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Abstract

Interactive image segmentation aims at obtaining a seg-
mentation mask for an image using simple user annotations.
During each round of interaction, the segmentation result
from the previous round serves as feedback to guide the
user’s annotation and provides dense prior information for
the segmentation model, effectively acting as a bridge be-
tween interactions. Existing methods overlook the impor-
tance of feedback or simply concatenate it with the orig-
inal input, leading to underutilization of feedback and an
increase in the number of required annotations. To address
this, we propose an approach called Focused and Collabo-
rative Feedback Integration (FCFI) to fully exploit the feed-
back for click-based interactive image segmentation. FCFI
first focuses on a local area around the new click and cor-
rects the feedback based on the similarities of high-level
features. It then alternately and collaboratively updates the
feedback and deep features to integrate the feedback into the
features. The efficacy and efficiency of FCFI were validated
on four benchmarks, namely GrabCut, Berkeley, SBD, and
DAVIS. Experimental results show that FCFI achieved new
state-of-the-art performance with less computational over-
head than previous methods. The source code is available at
https://github.com/veizgyauzgyauz/FCFI.

1. Introduction

Interactive image segmentation aims to segment a target
object in an image given simple annotations, such as bound-
ing boxes [17, 32, 37, 38, 40], scribbles [1, 10, 18], extreme
points [2,27,29,42], and clicks [6,15,23,24,34,39]. Due to
its inherent characteristic, i.e., interactivity, it allows users
to add annotations and receive refined segmentation results
iteratively. Unlike semantic segmentation, interactive im-
age segmentation can be applied to unseen categories (cate-
gories that do not exist in the training dataset), demonstrat-
ing its generalization ability. Additionally, compared with
instance segmentation, interactive segmentation is specific
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Figure 1. An overview of the interactive system and the com-
parison among (a) independent segmentation [24], (b) feedback-
as-input segmentation [35], and (c) deep feedback-integrated seg-
mentation. See the description in Sec. 1. Throughout this paper,
green/red clicks represent foreground/background annotations.

since it only localizes the annotated instance. Owing to
these advantages, interactive image segmentation is a pre-
liminary step for many applications, including image edit-
ing and image composition. This paper specifically focuses
on interactive image segmentation using click annotations
because clicks are less labor-intensive to obtain than other
types of annotations.

The process of interaction is illustrated in Fig. 1. Given
an image, users start by providing one or more clicks to
label background or foreground pixels. The segmentation
model then generates an initial segmentation mask for the
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target object based on the image and the clicks. If the seg-
mentation result is unsatisfactory, users can continue to in-
teract with the segmentation system by marking new clicks
to indicate wrongly segmented regions and obtain a new
segmentation mask. From the second round of interaction,
the segmentation result of the previous interaction - referred
to as feedback in this paper - will be fed back into the cur-
rent interaction. This feedback is instrumental in user label-
ing and provides the segmentation model with prior infor-
mation, which can facilitate convergence and improve the
accuracy of segmentation [35].

Previous methods have made tremendous progress in
interactive image segmentation. Some of them, such as
[24,26,35], focused on finding useful ways to encode anno-
tated clicks, while others, like [5,15,19,21,34], explored ef-
ficient neural network architectures to fully utilize user an-
notations. However, few methods have investigated how to
exploit informative segmentation feedback. Existing meth-
ods typically treated each round of interaction independent
[5, 12, 15, 19, 24, 26] or simply concatenated feedback with
the initial input [6,23,25,34,35]. The former approach (Fig.
1(a)) failed to leverage the prior information provided by
feedback, resulting in a lack of consistency in the segmen-
tation results generated by two adjacent interactions. In the
latter case (Fig. 1(b)), feedback was only directly visible to
the first layer of the network, and thus the specific spatial
and semantic information it carried would be easily diluted
or even lost through many convolutional layers, similar to
the case of annotated clicks [12].

