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Abstract

Learning with noisy labels (LNL) aims to ensure model
generalization given a label-corrupted training set. In this
work, we investigate a rarely studied scenario of LNL on
fine-grained datasets (LNL-FG), which is more practical
and challenging as large inter-class ambiguities among
fine-grained classes cause more noisy labels. We empiri-
cally show that existing methods that work well for LNL
fail to achieve satisfying performance for LNL-FG, aris-
ing the practical need of effective solutions for LNL-FG.
To this end, we propose a novel framework called stochas-
tic noise-tolerated supervised contrastive learning (SNSCL)
that confronts label noise by encouraging distinguishable
representation. Specifically, we design a noise-tolerated
supervised contrastive learning loss that incorporates a
weight-aware mechanism for noisy label correction and se-
lectively updating momentum queue lists. By this mecha-
nism, we mitigate the effects of noisy anchors and avoid
inserting noisy labels into the momentum-updated queue.
Besides, to avoid manually-defined augmentation strategies
in contrastive learning, we propose an efficient stochas-
tic module that samples feature embeddings from a gener-
ated distribution, which can also enhance the representa-
tion ability of deep models. SNSCL is general and compati-
ble with prevailing robust LNL strategies to improve their
performance for LNL-FG. Extensive experiments demon-
strate the effectiveness of SNSCL.

1. Introduction
Learning from noisy labels [12, 13, 18, 21, 26, 40, 55, 58]

poses great challenges for training deep models, whose per-
formance heavily relies on large-scaled labeled datasets [28,
47–49]. Annotating data with high confidence would be
resource-intensive, especially for some domains, such as
medical and remote sensing images [29, 36, 37, 41, 46].
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Figure 1. LNL-FG is more challenging than LNL on generic clas-
sification. denote mislabeled samples.

Thus, label noise would inevitably arise and then greatly
degrade the generalization performance of deep models.

Previous methods [1,6,7,9,18,23,38,53,54] in LNL al-
ways focus on generic classification (e.g. CIFAR-10 & 100)
and artificially construct random label noise [21, 23, 42, 43]
and dependent label noise [9, 18, 38, 53, 55] to evaluate the
performance of their algorithms. In this work, we extend
LNL to fine-grained classification, which is a rarely studied
task. Firstly, this scenario is more realistic since annota-
tors are easier to be misguided by indistinguishable charac-
teristics among fine-grained images and give an uncertain
target. Fig. 1 illustrates comparison between two types
of noise simulated on generic and fine-grained sets. Fur-
ther, we extensively investigate the performance of prevail-
ing LNL methods on our proposed LNL-FG task. The de-
tailed results are shown in Fig. 2. Although these robust al-
gorithms lead to statistically significant improvements over
vanilla softmax cross-entropy on LNL, these gains do not
transfer to LNL-FG task. Instead, some methods degrade
the generalization performance of deep models compared
to cross-entropy. Intuitively, due to large inter-class ambi-
guity among those classes in LNL-FG, the margin between
noisy samples and the decision boundary in the fine-grained
dataset is smaller than that in the generic dataset, leading
to severe overfitting of deep models to noisy labels. De-
spite this fact, the typical method for better representation,
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Figure 2. Comparison results of previous methods on four fine-grained benchmarks with 20% random label noise. Methods with same
color and shape belong to the same strategy. The X-axis denotes their performance on typical LNL tasks while the Y-axis denotes that
on LNL-FG tasks. It is obvious that not all robust methods outperform the performance of vanilla cross-entropy on LNL-FG task..
More analysis and results can be found in Appx. A.

i.e., DivideMix, consistently achieves better performance
on both LNL and LNL-FG tasks (See Fig. 2). From this
perspective, we consider that encouraging discrimitive fea-
ture not only confronts overfitting to label noise but also
facilitates the learning of fine-grained task.

For this, contrastive learning (CL), as a powerful unsu-
pervised learning approach for generating discrimitive fea-
ture [4,8,11,14,31], has attracted our attention. CL methods
usually design objective functions as supervised learning to
perform pretext similarity measurement tasks derived from
an unlabeled dataset, which can learn effective visual repre-
sentations in downstream tasks, especially for fine-grained
classification [3]. The following work, supervised con-
trastive learning (SCL) [15], leverages label information to
further enhance representation learning, which can avoid a
vast training batch and reduce the memory cost. However,
SCL cannot be directly applied to the noisy scenario as it is
lack of noise-tolerated mechanism.

To resolve the noise-sensitivity of SCL, we propose
a novel framework named stochastic noise-tolerated su-
pervised contrastive learning (SNSCL), which contains a
noise-tolerated contrastive loss and a stochastic module.
For the noise-tolerated contrastive loss, we roughly cate-
gorize the noise-sensitive property of SCL into two parts
of noisy anchors and noisy query keys in the momentum
queue. To mitigate the negative effect introduced by noisy
anchors or query keys, we design a weight mechanism for
measuring the reliability score of each sample and give cor-
responding weight. Based on these weights, we modify the
label of noisy anchors in current training batch and selec-
tively update the momentum queue for decreasing the prob-
ability of noisy query keys. These operations are adaptive
and can achieve a progressive learning process. Besides, to
avoid manual adjustment of strong augmentation strategies
for SCL, we propose a stochastic module for more com-
plex feature transformation. In practice, this module gener-
ates the probabilistic distribution of feature embedding. By
sampling operation, SNSCL achieves better generalization
performance for LNL-FG.

