FAT 84.6 ±0.4 / 69.2 ±0.8 45.7 ±0.6 / 17.2 ±1.3 85.4 ±0.2 / 70.8 ±1.9 42.1 ±0.1 / 14.8 ±1.6

FAT + EMA 85.2 ±0.2 / 66.7 ±0.6 48.6 ±0.1 / 18.3 ±0.5 85.7 ±0.2 / 71.2 ±0.4 43.2 ±0.1 / 15.7 ±0.7

FAT + CFA 82.1 ±0.3 / 64.7 ±0.9 49.6 ±0.1 / 20.9 ±0.8 84.3 ±0.1 / 69.4 ±0.3 45.1 ±0.2 / 16.7 ±0.2

FRL 82.8 ±0.1 / 71.4 ±2.4 45.9 ±0.3 / 25.4 ±2.0 82.8 ±0.2 / 72.9 ±1.5 44.7 ±0.2 / 23.1 ±0.8

FRL + EMA 83.6 ±0.3 / 69.5 ±0.7 46.1 ±0.2 / 25.6 ±0.4 81.9 ±0.2 / 74.2 ±0.3 44.9 ±0.2 / 24.5 ±0.3

train a PRN-18 using SGD with momentum 0.9, weight de-
cay 5 × 10−4, and initial learning rate 0.1 for 200 epochs.
The learning rate is divided by 10 after epoch 100 and 150.
All experiments are conducted by default perturbation mar-
gin ϵ = 8/255, and for TRADES, we initialize β = 6. For
the base attack strength for Class-wise Calibrated Margin
(CCM), we set λ1 = 0.5 for AT and λ1 = 0.3 for TRADES
since the training robust accuracy of TRADES is higher
than AT. For FAT, we set λ1 = 0.7 to avoid the attack be-
ing too weak to hard classes. Besides, we set λ2 = 0.5 for
Class-wise Calibrated Regularization (CCR) in TRADES.
For the weight average methods, the decay rate of FAWA
and EMA is set to 0.85, and the weight average processes
begin at the 50-th epoch for better initialization. We draw
2% samples from each class as the validation set for FAWA,
and train on the rest of 98% samples, hence FAWA does not
lead to extra computational costs. The fairness threshold for
FAWA is set to 0.2.
Metrics. We evaluate the clean and robust accuracy both in
average and the worst case among classes. The robustness
is evaluated by AutoAttack (AA) [8], a well-known reliable
attack for robustness evaluation. To perform the best perfor-
mance during the training phase, we adopt early stopping in
adversarial training [19] and present both the best and last
results among training checkpoints. Further, as discussed in
Sec. 3.3 that the worst class robust accuracy changes dras-
tically, we select the checkpoint that achieves the highest
sum of overall and the worst class robustness to report the
results for a fair comparison.

5.2. Robustness and Fairness Performance
We implement our proposed training configuration

schedule on AT, TRADES, and FAT. To evaluate the effec-
tiveness of our approach, we conduct five independent ex-
periments for each method and report the mean result and
standard deviation.

As summarized in Table 1, CFA helps each method

achieve a significant robustness improvement both in av-
erage and the worst class at the best and last checkpoints.
Furthermore, when compared with baselines that use weight
average (EMA), our CFA still achieves higher overall and
the worst class robustness for each method, especially in the
worst class at the best checkpoints, where the improvement
exceeds 2%. Note that the vanilla FAT only achieves 17.2%
the worst class robustness at the best checkpoint which is
even lower than TRADES, which verifies the discussion
in Sec. 4.4 that instance-wise adaptive approaches are not
helpful for robustness fairness. We also visualize and com-
pare the robustness for each class in Appendix C.2, which
shows that CFA indeed reduces the difference among class-
wise robustness and improves the fairness without harming
other classes.