In this paper, we present Focused and Collaborative
Feedback Integration (FCFI) to exploit the segmentation
feedback for click-based interactive image segmentation.
FCFI consists of two modules: a Focused Feedback Cor-
rection Module (FFCM) for local feedback correction and a
Collaborative Feedback Fusion Module (CFFM) for global
feedback integration into deep features. Specifically, the
FFCM focuses on a local region centered on the new an-
notated click to correct feedback. It measures the feature
similarities between each pixel in the region and the click.
The similarities are used as weights to blend the feedback
and the annotated label. The CFFM adopts a collabora-
tive calibration mechanism to integrate the feedback into
deep layers (Fig. 1(c)). First, it employs deep features to
globally update the corrected feedback for further improv-
ing the quality of the feedback. Then, it fuses the feed-
back with deep features via a gated residual connection.
Embedded with FCFI, the segmentation network leveraged
the prior information provided by the feedback and outper-
formed many previous methods.

2. Related Work
The Method changes in interactive segmentation.

Early work approached interactive segmentation based on

graph models, such as graph cuts [3, 32] and random walks
[8,10]. These methods build graph models on the low-level
features of input images. Therefore, they are sensitive to
user annotations and lack high-level semantic information.
Xu et al. [39] first introduced deep learning into interactive
image segmentation. Deep convolutional neural networks
are optimized over large amounts of data, which contributes
to robustness and generalization. Later deep-learning-based
methods [5, 15, 19] showed striking improvements.

The Local refinement for interactive segmentation.
To refine the primitive predictions, previous methods [5,
6, 12, 20] introduced additional convolutional architectures
to fulfill the task. These methods followed a coarse-to-
fine scheme and performed global refinement. Later, Sofi-
iuk et al. [34] proposed the Zoom-In strategy. From the
third interaction, it cropped and segmented the area within
an expanded bounding box of the inferred object. Recent
approaches [6, 23] focused on local refinement. After a
forward pass of the segmentation network, they found the
largest connected component on the difference between the
current prediction and the previous prediction. Then, they
iteratively refined the prediction in the region using the
same network or an extra lighter network. The proposed
FFCM differs from these methods in that it does not need to
perform feedforward propagation multiple times. Instead,
it utilizes the features already generated by the backbone of
the network to locally refine the feedback once. Thus, it is
non-parametric and fast.

The Exploitation of segmentation feedback. Prior
work has found that segmentation feedback has instructive
effects on the learning of neural networks. Mahadevan et
al. [25] were the first to incorporate feedback from a pre-
vious iteration into the segmentation network. They took
the feedback as an optional channel of the input. Later
methods [6, 23, 34, 35] followed this and concatenated the
feedback with the input. However, this naive operation may
be suboptimal for feedback integration due to the dilution
problem [12]. Different from previous approaches, the pro-
posed CFFM integrates feedback into deep features. Since
both the feedback and the high-level features contain se-
mantic knowledge of specific objects, fusing them together
helps to improve the segmentation results.

3. Method

3.1. Interaction Pipeline

The pipeline of our method is illustrated in Fig. 2. The
process includes two parts: interaction and segmentation.

Interaction. In the interaction step, users give hints
about the object of interest to the segmentation model by
providing clicks. In the first interaction, users provide clicks
only based on the input image I ∈ RH×W×3, where H and
W denote the height and width, respectively; in the subse-
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Figure 2. The pipeline of the proposed method. See detailed description in Sec. 3.1.

quent interactions, users mark more clicks according to the
input image and the segmentation feedback. The annotated
clicks over all interactions are denoted as {P0,P1}, where
P0 and P1 represent the background and foreground click
sets, respectively, and each element in P0 and P1 is the xy
position of a click. The annotated clicks are converted into
an interaction map S ∈ RH×W×2 using disk encoding [2],
which represents each click as a disk with a small radius.