Our contributions can be summarized as
• We consider a hardly studied LNL task, dubbed LNL-

FG and conduct empirical investigation to show that
some existing methods in LNL cannot achieve satisfy-
ing performance for LNL-FG.

• We design a novel framework dubbed stochastic noise-
tolerated supervised contrastive learning (SNSCL),
which alters the noisy labels for anchor samples and
selectively updates the momentum queue, avoiding the
effects of noisy labels on SCL.

• We design a stochastic module to avoid manually-
defined augmentation, improving the performance of
SNSCL on representation learning.

• Our proposed SNSCL is generally applicable to pre-
vailing LNL methods and significantly improves their
performance on LNL-FG.

Extensive experiments on four fine-grained datasets and
two real-world datasets consistently demonstrate the state-
of-the-art performance of SNSCL, and further analysis ver-
ify its effectiveness.

2. Related Work
Robust methods in Learning with noisy labels. The

methods in the field of learning with noisy labels can be
roughly categorized into robust loss function, sample se-
lection, label correction, and sample reweight. The early
works [22,25,52,60] mainly focus on designing robust loss
functions which provide the deep model with greater gen-
eralization performance compared with the cross-entropy
loss and contain the theoretical guarantee [22, 25]. Cur-
rently, more works turn to explore the application of the
other three strategies. In label correction, researchers re-
furbish the noisy labels by self-prediction of the model’s
output [39, 51] or an extra meta-corrector [56, 61]. The lat-
ter enables admirable results of correction with a small set
of meta-data. In sample section, the key point is how ef-
fective the preset selection criterion is. Previous literatures
leverage the small-loss criterion that selects the examples
with small empirical loss as the clean one [9, 53]. Recently,
the works [1, 27, 55] represented by SELF [27] pay more
attention to history prediction results, providing selection
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with more information and thus promoting the selection re-
sults. Besides, sample reweight methods [34,38] give exam-
ples with different weights, which can be regarded as a spe-
cial form of sample selection. For example, [38] designed
a meta-net for learning the mapping from loss to sample
weight. The samples with large losses are seen as the noise,
and thus meta-net generates small weights.

Contrastive learning. As an unsupervised learning
strategy, contrastive learning [4, 5, 11] leverages similarity
learning and markedly improves the performance of repre-
sentation learning. The core idea of these methods is maxi-
mizing (minimizing) similarities of positive (negative) pairs
at the data points.

CL has also been applied to LNL field for better rep-
resentation learning and tackle negative effects of noisy
labels. Sel-CL [20] proposes a pair-wise framework of
selecting clean samples and conducts contrastive learning
on those samples. Our proposed NTSCL is different in
three aspects: 1) a different selection strategy via a novel
weight-aware mechanism; 2) a stochastic module avoiding
manually-defined augmentations in SCL for LNL. 3) a plug-
and-play module for typical LNL methods. Our method
NTSCL can be easily integrated into existing methods for
improving performance on LNL or LNL-FG, while Sel-CL
cannot. Besides, li et al. [19] introduces the ideas of mo-
mentum prototypes and trains the network such that embed-
dings are pulled closer to their corresponding prototypes,
while pushed away from other prototypes. Due to the large
inter-class ambiguity in fine-grained datasets, the quality of
constructed class prototypes may be challenged.

3. Preliminaries
Problem definition. Assume X is the feature space from
which the examples are drawn, and Y = {1, 2, · · ·, C} is the
class label space, i.e. we consider a C-classification prob-
lem. Given a training set DN = {(xi, yi)}ni=1 with partial
corrupted labels, where (xi, yi) is drawn i.i.d. according to
an distribution, over (X ,Y). Supposing there is a deep clas-
sification network F (·) with the learnable parameters θ. For
sample x, the model’s output can be written as F (x, θ).

The goal of our algorithm is finding the optimal param-
eter θ∗ which can achieve admirable generalization perfor-
mance on the clean testing set.
Contrastive learning meets noisy labels. Contrastive
learning [4,8,11] is a prevailing framework for representa-
tion learning, enhancing class discrimination of the feature
extractor. Supposing a feature anchor q and a set of feature
keys {q̂, k1, · · ·, kD} are given, where q̂ is a positive data
point for q, and the others are negative. In CL, a widely
used loss function for measuring the similarity of each data
point is InfoNCE [30] and can be summarised as

LINFO = − log
exp (q · q̂/τ)

exp (q · q̂/τ) +
∑D

d=1 exp (q · kd/τ)
,

where τ is a hyper-parameter for temperature scaling. In
most applications, CL is built as a pre-task. q and q̂ are
extracted from two augmented views of the same example,
and negative keys {k1, · · ·, kD} represent feature embed-
dings of other samples in the current training batch. CL
is naturally independent of noisy labels, but there exists a
drawback in that it lacks a mechanism to utilize potential la-
bels into model training, leaving useful discriminative infor-
mation on the shelf [50]. Currently, supervised contrastive
learning [15] solves this issue by constructing the positive
and the negative lists according to the labels. For anchor
point q, the objective function can be written as

LSCL = − log

∑
kP∈Pos

exp (q · kP/τ)∑
kP∈Pos

exp (q · kP/τ) +
∑

kN∈Neg

exp (q · kN/τ)
,

where Pos and Neg represent the positive and negative list,
respectively.