We also compare our approach with FRL [29]. How-
ever, since FRL also applies a remargin schedule, we can-
not incorporate our CFA into FRL. Therefore, we only re-
port results of FRL with and without EMA in Table 1. As
FRL is a variant of TRADES that applies the loss func-
tion of TRADES, we compare the results of FRL with
TRADES and TRADES+CFA. From Table 1, we observe
that FRL and FRL+EMA show only marginal progress
(less than 2%) in the worst class robustness as compared
to TRADES+EMA, but at a expensive cost (about 3%) of
reducing the average performance. As demonstrated in
Sec. 3.1, larger margin which is adopted in FRL mainly
mitigates the robust over-fitting issue but does not bring sat-
isfactory best performance. This is further confirmed by
the performance of final checkpoints of FRL, where FRL
exhibits better performance in the worst class robustness.
In contrast, we calibrate the appropriate margin for each
class rather than simply enlarging them, thus achieving both
better robustness and fairness at the best checkpoint, i.e.,
our TRADES+CFA outperforms FRL+EMA in both aver-
age (about 4%) and the worst class (about 1%) robustness.
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5.3. Ablation Study
In this section, we show the usefulness of each compo-

nent of our CFA framework. Note that we still apply Au-
toAttack (AA) to evaluate robustness.

5.3.1 Effectiveness of Calibrated Configuration

First, we compare our calibrated adversarial configuration
including CCM ϵy and CCR βy with vanilla ones for AT,
TRADES, and FAT. As Table 2 shows, both the average
and worst class robust accuracy are improved for all three
methods by applying CCM. Besides, CCR, which is cus-
tomized for TRADES, also improves the performance of
vanilla TRADES. All experiments verify that our proposed
class-wise adaptive adversarial configurations are effective
for robustness and fairness improvement.

We also investigate the influence of base perturbation
budget λ1 by conducting 5 experiments of AT incorporated
CCM with λ1 varies from 0.3 to 0.7. The comparison is
plotted in Fig. 5(a). We can see that all models with dif-
ferent λ1 show better overall and the worst class robustness
than vanilla AT, among which λ1 = 0.5 performs best. We
can say that CCM has satisfactory adaptive ability on ad-
justing ϵk and is not heavily rely on the selection of λ1.
Fig. 5(b) shows the class-wise margin used in the training
phase for λ1 = 0.5. We can see the hard classes (class
2,3,4,5) use smaller ϵk than the original ϵ = 8/255, while
the easy classes use larger ones, which is consistent with our
empirical observation on different margins in Sec. 3.1 and
can explain why CCM is helpful to improve performance.
We also present a similar comparison experiments on λ2 for
CCR in Appendix C.3.

5.3.2 FAWA Improves Worst Class Robustness

Here we present the results of our Fairness Aware Weight
Averaging (FAWA) compared with the simple EMA method
in Table 3. By eliminating the unfair checkpoints out, our
FAWA achieves significantly better performance than EMA
on the worst class robustness (nearly 2% improvement)
with negligible decrease on the overall robustness (less than
0.3%). This verifies the effectiveness of FAWA on improv-
ing robustness fairness.

6. Conclusion
In this paper, we first give a theoretical analysis of how

attack strength in adversarial training impacts the perfor-
mance of different classes. Then, we empirically show
the influence of adversarial configurations on class-wise ro-
bustness and the fluctuate effect of robustness fairness, and
point out there should be some appropriate configurations
for each class. Based on these insights, we propose a Class-
wise calibrated Fair Adversarial training (CFA) framework
to adaptively customize class-wise train configurations for

Table 2. Comparison of models with/without our class-wise cali-
brated configurations including margin ϵ and regularization β.

Method Avg. Robust Worst Robust

AT 46.7 20.1
+ CCM 47.6 22.8

TRADES 48.3 21.7
+ CCM 48.4 22.5
+ CCR 48.9 23.5
+ CCM + CCR 49.2 23.8

FAT 45.7 17.2
+ CCM 46.8 18.9

(a) (b)

Figure 5. Analysis on the base perturbation budget λ1. (a): Aver-
age and the worst class robustness of models trained with different
λ1 (solid) and vanilla AT (dotted). (b): Class-wise calibrated mar-
gin ϵk in the training phase of λ1 = 0.5.

Table 3. Comparison of simple EMA and our FAWA.

Method Avg. Robust Worst Robust

AT + EMA 49.6 21.3
AT + FAWA 49.3 23.1

TRADES + EMA 49.7 24.2
TRADES + FAWA 49.4 25.1

FAT + EMA 48.6 18.3
FAT + FAWA 48.5 19.9

improving robustness and fairness. Experiment shows our
CFA outperforms state-of-the-art methods both in overall
and fairness metrics, and can be easily incorporated into ex-
isting methods to further enhance their performance.
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