Segmentation. In the segmentation step, a commonly
used fully convolutional baseline architecture embedded
with FCFI is utilized as the segmentation network. The
baseline network comprises a backbone and a segmentation
head, as shown in the yellow blocks in Fig. 2. The back-
bone gradually captures long-range dependencies of pixels
to generate high-level features, and the segmentation head,
including a Sigmoid function, recovers spatial resolutions
and extracts semantic information. To correct feedback lo-
cally and incorporate it into the segmentation network, an
FFCM and a CFFM are inserted between the backbone and
the segmentation head. In the t-th interaction, the input im-
age I and the interaction map St are concatenated in depth
and fed into the backbone, and the feedback Mt−1 is di-
rectly fed into the FFCM. The segmentation network out-
puts a segmentation mask Mt ∈ RH×W .

3.2. Focused Feedback Correction Module

From the second interaction, users are expected to place
new clicks on the mislabeled regions. However, most previ-
ous methods [5, 15, 15, 26, 34, 35] treated all clicks equally
and only performed global prediction, which may weaken
the guidance effect of the newly annotated clicks and cause
unexpected changes in correctly segmented regions that are
far away from the newly annotated click [6]. For instance,
in Fig. 1(a) and (b), comparing Mt−1 and Mt, adding a
new negative click near the person’s right hand modified the
segmentation result in the person’s feet. Considering that

clicks are usually marked to correct small regions of a seg-
mentation mask, locally refining the feedback can not only
preserve the segmentation results in other regions but also
reduce processing time. Therefore, we propose the FFCM
to correct the feedback from a local view.

As shown in Fig. 2(a), the feedback modification in the
FFCM requires three steps: cropping, local refinement, and
pasting. We first narrow down the refinement region, then
refine the feedback using the pixel similarities in the high-
level feature space, and finally fuse the refined feedback
with the original one.

Cropping. To exclude irrelevant regions and focus on
the area around the newly annotated click, we select a small
rectangle patch centered on the new annotated click and
crop it from the features F ∈ RH′×W ′×3 generated by the
backbone, where H ′ and W ′ are the height and width of F .
The patch has a size of rH ′×rW ′, where the expansion ra-
tio r is 0.3 by default. The feedback Mt−1 is cropped in the
same way. The cropped features and the cropped feedback
are denoted as F c and M c

t−1, respectively.
Local refinement. In this step, per-pixel matching is

performed. We measure the feature affinity between each
pixel in the patch and the new annotated click and then
blend the feedback with the annotated label of the new
click according to the affinity. The feature affinity W ∈
RrH′×rW ′

is defined as the cosine similarity:

W (i, j) =
F c(i, j)F c(xnew, ynew)

||F c(i, j)||2||F c(xnew, ynew)||2
, (1)

where (xnew, ynew) is the coordinate of the new anno-
tated click in the patch. Each element in the feature affin-
ity W is between 0 to 1. The larger the affinity is, the
more likely that the pixel belongs to the same class (back-
ground/foreground) as the new annotated click. The refined
cropped feedback M r

t−1 is generated by blending the origi-
nal feedback M c

t−1 and the annotated label of the new click

18645



lnew via a linear combination:

M c,r
t−1 = lnew ·W + (1−W )⊙M c

t−1. (2)

Pasting. After obtaining the refined cropped feedback,
we paste it back to the original position on the feedback
Mt−1 and denote the refined full-size feedback as M r

t−1.
To enable optimization in backward-propagation during

training, the cropping and pasting operations are not applied
in the FFCM. Instead, a box mask Mbox ∈ RH′×W ′

is used
to filter out the pixels that are far away from the new anno-
tated click. A local region is selected first. It is centered on
the new annotated click and has a size of rH ′×rW ′. Pixels
within the region are set to 1, and others are set to 0. Sim-
ilar to the local refinement, we perform global refinement
on the full-size features and feedback. A full-size refined
feedback M r′

t−1 is obtained. Finally, we keep the focused
area and obtain the corrected feedback M r

t−1 as

M r
t−1 = Mbox ⊙M r′

t−1 + (1−Mbox)⊙Mt−1. (3)

3.3. Collaborative Feedback Fusion Module

In an interaction, a user usually adds new clicks based
on the segmentation feedback. Basically, interactions are
successive, and previous segmentation results provide prior
information about the location and shape of the target ob-
ject for the current interaction. Therefore, it is natural to
integrate feedback into the segmentation network, and this
integration is supposed to improve the segmentation quality.