However, SCL is sensitive to noisy labels, which can be
introduced into the anchor point, Pos, and Neg. Our goal is
to utilize the valuable information of the labels underlying
the noisy training set DN and overcome the misguidance of
noisy labels.

4. Proposed method
Overview. In section 4.1, we first introduce a noise-
tolerated supervised contrastive learning method that incor-
porates a weight-aware mechanism for measuring the reli-
ability score of each example. Based on this mechanism,
we dynamically alter the unreliable labels and selectively
insert them into the momentum-updated queue, combating
two noise-sensitive issues of SCL, respectively. Then, in
section 4.2, we design a stochastic module for the transfor-
mation of feature embeddings, which samples from a gen-
erated probabilistic distribution. Eventually, we exhibit the
total training objective in section 4.3.

4.1. Noise-tolerated supervised contrastive learning

Weight-aware mechanism. We aim to measure the relia-
bility score of each sample in the training set DN and gen-
erate the corresponding weight. For this, we use the small-
loss criterion, a common strategy in LNL, and leverage
a two-component GMM to generate this reliability score.
Firstly, we evaluate the training set DN after each train-
ing epoch. For clarity, we omit the epoch sequence and
attain a list of empirical losses {li}ni=0 among all sam-
ples, where li = L(F (xi; θ), yi). Note that L(·) is the
employed loss function. GMM fits to this list and gives
the reliability score of the probability that the sample is
clean. For sample xi, the reliability score γi can be writ-
ten as γi = GMM(li | {li}ni=0), where γi ∈ [0, 1]. Then,
we design a function to dynamically adjust the weight for
all training samples according to the reliability score. The
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Figure 3. Illustration of training framework. Examples in the momentum queue with the same color and shape belong to the same
category. The Projector is set as a single-layer MLP structure. Overall, the total training framework includes a LNL method and our pro-
posed SNSCL, which consists of two parts: 1) stochastic module, which provides more competitive feature transformation for contrastive
learning; 2) noise-tolerated contrastive loss, which is noise-aware and contains two weighting strategies.

weight of sample xi is

ωi =

{
1 if γi > t

γi otherwise
, (1)

where t is a hyper-parameter in the interval of [0, 1] and
denotes the threshold of the reliability score. The computa-
tion of γ and ω restarts after each training round, ensuring
that the values benefit from the improvement of the model’s
performance.

Based on this mechanism, we design two strategies
that modify two noise-sensitive issues summarised in the
overview. First, to solve the misguidance of the noisy an-
chor sample, we propose a weighted correction strategy
to alter the labels of unreliable samples. For each sample
x ∈ DN , the weighted label ŷ is a soft label and is written
as

ŷ = (1− ω)yc + ωy, (2)

where yc = Softmax(F (x; θ)) and represents the predic-
tion result of the classifier network. Indeed, this equation
only change the labels of reliable samples, i.e., (x, y) ∈
{(xi, yi)|ωi ̸= 1}ni=1. Additionally, to make the alteration
of labels more stable, we use the idea of moving-average.
At epoch e, the moving-average corrected label over multi-
ple training epochs is

ŷe = αŷ(e−1) + (1− α)ŷe, (3)

where α = 0.99. Hence, the label-corrected training set can
be formulated as {(xi, ŷ

e
i )}ni=1 at e-th epoch . Note that all

labels are represented via a soft one-hot vector.
Second, to solve the noise tolerance properties of the mo-

mentum queue, we propose a weighted update strategy to
solve the noise-tolerant property of the traditional momen-
tum queue. This strategy can be simply summarized as up-
dating this queue according to the weight in Eq. 1. Given
a sample (xi, ŷi), its weight value is ωi. For the sample xi

which satisfies to ωi = 1, we update the yhi -th queue by its
feature embedding via the First-in First-out principle, where

yhi denotes the hard label and yhi = argmax(ŷi). Other-
wise, we update the yhi -th queue with probability ωi. Intu-
itively, the weighted-update strategy avoids inserting unre-
liable samples into the queue, helping enhance the quality
of the momentum queue.

4.2. Stochastic feature embedding

As reported in advanced works [11,45], typical CL heav-
ily relies on sophisticated augmentation strategies and needs
specify them for different datasets. We build a stochastic
module to avoid manually-defined strategies. Given a sam-
ple x, let z = f(x) represent the output of the backbone
network (i.e., feature extractor) and z ∈ Rd. We formu-
late a probability distribution p(Q|z) for embedding z as a
normal distribution, which can be written as

p(Q|z) ∼ N (µ, σ2), (4)

where µ and σ can be learned by our stochastic module,
a three-layers fully-connected network. From feature em-
bedding distribution p(Q|z), we sample an embedding z′ to
represent the augmented version of original feature embed-
ding z. Here, we use reparameterization trick [16],

z′ = µ+ ϵ · σ with ϵ ∼ N (0, I). (5)

After that, the sampled feature embedding z′ is utilized
to update the momentum queue and compute contrastive
learning loss. The merits of this module are 1) more com-
plex representations are leveraged to stimulate the potential
of CL, and 2) the property of stochasticity helps the model
escape from memorizing the noisy signal to some degree.
Module architecture has been discussed in Appx. C.1.