Previous methods [6, 34, 35] simply concatenated the
feedback with the input image and the interaction map and
then fed them into the segmentation network. However, ex-
perimental results show that this naive method cannot ex-
ploit the prior information provided by the feedback. There
are two reasons. First, early fusion - fusing at the begin-
ning or shallow layers of a network - easily causes informa-
tion dilution or loss [12]. Second, from the semantic infor-
mation perspective, the feedback contains dense semantic
information compared with the low-level input image and
sparse clicks. Thus, theoretically, fusing the feedback into
deep features rather than the input enables the segmentation
network to obtain segmentation priors while preserving the
extracted semantic information.

The CFFM is introduced in this paper to integrate seg-
mentation feedback into high-level features at deep layers
of the segmentation network. Fig. 2(b) illustrates the archi-
tecture of the CFFM. The CFFM comprises two information
pathways, called feedback pathway and feature pathway, re-
spectively. The two pathways utilize the feedback and the
high-level features to collaboratively update each other.

Feedback pathway. This pathway performs global re-
finement on the feedback with the aid of deep features.
First, after being encoded by a convolution block Φ1, the
features F are concatenated with the corrected feedback

signal M r
t−1 in the channel dimension. Then, convolutional

layers followed by a Sigmoid function, denoted as Φ2, are
applied to update the feedback:

Mu
t−1 = Φ2(concat(Φ1(F ; θ1),M

r
t−1); θ2), (4)

where θ1 and θ2 denote the learnable parameters of Φ1 and
Φ2, and “concat(·, ·)” denotes channel-wise concatenation.

Feature pathway. In this pathway, we update the high-
level features with the feedback as a guide. The features
are fused with the updated feedback Mu

t−1 through a con-
volution block Φ3. To avoid negative outcomes from use-
less learned features, we update the features F via a skip
connection following ResNet [14]. However, the skip con-
nection leads to an inaccurate prediction of the final out-
put Mt in the first interaction, but not in the other interac-
tions. The reason is that the feedback is initialized to an
all-zero map and has the maximum information entropy in
the first interaction [25]. Consequently, it may add noise
to deep features. The reliability of feedback grows dramat-
ically from the first interaction to the second interaction,
making the feedback more instructive. To tackle this prob-
lem, we introduce a gate wg to control the information flow
from the feedback pathway. The gate is set to 0 in the first
interaction to prevent the inflow of noise from hurting per-
formance, and it is set to 1 in the subsequent interactions.
Mathematically, the fused features F u can be formulated as

F u = wg · Φ3(concat(F ,Mu
t−1); θ3) + F , (5)

where θ3 denotes the learnable parameters of Φ3.

3.4. Training Loss

The normalized focal loss Lnfl [33] is applied as the ob-
jective function because training with it yields better perfor-
mance in interactive image segmentation, which is demon-
strated in RITM [35]. The constraint is imposed on M r

t−1,
Mt, and Mu

t−1. Particularly, we only calculate the loss in
the cropped area for M r

t−1. The full loss function is

L = Lnfl(M
r
t−1,Mgt) + Lnfl(M

u
t−1,Mgt)

+Lnfl(Mt,Mgt),
(6)

where Mgt denotes the ground truth segmentation mask.