4.3. Total objective

We adopt online-update strategy that alternately trains
the network, alters sample labels and updates the momen-
tum queue. At e-th epoch, we have a label-corrected train-
ing set {(xi, ŷ

e
i )}ni=1. For each sample in this set, the total

training objective contains three parts.
Classification loss. Our proposal mitigates the effect of
noisy labels by noise-tolerant representation learning, while
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a classification loss (e.g. cross-entropy) is required. Due
to the flexibility, our framework can be easily integrated
with prevailing LNL algorithms and leverages it for clas-
sifier learning. This loss item is written as LLNL.
Noise-tolerated contrastive loss. For clarity, we omit
the subscripts and formulate this sample as (x, ŷ) while q
denotes its feature embedding and yh represents its hard
label. In our weighted momentum queue, the positive
keys {ky

h

1 , · · ·, ky
h

D } are found according to the hard la-
bel yh. Complementarily, the remaining key points in the
momentum queue are regarded as negative keys with size
[D × (C − 1)]. Note that the size of the total momentum
queue is [D× C]. Formally, our noise-tolerated contrastive
loss is summarized as

LNTCL = − 1

D

∑D

d=1
log

exp(q · ky
h

d /τ)

LPos + LNeg
with

LPos =
∑D

j=1
exp(q · ky

h

j /τ) and

LNeg =
∑{1,···,C}\yh

c=1

∑D

j=1
exp(q · kcj/τ),

(6)

where the LPos denotes positive keys from the same class
yh while LNeg denotes the negative keys from other classes
{1, · · ·, C}\yh.
KL regularization. We employ the KL regularization
term between the feature embedding distribution Q and unit
Gaussian prior N (0, I) to prevent the predicted variance
from collapsing to zero. The regularization can be formu-
lated as

LKL = KL[p(z|Q)||N (0, I))]. (7)

The overall loss function can be formulated with two
hyper-parameters λ1 and λ2 as

L = LLNL + λ1LNTCL + λ2LKL. (8)

The training flowchart is shown in Fig. 3. Our proposed
weighting strategies can be easily integrated into the typi-
cal SCL method, deriving a general LNL framework. The
main operation is summarized in Algorithm 1. Compared to
typical SCL, the weighting strategies would not cause much
extra computational cost.

5. Experiments
5.1. Implementation details

Noisy test benchmarks. We introduce four typical datasets
in fine-grained classification tasks and manually construct
noisy labels. By a noise transition matrix T, we change
partial labels of clean datasets. Given a noise ratio r, for a
sample (x, y), the transition from clean label y = i to wrong
label y = j can be represented by Tij = P(y = j|y = i)
and P = r, where r is the preset noise ratio. According

Algorithm 1 The training process of SNSCL

Require: Training set DN , a reliability threshold t ∈ [0, 1], an
average-moving coefficient α, two coefficients λ1, λ2.

Require: Classifier network F (θ), Stochastic module M.
Ensure: Optimal parameters of classifier network θ∗

1: WarmUp (F (θ);DN )
2: while e < MaxEpoch do
3: Compute the loss and reliability score γ for each sample.
4: Compute the weight value ω for each sample. ▷ Eq. 1
5: Refurbish the labels with weighted-correct strategy and

average-moving. ▷ Eq. 2, 3
6: for iter ∈ {1, ..., iters} do
7: RrandomSample a batch {(xb, y

e
b)}Bb=1 from the label-

corrected training set, and compute loss LLNL.
8: for b ∈ {1, ...,B} do
9: Sample feature embedding z′b from the distribution

p(Q|zb). ▷ Eq. 4, 5
10: Weighted-update the momentum queue by z′b.
11: Compute two losses LKL, LNTCL. ▷ Eq. 6, 7
12: end for

13: Update( 1
B

B∑
b=1

(LLNL + λ1LNTCL + λ2LKL); θ
(e)).

14: end for
15: end while
16: return θ∗

to the structure of T, the noisy labels can be divided into
two types: 1) Symmetric (random) noise. The diagonal
elements of T are 1 − r and the off-diagonal values are
r/(c − 1); 2) Asymmetric (dependent) noise. The diag-
onal elements of T are 1− r, and there exists another value
r in each row. Noise ratio r is set as r ∈ {10%, ..., 40%}.
Illustration of the matrix T is shown in Appx. B.1.

We also select two noisy dataset collected from real
world (e.g., websites, crowdsourcing) to evaluate the ef-
fectiveness of our algorithm on real-world applications.
1) Clothing-1M [57] contains one million training images
from 14 categories, with approximately 39.45% noisy la-
bels. 2) Food-101N [2] contains 55k training images for
101 categries, with around 20% noise ratio.
Training settings. The code is implemented by Pytorch
1.9.0 with single GTX 3090. For four fine-grained noisy
benchmarks, the optimizer is SGD with the momentum of
0.9, while initialized learning rate is 0.001 and the weight
decay is 1e-3. The number of total training epochs is both
100, and the learning rate is decayed with the factor 10 by
20 and 40 epoch. For Clothing-1M, refers to [55], we train
the classifier network for 15 epochs and use SGD with 0.9
momentum, weight decay of 5e-4. The learning rate is set
as 0.002 and decayed with the factor of 10 after 10 epochs,
while warm up stage is one epoch. For Food-101N, we train
the classifier network for 50 epochs and use SGD with 0.9
momentum, weight decay of 5e-4. The learning rate is set
as 0.002 and decayed with the factor of 10 after 30 epochs,
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Table 1. Comparisons with test accuracy on symmetric label noise. The average best and the last accuracy among three times are reported.
↑ denotes the performance improvement of SNSCL.