4. Experiments
4.1. Experimental Settings

Segmentation backbones. We conducted experiments
using DeepLabV3+ [4] and HRNet+OCR [36, 41] as the
baseline network, respectively. The ResNet-101 [14],
HRNet-18s [36], and HRNet-18 [36] were employed as
backbones. Improvements introduced by different net-
work baselines are not the focus of this paper. There-
fore, we mainly report experimental results achieved by
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Method Backbone Train set GrabCut Berkeley SBD DAVIS
NoC@85% NoC@90% NoC@90% NoC@85% NoC@90% NoC@85% NoC@90%

DOS w/o GC [39] FCN-8s SBD 8.02 12.59 - 14.30 16.79 12.52 17.11
DOS w/ GC [39] FCN-8s SBD 5.08 6.08 - 9.22 12.80 9.03 12.58
RIS-Net [20] VGG-16 Pascal VOC - 5.00 - 6.03 - - -
LD [19] VGG-19 SBD 3.20 4.79 - 7.41 - 5.95 9.57
CAG [26] FCN-8s Augmented SBD - 3.58 5.60 - - - -
BRS [15] DenseNet SBD 2.60 3.60 5.08 6.59 9.78 5.58 8.24
f-BRS-B [34] ResNet-101 SBD 2.30 2.72 4.57 4.81 7.73 5.04 7.41
FCA-Net [24] ResNet-101 Augmented SBD 1.88 2.14 4.19 - - 5.38 7.90
IA+SA [16] ResNet-101 Augmented SBD - 3.07 4.94 - - 5.16 -
CDNet [5] ResNet-101 SBD 2.42 2.76 3.65 4.73 7.66 5.33 6.97
FocusCut [23] ResNet-101 SBD 1.46 1.64 3.01 3.40 5.31 4.85 6.22
Ours ResNet-101 SBD 1.64 1.80 2.84 3.26 5.35 4.75 6.48
RITM [35] HRNet-18s COCO+LVIS 1.54 1.68 2.60 4.26 6.86 4.79 6.00
FocalClick-S1 [6] HRNet-18s COCO+LVIS 1.72 1.94 3.40 4.75 7.22 5.19 7.95
FocalClick-S2 [6] HRNet-18s COCO+LVIS 1.52 1.66 2.41 4.37 6.59 4.20 5.49
Ours HRNet-18s COCO+LVIS 1.50 1.56 2.05 3.88 6.24 3.70 5.16
EdgeFlow [12] HRNet-18 COCO+LVIS 1.60 1.72 2.40 - - 4.54 5.77
RITM [35] HRNet-18 COCO+LVIS 1.42 1.54 2.26 3.80 6.06 4.36 5.74
Ours HRNet-18 COCO+LVIS 1.38 1.46 1.96 3.63 5.83 3.97 5.16

Table 1. Evaluation results on the GrabCut, Berkeley, SBD, and DAVIS datasets. The augmented SBD is a combination of the Pascal VOC
training set [9], a part of the SBD training set, and a part of the SBD validation set. Throughout this essay, the best and the second-best
results for different mainstream backbones are written in bold and underlined, respectively.

B Method Berkeley DAVIS
NoF20@90%↓ IoU@5↑ BIoU@5↑ ASSD@5↓ SPC↓ NoF20@90%↓ IoU@5↑ BIoU@5↑ ASSD@5↓ SPC↓

R
es

N
et

-1
01

f-BRS-B [34] 6 0.875 0.730 4.626 0.072 77 0.826 0.717 11.267 0.102
FCA-Net [24] 7 0.923 0.793 2.190 0.059 74 0.867 0.771 9.048 0.075
CDNet [24] 4 0.921 0.803 2.576 0.079 60 0.876 0.783 8.973 0.108
FocusCut [23] 3 0.933 0.811 2.050 3.152 61 0.873 0.778 8.880 3.872
Baseline 6 0.904 0.782 4.370 0.052 75 0.867 0.770 9.421 0.069
Ours 3 0.943 0.838 1.789 0.057 59 0.893 0.815 8.226 0.082

H
R

N
et

-1
8s RITM [35] † 1 0.950 0.859 1.312 0.035 53 0.883 0.801 8.378 0.036

FocalClick-S1 [6] 4 0.946 0.849 1.565 0.065 84 0.877 0.784 8.364 0.084
FocalClick-S2 [6] 1 0.957 0.889 1.170 0.052 54 0.897 0.824 7.635 0.082
Ours 0 0.958 0.883 1.012 0.044 51 0.907 0.830 6.434 0.048

Table 2. Comparisons of effectiveness and efficiency on the Berkeley and DAVIS datasets. “B” in the table header denotes the term
“backbone”. †RITM is the baseline of our method.

DeepLabV3+ and provide essential results achieved by HR-
Net+OCR. The CFFM was inserted after the upsampling
operator for DeepLabV3+ and the HRNet for HRNet+OCR.
Both the ResNet-101 backbone and the HRNet-18 back-
bone were pre-trained on the ImageNet dataset [7].

Datasets. The DeepLabV3+ was trained on the training
set of SBD [13], and the HRNet+OCR was trained on the
combination of COCO [22] and LVIS [11]. We evaluated
our method on four benchmarks: GrabCut [32], Berkeley
[28], SBD, and DAVIS [31]. SBD contains 8,498 images
for training, and its validation set contains 2,820 images
including 6,671 instance-level masks. COCO+LVIS con-
tains 104k images with 1.6M instance-level masks. Grab-
Cut contains 50 images with an instance mask for each
image. Berkeley consists of 96 images and 100 instance
masks. For DAVIS, we used the same 345 sampled frames
as previous methods [6, 23, 24, 34, 35] for evaluation.

Implementation details. During training, we resized in-
put images with a random scale factor between 0.75 and
1.40 and randomly cropped them to 320×480. A horizontal
flip and random jittering of brightness, contrast, and RGB
values were also applied. We utilized an Adam optimizer
with β1 = 0.9 and β2 = 0.999 to train the network for
60 epochs. The learning rate for the backbone was initial-
ized to 5 × 10−5 and multiplied by 0.1 on the 50th epoch.
The learning rate for other parts of the segmentation net-
work was 10 times larger than that for the backbone. The
batch size was set to 24. Following RITM, we used the it-
erative sampling strategy to simulate user interaction. For
each batch, new annotated clicks were iteratively sampled
for 1 to 4 iterations. In each iteration, up to 24 annotated
clicks were randomly sampled from the eroded mislabelled
regions of the last prediction.

During inference, only one click was added in each
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Figure 3. Qualitative comparisons of FCA-Net [24], CDNet [5], FocusCut [23], our baseline, and our method.

interaction. The new click was sampled from misclassi-
fied regions and was the farthest from the region bound-
aries. Mathematically, the distance between two points p
and q is defined as d(p, q) = ||p − q||2, and the dis-
tance between a point p and a point set P is defined as
d(p,P) = minq∈Pd(p, q). The set of false positive points
and false negative points is defined as Pf = {p|Mt(p) =
0,Mgt(p) = 1} ∪ {p|Mt(p) = 1,Mgt(p) = 0}. For a
pixel p ∈ Pf , the largest connected component in which
it is located is denoted as Pc(p). The distance from p to
the boundaries of Pc(p) is defined as η(p) = d(p,PC

c (p)),
where PC

c (p) denotes the complement of Pc(p). Following
the standard protocol [6, 15, 23, 24, 34, 35], the new anno-
tated pixel was selected by p∗ = {p|maxp∈Pf

η(p)}. The
maximum number of clicks was limited to 20 for each sam-
ple in all experiments. Besides, following previous meth-
ods [5, 6, 34, 35], we adopted test time augmentations, i.e.,
the Zoom-In strategy and averaging the predictions of the
original image and the horizontally flipped image.