Stanford Dogs Standford Cars Aircraft CUB-200-2011
20% 40% 20% 40% 20% 40% 20% 40%

Cross-Entropy 73.01 (63.82) 69.20 (50.45) 65.74 (64.08) 51.42 (45.62) 56.51 (54.67) 45.67 (38.89) 64.01 (60.77) 54.14 (45.85)
+ SNSCL 76.33 (75.83) 75.27 (75.00) 83.24 (82.99) 76.72 (76.36) 76.45 (76.45) 70.48 (69.64) 73.32 (72.99) 68.83 (68.67)

Label Smooth [24] 73.51 (64.42) 70.22 (50.97) 65.45 (64.24) 51.57 (45.19) 58.21 (54.73) 45.24 (38.01) 64.76 (60.60) 54.39 (45.28)
+ SNSCL 76.85 (76.12) 74.64 (74.60) 83.21 (83.01) 76.07 (75.90) 76.24 (75.70) 70.36 (70.06) 73.46 (73.09) 69.14 (68.64)

Conf. Penalty [33] 73.22 (66.89) 68.69 (52.98) 64.74 (64.46) 48.15 (43.71) 56.32 (55.51) 43.64 (39.54) 62.75 (61.10) 52.04 (45.13)
+ SNSCL 76.14 (75.73) 74.72 (74.49) 83.07 (83.00) 75.67 (75.38) 75.04 (74.23) 67.99 (66.85) 73.90 (73.51) 68.42 (67.86)

GCE [60] 66.96 (66.93) 61.47 (60.32) 62.77 (61.23) 47.44 (46.13) 39.54 (39.24) 32.34 (32.28) 58.74 (57.20) 49.71 (48.11)
+ SNSCL 75.99 (74.56) 71.68 (70.62) 73.78 (73.55) 58.11 (57.41) 72.67 (71.53) 60.19 (59.83) 70.83 (70.56) 61.67 (61.46)

SYM [52] 69.20 (62.13) 65.76 (46.99) 74.65 (73.21) 52.83 (51.61) 62.29 (60.51) 54.36 (45.39) 65.34 (63.60) 50.19 (50.15)
+ SNSCL 77.55 (77.24) 76.28 (76.25) 84.59 (83.54) 79.07 (78.87) 79.64 (79.09) 74.02 (73.63) 76.67 (76.06) 72.71 (72.58)

Co-teaching [9] 63.71 (58.43) 49.15 (48.92) 68.60 (67.95) 56.92 (55.95) 42.55 (40.62) 35.21 (32.16) 57.84 (55.98) 46.57 (46.22)
+ SNSCL 74.18 (73.09) 60.71 (58.84) 78.94 (78.13) 75.98 (75.06) 74.61 (74.19) 65.47 (63.81) 69.77 (69.34) 60.59 (58.94)

JoCoR [53] 66.94 (60.81) 49.62 (48.62) 69.99 (68.25) 57.95 (56.71) 61.37 (59.16) 52.11 (49.93) 58.79 (57.74) 52.64 (49.35)
+ SNSCL 75.79 (74.99) 63.42 (62.84) 79.67 (78.77) 76.80 (76.21) 75.88 (75.16) 71.65 (70.67) 71.86 (70.90) 64.43 (63.81)

MW-Net [38] 71.99 (69.20) 68.14 (65.17) 74.01 (73.88) 58.30 (55.81) 64.97 (61.84) 57.61 (55.90) 67.44 (65.20) 58.49 (54.81)
+ SNSCL 77.49 (77.08) 74.92 (74.38) 85.96 (85.37) 77.76 (77.13) 80.08 (78.94) 73.55 (73.18) 76.94 (76.24) 69.51 (68.83)

MLC [61] 74.08 (70.51) 69.44 (66.28) 76.02 (71.24) 59.44 (55.76) 63.81 (60.33) 58.11 (54.86) 69.44 (68.19) 60.27 (58.49)
+ SNSCL 78.92 (78.56) 76.49 (78.96) 85.92 (84.91) 78.49 (77.80) 79.19 (78.40) 75.21 (74.67) 77.58 (76.68) 71.54 (70.86)

DivideMix [18] 79.22 (77.86) 77.93 (76.28) 78.35 (77.99) 62.54 (62.50) 80.62 (80.50) 66.76 (66.13) 75.11 (74.54) 67.35 (66.96)
+ SNSCL 81.40 (81.16) 79.12 (78.91) 86.29 (85.94) 80.09 (79.51) 82.31 (82.03) 76.22 (75.67) 78.36 (78.04) 73.66 (73.28)

Avg. ↑ 5.88 (9.34) 7.76 (15.83) 12.44 (13.29) 20.82 (23.06) 18.60 (19.86) 21.41 (24.49) 9.87 (11.25) 12.22 (16.46)

Table 2. Comparisons with test accuracy on asymmetric label noise. The average best and the last accuracy among three times are
reported. ↑ denotes the performance improvement of SNSCL.