The proposed method was implemented in PyTorch [30].
All the experiments were conducted on a computer with
an Intel Xeon Gold 6326 2.90 GHz CPU and NVIDIA
GeForce RTX 3090 GPUs.

Evaluation metrics. The proposed method was evalu-

ated using the following six metrics: 1) NoC@α: the mean
number of clicks (NoC) required to reach a predefined in-
tersection over union (IoU) threshold α for all images; 2)
IoU@N : the mean IoU achieved by a particular NoC N ; 3)
BIoU@N : the mean boundary IoU achieved by a particular
NoC N ; 4) ASSD@N : the average symmetric surface dis-
tance with a particular NoC N , which was used to evaluate
the boundary quality of the prediction; 5) NoFN@α: the
number of failures (NoF) that cannot reach a target IoU α
with a certain NoC N ; 6) SPC: the average running time in
seconds per click.

4.2. Comparison with Previous Work

4.2.1 Effectiveness Analysis

We have tabulated the quantitative results in Tab. 1 and Tab.
2. The quantitative results demonstrate that our method can
generalize across various datasets and different backbones.
The number of clicks of our method required to reach 85%
and 90% IoU are much lower than previous methods, and
our method also outperformed previous work in boundary
quality. The results indicate that our method can achieve
satisfactory segmentation results with less user effort. The
line charts of mIoU-NoC on four datasets are plotted in
Fig. 4. Those results indicate that our method achieved ac-
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Figure 4. Comparisons of the mIoU-NoC curves on four datasets.
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Figure 5. Results obtained by different annotations.

ceptable results given only a few clicks, steadily improved
segmentation results with additional clicks, and ultimately
converged to better results. Fig. 3 visualizes the qualita-
tive results of some previous work and ours. Compared
with other methods, our method required fewer clicks to ob-
tain relatively complete segments and fine boundary details.
Additionally, it could handle challenging scenarios, includ-
ing color interference (like the goat and the cat), complex
backgrounds (as depicted in the break-dancer photo), and
occlusions (as seen from the racehorse rider). Please refer
to the supplementary material for more visualization exam-
ples. Fig. 5 exhibits the sensitivity of our method to click
locations. Our method attained approximate performance
for different annotation positions when provided with rea-
sonable annotations.

4.2.2 Efficiency Analysis

Tab. 2 presents the average inference speed of different
methods, among which our method achieved a desirable
trade-off between speed and accuracy. Notably, our pro-
posed modules exhibited a low computational budget, re-
quiring less than 13 ms for all modules, compared to the
baseline. In summary, the proposed framework achieved

Method Backbone
Berkeley DAVIS

NoC NoF20 NoC NoF20

@90%↓ @90%↓ @90%↓ @90%↓
Baseline ResNet-101 4.31 6 7.56 75
+ FFC ResNet-101 3.75 4 6.75 65
+ CFF ResNet-101 3.07 1 6.62 66
+ FFC + CFF ResNet-101 2.84 3 6.48 59
Baseline HRNet-18 2.60 1 5.73 54
+ FFC HRNet-18 2.11 1 5.52 54
+ CFF HRNet-18 2.05 0 5.32 52
+ FFC + CFF HRNet-18 1.96 0 5.16 51

Table 3. An ablation study for the core components.

competitive results with relatively low computation costs.

4.3. Ablation Study

We evaluated the efficacy of each proposed component.
Berkeley and DAVIS were chosen as the main evaluation
datasets because they cover challenging scenarios, such as
unseen categories, motion blur, and occlusions. Besides,
they have better annotation quality than SBD.

Tab. 3 tabulates the quantitative ablation results. To in-
tegrate the feedback into the network, the corrected feed-
back M c

t−1 was concatenated with the features F in the “+
FFC” variant. When only one module was embedded, both
the FFCM and the CFFM improved the results. The CFFM
boosted the performance more; this proves the effectiveness
of deep feedback integration. The FFCM has also improved
the results. The reason is that the CFFM relies on the qual-
ity of the feedback, and the FFCM provides refined feed-
back for it. With the two modules working synergistically,
our method significantly reduced the NoC and NoF.

Qualitative results for the FFCM and the CFFM are
shown in Fig. 6. The FFCM utilizes the feature affinity to
refine the feedback from a local perspective. For instance,
in the 14th round of interaction, the FFCM yielded finer seg-
mentation boundaries on the front fender of the motorcycle.
The CFFM refines the feedback in a global view and up-
dates the deep features to improve the overall segmentation
results, e.g., the boy wearing a hat and the bull.

Analysis of the FFCM. In Tab. 4, we analyzed the ef-
fect of different similarity measurements, e.g. exponential
similarity and cosine similarity. Using cosine similarity to
measure the feature affinity achieved better results. We also
verified the robustness of the FFCM with respect to the ex-
pansion ratio r. As illustrated in Tab. 5, an expansion ratio
of 0.3 yielded the best results.

Analysis of the CFFM. Different implementations of
feedback fusion have been explored: 1) directly concate-
nating feedback with the input, 2) fusing feedback into deep
features but removing the residual connection, i.e., remov-
ing the second term of Eq. 5, and 3) fusing feedback into
deep features but removing the gate. As shown in Tab.
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Figure 6. Visualization of the feedback, the feature affinity, the refined feedback, the updated feedback, and the output. The feature affinity
is shown in a heatmap, where red color denotes high feature affinity, and blue color denotes low feature affinity.

Similarity
Measurement

Berkeley DAVIS
@85% @90% @85% @90%

Exponential 2.06 3.60 5.26 7.51
Cosine 1.88 2.85 4.60 5.82

Table 4. The mean NoC with respect to
the similarity measurement. The expo-
nential similarity is defined as W (i, j) =

e−||F (i,j)−F (xnew,ynew)||2/σ .

Expansion
Ratio r

Berkeley DAVIS
@85% @90% @85% @90%

0.1 1.91 3.43 5.52 7.46
0.2 1.97 3.10 5.12 6.82
0.3 1.88 2.85 4.60 5.82
0.4 1.79 3.12 4.74 6.42
0.5 1.84 3.27 5.15 6.72

Table 5. The mean NoC with respect to
the expansion ratio r.

Method Berkeley DAVIS
@85% @90% @85% @90%

w/o feedback 2.31 4.31 5.23 7.56
Concat feedback with input 2.01 4.00 5.03 7.08
CFFM w/o residual connection 1.98 3.52 4.91 6.63
CFFM w/o gate 1.96 3.36 4.85 6.37
CFFM 1.81 3.07 4.75 6.10

Table 6. The mean NoC with respect to different feed-
back fusion architectures.

6, integrating feedback into the network improves the per-
formance, which demonstrates the instructive ability of the
feedback. Compared with directly concatenating feedback
with the input, feedback fusion in deep layers significantly
reduces the required number of annotated clicks by 1.24
NoC@90% on Berkeley and 1.56 NoC@90% on DAVIS.

4.4. Limitations

Although our method benefits from the feedback guid-
ance, it still has certain limitations. First, there is no guar-
antee that each round of interaction yields superior results
compared to the previous one. Second, ambiguity has yet
to be resolved in our method. For example, if a click is pro-
vided on a shirt, both the shirt and the person wearing it are
likely to be the target object. Additionally, our method may
struggle when handling thin structures, such as ropes, insect
legs, and bicycle spokes.

5. Conclusion
The segmentation result from the last interaction (feed-

back) provides instructive information about the target ob-
ject to the current interaction. To exploit the feedback, this
paper proposes a deep feedback integration approach called
FCFI. FCFI first performs local refinement on the feedback.
Then, it collaboratively and globally updates the feedback
and the features in deep layers of the segmentation network.
We have experimentally demonstrated that FCFI has strong
generalization capabilities and outperformed many previous
methods with fast processing speed.
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