Stanford Dogs Standford Cars Aircraft CUB-200-2011
10% 30% 10% 30% 10% 30% 10% 30%

Cross-Entropy 74.24 (71.32) 63.76 (56.86) 74.58 (74.57) 58.08 (57.43) 65.98 (62.53) 51.10 (47.85) 68.26 (68.00) 56.02 (54.13)
+ SNSCL 76.24 (74.88) 64.49 (62.37) 83.73 (83.41) 70.04 (69.61) 78.28 (78.22) 65.44 (65.11) 74.80 (74.47) 61.48 (60.70)

Label Smooth [24] 74.70 (71.81) 64.99 (57.04) 74.28 (74.13) 58.47 (57.80) 65.29 (63.34) 51.88 (47.71) 68.78 (67.67) 56.80 (53.69)
+ SNSCL 75.84 (75.16) 65.23 (63.69) 84.27 (84.13) 70.49 (70.20) 78.67 (77.98) 66.28 (65.56) 75.51 (75.42) 62.05 (61.43)

Conf. Penalty [33] 74.41 (72.04) 64.50 (57.92) 73.78 (73.67) 56.96 (56.53) 64.90 (63.01) 49.38 (47.53) 67.66 (67.62) 54.33 (52.80)
+ SNSCL 76.01 (75.62) 67.53 (66.32) 84.26 (83.91) 72.23 (71.96) 78.34 (78.01) 66.88 (66.34) 75.34 (74.97) 62.69 (62.67)

GCE [60] 67.13 (66.83) 54.53 (53.92) 68.75 (68.71) 60.57 (60.21) 44.22 (44.16) 34.18 (33.66) 62.92 (60.77) 50.05 (49.79)
+ SNSCL 75.91 (74.63) 68.45 (67.13) 80.33 (80.04) 64.64 (64.38) 73.85 (73.89) 64.33 (63.91) 73.77 (73.23) 61.37 (60.96)

SYM [52] 69.57 (66.75) 61.61 (51.11) 76.74 (76.18) 58.30 (57.42) 69.31 (67.45) 50.23 (47.55) 68.81 (68.00) 52.16 (51.83)
+ SNSCL 77.37 (76.64) 74.74 (74.41) 86.71 (86.54) 78.98 (78.66) 82.30 (81.46) 69.61 (69.37) 77.89 (77.27) 67.43 (66.95)

Co-teaching [9] 59.95 (59.77) 50.50 (50.44) 72.88 (72.71) 61.02 (60.86) 55.94 (49.85) 45.18 (38.97) 61.00 (60.92) 50.06 (48.55)
+ SNSCL 70.46 (70.24) 65.83 (65.41) 82.17 (81.63) 66.84 (66.49) 74.73 (74.28) 62.17 (61.88) 70.92 (70.63) 64.55 (64.10)

JoCoR [53] 61.34 (60.11) 53.39 (52.35) 74.68 (73.21) 63.54 (62.27) 67.12 (64.99) 52.25 (50.28) 62.99 (61.88) 51.70 (49.60)
+ SNSCL 74.26 (72.96) 70.40 (70.01) 83.67 (83.28) 71.74 (71.22) 78.84 (78.29) 67.50 (66.48) 74.52 (73.97) 66.07 (65.26)

MW-Net [38] 73.68 (72.19) 65.81 (65.19) 76.27 (75.89) 65.19 (63.32) 72.76 (70.18) 54.88 (51.80) 67.44 (65.08) 57.49 (56.10)
+ SNSCL 78.52 (78.03) 72.68 (72.20) 85.73 (85.44) 75.69 (75.28) 80.69 (80.22) 70.49 (69.90) 76.07 (76.70) 68.95 (68.26)

MLC [61] 75.84 (74.99) 69.81 (69.03) 77.80 (77.29) 67.93 (67.28) 74.40 (73.91) 59.44 (59.00) 68.84 (68.21) 58.73 (58.29)
+ SNSCL 79.22 (78.96) 75.92 (75.57) 87.05 (86.70) 79.44 (79.21) 82.75 (82.43) 72.30 (71.96) 76.91 (76.47) 69.70 (69.24)

DivideMix [18] 79.39 (78.47) 75.51 (73.67) 79.34 (77.92) 68.69 (68.63) 76.57 (76.24) 63.97 (63.28) 72.76 (71.24) 63.65 (62.68)
+ SNSCL 81.90 (81.72) 77.19 (77.02) 88.18 (87.94) 81.44 (80.96) 84.17 (84.03) 74.80 (74.57) 78.92 (78.56) 71.28 (70.83)

Avg. ↑ 5.55 (6.57) 7.81 (10.6) 9.70 (9.87) 11.28 (11.62) 13.61 (15.31) 16.73 (18.74) 8.51 (9.23) 10.46 (11.30)

while warm up stage is five epoch. For all experiments,
we set the training batch size as 32. In addition, we adopt
a default temperature τ = 0.07 for scaling. More detailed
setting, including augmentation strategies and applied back-
bone, can be found in Appx. B.2.

Hyper-parameters settings. Our framework SNSCL
mainly includes two hyper-parameters, i.e., the reliability
threshold t in Eq. 1 and the length of momentum queue D
Eq. 6. For all experiments, we set t = 0.5 and D = 32.
In addition, the trade-off parameters in Eq. 8 are set as
λ1 = 1, λ2 = 0.001.

5.2. Comparison with state-of-the-arts

Baselines. We evaluate the effectiveness of our method by
adding the proposal into current LNL algorithm and com-
pare the improvements on LNL-FG task. The basic methods
we compared include CE, Label Smooth [24], Confidence
Penalty [33], Co-teaching [9], JoCoR [53], DivideMix [18],
SYM [52], GCE [60], MW-Net [38], and MLC [61]. Set-
tings about these methods are shown in Appx. B.3.
Results on four fine-grained benchmarks. We compare
10 algorithms and attain significant improvement of top-1
testing accuracy (%) on four fine-grained benchmarks. We
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Table 3. Comparisons with test accuracy (%) on real-world benchmarks, including Clothing-1M (the left) and Food-101N (the right). The
solid results denote the improvement of our method SNSCL. The average results among five times are reported.

Clothing-1M (r ≈ 39.5%)

Forward [32] 69.84 SFT+ [55] 75.08
JoCoR [53] 70.30 CE 64.54

Joint Optim [42] 72.23 CE + SNSCL 73.49
SL [52] 71.02 DivideMix [18] 74.76

ELR+ [21] 74.81 DivideMix + SNSCL 75.31

Food-101N (r ≈ 20%)

CleanNet [17] 83.47 WarPI [40] 85.91
MWNet [38] 84.72 CE 81.67
NRank [35] 85.20 CE+SNSCL 85.44
SMP [10] 85.11 DivideMix [18] 85.88
PLC [59] 85.28 DivideMix+SNSCL 86.40
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Figure 4. More analyses on Stanford dogs with 40% symmetric label noise from four perspectives .

show the results in Tab. 1 & 2, where we test symmetric and
asymmetric noise types. To demonstrate the effectiveness
of our method, we give experimental comparisons from two
aspects. 1) Improvements on top-1 test accuracy. Over-
all, our method SNSCL achieves consistent improvement in
all noisy conditions. The average minimal improvement is
5.55% in Stanford Dogs with 10% asymmetric noise, and
the maximum is 21.41% in Aircraft with 40% symmetric
noise. 2) Mitigating overfitting on fine-grained sets. In
these tables, we report the best accuracy and the last epoch’s
accuracy. It is noteworthy that the investigated methods
mainly overfit on these benchmarks (i.e., the accuracy at-
taches a peak and then drops gradually, causing a great
gap between these two values). However, SNSCL mitigates
overfitting and maintains more stable learning curves.
Results on real-world noisy datasets. To evaluate the ef-
fectiveness of SNSCL on real-world applications, we con-
duct experiments on two datasets which are collected from
websites. 1) Clothing-1M, the comparison results are
shown in Tab. 3. We select cross-entropy, GCE and Di-
videMix as the basic methods and integrate SNSCL with
them. Obviously, the combination DivideMix+SNSCL out-
performs the state-of-the-art method SFT+ by 0.23% top-
1 test accuracy. Moreover, in contrast with the bases,
SNSCL achieves remarkable improvements by 8.95% and
0.55%, respectively. 2) Food-101N, the comparison results
is shown in Tab. 3. Compared to basic methods, SNSCL
brings significantly improvement by 3.77% and 0.52%, re-
spectively. These results demonstrate the effectiveness of
our methods in real-world applications.
Results on CIFAR-10 & 100. SNSCL plays against with
negative effects of label noise by enhancing distinguishable
representation, which is also suitable for generic noisy clas-
sification to some degree. We conduct experiments on syn-
thetic noisy CIFAR-10 & 100 and show the results in Appx.

C.2. Overall, the performance of tested methods achieve
non-trivial improvements by combining with SNSCL.

5.3. More analysis

Effectiveness. Our algorithm exhibits the superior effec-
tiveness in two aspects. 1) we plot the curve of test accuracy
in Fig. 4(a). It is clear that the accuracy of CE rises dramat-
ically to a peak and gradually decreases, indicating overfit-
ting to noise under fine-grained datasets. For SNSCL, the
testing curve is relatively stable and results in good gener-
alization performance. 2) we test the noise ratios with a
wide range of r ∈ {10%, · · ·, 80%} and record the best and
the last top-1 testing accuracy. As shown in the scatter Fig.
4(b), SNSCL can mitigate reasonable discriminability for a
high noise ratio (68% top-1 accuracy for symmetric 80%
label noise). Meanwhile, more train curves with varying
noise ratios are shown in Appx. C.4.
Sensibility. We explore the effect of two essential hyper-
parameters in our method. 1) The momentum queue
size D. The batch size or momentum queue size is the
key point in contrastive learning, and thus we set D ∈
{4, 8, 16, 32, 48, 64} to explore its influence on our frame-
work. The results are shown in Fig. 4(c). As the size
D reaches a certain amount, the performance will not in-
crease. Thus, we set a suitable yet effective value D =
32. 2) The reliability threshold t. This threshold in the
weight-aware mechanism deeply affects the subsequent two
weighted strategies. We adjust its value from the space
{0.1, 0.3, 0.5, 0.7, 0.9} and plot the results in Fig. 4(d).
The best performance is attained on two conditions when
t = 0.5. Therefore, we set the reliability threshold as 0.5.
Compared with contrastive-based LNL methods. We
conduct experiments to compare our method (DivideMix
+ SNSCL) with MoPro [19] and Sel-CL+ [20], two LNL
methods based on contrastive learning. Detailed discus-

11657



Table 4. Compared with previous contrastive-based methods on four noisy benchmarks.

Dataset CIFAR-10 CIFAR-100 Stanford Dogs CUB-200-2011
Noise Type S. 50% S. 80% A. 40% S. 50% S. 80% A. 40% S. 40% A. 30% S. 40% A. 30%

MoPro [19] 95.6 90.1 93.0 74.9 61.9 73.0 78.41±0.1 74.39±0.2 73.23±0.2 68.58±0.4

Sel-CL+ [20] 93.9 89.2 93.4 72.4 59.6 74.2 77.92±0.3 75.29±0.2 73.01±0.1 70.47±0.1

Ours 95.2 91.7 94.9 74.7 64.3 75.1 79.13±0.2 77.20±0.1 73.67±0.3 71.28±0.2

Table 5. Compared stochastic module (Ours) with weak (W.) and
strong (S.) augmentation under 40% symmetric label noise.

Strategies Stanford Dogs CUB-200-2011 Aircraft

W. aug. 73.24±0.2 66.48±0.2 68.74±0.5

S. aug. 74.02±0.3 67.26±0.4 70.19±0.2

Ours 75.27±0.2 69.09±0.4 70.48±0.3
Ours + S. aug. 75.13±0.2 69.31±0.2 70.19±0.3

sions about these methods can be found in Related works.
Tab. 4 reports the comparison results with top-1 test ac-

curacy on four benchmarks. Our method outperforms Sel-
CL+ and MoPro in most noisy settings. As the noise ratio
arises, the achievements of SNSCL are more remarkable.
Compared to Sel-CL+ while the performance is improved
by 2.5% on CIFAR-10 80% symmetric noise, and 4.7% on
CIFAR-100 80% symmetric noise. Under four LNL-FG
settings, our methods consistently outperform other meth-
ods. Compared to Sel-CL+, the improvement is roughly
2% on Stanford Dogs 30% asymmetric noise.
Discussion about the stochastic module. We con-
duct comparison experiments with traditional augmentation
strategies to verify the ability of representation enhance-
ment of stochastic module. As shown in Tab. 5, our
proposed module exhibits greater performance under noisy
conditions. Compared to strong augmentation, the average
improvement is more than 1%. Besides, the combination
of our stochastic module and strong augmentation does not
bring improvements. Thus, we do not adopt strong augmen-
tation strategies in our training framework.
Ablation study. In our proposed SNSCL, there mainly ex-
ists three components, weighted-correction and weighted-
update strategy in a weighted-aware mechanism and a
stochastic module. We conduct the ablation study on two
benchmarks to evaluate the effectiveness of each compo-
nent and show the results in Tab. 6. Under the settings of
Stanford dogs with 40% symmetric noisy labels, the com-
bination of three components improves the performance of
CE by more than 6% and the effect of DivideMix by 3%
respectively, while all components bring some positive ef-
fects. Meanwhile, due to the noise-sensitivity of SCL, in-
tegrating SCL into CE brings performance degradation in-
stead. To some extent, these results demonstrate the effec-
tiveness of each part of our method.
Visualization. To demonstrate the distinguishable classes
are learnt by our proposed SNSCL, we leverage t-SNE [44]
to visualize the feature embeddings on the testing sets of

Table 6. Ablation study about the effectiveness of each compo-
nent under 40% symm. label noise.

Stanford Dogs CUB-200-2011

CE 69.20 (50.45) 54.14 (45.85)
CE + SCL 68.49 (54.77) 53.30 (45.92)
CE + SNSCL 75.27 (75.00) 68.83 (68.67)

w/o Weight corr. 70.91±0.6 62.71±0.5

w/o Weight update 73.45±0.3 65.29±0.4

w/o Stoc. module 74.11±0.3 67.44±0.3

DivideMix 77.93 (76.28) 67.35 (66.96)
DivideMix + SCL 78.20 (77.89) 70.28 (70.02)
DivideMix + SNSCL 79.12 (78.91) 73.66 (73.28)

w/o Weight corr. 78.30±0.2 70.41±0.3

w/o Weight update 78.52±0.1 72.59±0.2

w/o Stoc. module 78.85±0.1 73.06±0.1

CIFAR-10 & CIFAR-100. The results are shown in Appx.
C.3, verifying the improvement of SNSCL on representa-
tion learning under noisy conditions.

6. Conclusion
In this work, we propose a novel task called LNL-FG,

posing a more challenging noisy scenario to learning with
noisy labels. For this, we design a general framework called
SNSCL. SNSCL contains a noise-tolerated contrastive loss
and a stochastic module. Compared with typical SCL,
our contrastive learning framework incorporates a weight-
aware mechanism which corrects noisy labels and selec-
tively update momentum queue lists. Besides, we propose
a stochastic module for feature transformation, generating
the probabilistic distribution of feature embeddings. We
achieve greater representation ability by sampling trans-
formed embedding from this distribution. SNSCL is appli-
cable to prevailing LNL methods and further improves their
generalization performance on LNL-FG.
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