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Abstract

Although vision transformers (ViTs) have shown promis-
ing results in various computer vision tasks recently, their
high computational cost limits their practical applications.
Previous approaches that prune redundant tokens have
demonstrated a good trade-off between performance and
computation costs. Nevertheless, errors caused by prun-
ing strategies can lead to significant information loss. Our
quantitative experiments reveal that the impact of pruned
tokens on performance should be noticeable. To address
this issue, we propose a novel joint Token Pruning &
Squeezing module (TPS) for compressing vision transform-
ers with higher efficiency. Firstly, TPS adopts pruning to get
the reserved and pruned subsets. Secondly, TPS squeezes
the information of pruned tokens into partial reserved to-
kens via the unidirectional nearest-neighbor matching and
similarity-based fusing steps. Compared to state-of-the-
art methods, our approach outperforms them under all to-
ken pruning intensities. Especially while shrinking DeiT-
tiny&small computational budgets to 35%, it improves the
accuracy by 1%-6% compared with baselines on ImageNet
classification. The proposed method can accelerate the
throughput of DeiT-small beyond DeiT-tiny, while its accu-
racy surpasses DeiT-tiny by 4.78%. Experiments on various
transformers demonstrate the effectiveness of our method,
while analysis experiments prove our higher robustness to
the errors of the token pruning policy. Code is available at
https://github.com/megvii-research/TPS-
CVPR2023.

1. Introduction
The transformer architecture has become popular for var-

ious natural language processing (NLP) tasks, and its im-
proved variants have been adopted for many vision tasks.
Vision transformers (ViTs) [5] leverage the long-range de-

*The first two authors contributed equally to this work
†Corresponding author

Input Image

Token Pruning

Label: Lawn Mower

Ours

Label: Baseball

Prediction: Folding Chair × Prediction: Rugby Ball ×

Prediction: Lawn Mower √ Prediction: Baseball √

Figure 1. Comparisons between token pruning paradigm [25] (the
2nd row) and our joint Token Pruning & Squeezing (the 3rd row).
The context information, such as the sod in the examples, is help-
ful for prediction but is discarded. Our method remits the informa-
tion loss by squeezing the pruned tokens into reserved ones instead
of naively dropping them, as indicated by the stacked patches. By
this design, we could apply more aggressive token pruning with
less performance drop. The example results are from the Ima-
geNet1K [4], and we reduce the actual patches grid 14 × 14 to
7× 7 for visualization clarity.

pendencies of self-attention mechanisms to achieve excel-
lent performance, often surpassing that of CNNs. In ad-
dition to the vanilla ViT architecture, recent studies [17,
31, 33] have explored hybrid ViT designs incorporating
convolution layers and multi-scale architectures. Despite
their excellent performance, transformers still require rel-
atively high computational budgets. This is due to the
quadratic computation and memory costs associated with
token length. To address this issue, contemporary ap-
proaches [8, 14, 16, 21, 25, 27, 35, 36] propose pruning re-
dundant tokens. They trade acceptable performance degra-
dation for a more cost-effective model. Knowledge distil-
lation [11] and other techniques can further mitigate the re-
sulting performance drop.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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However, a steep drop in performance is inevitable as
pruning tokens further increases because both essential sub-
ject and auxiliary context information drop significantly, es-
pecially when the number of reserved tokens is closely be-
low 10. Aggressive token pruning could lead to incomplete
subject and background context loss, causing the wrong pre-
diction, as shown in Fig. 1. Specifically, the background
tokens containing sod help recognize the input image as a
lawn mower rather than a folding chair. Meanwhile, miss-
ing subject tokens make the baseball indistinguishable from
a rugby ball. To regain adequate information from pruned
tokens, EViT [16] and Evo-ViT [35] propose aggregating
pruned tokens as one, as shown in Fig. 2 (b). Still, they ne-
glect the discrepancy among these tokens, leading to feature
collapse and hindering more aggressive token pruning.

Towards more aggressive pruning, we argue that infor-
mation in pruned tokens deserves better treatment. We did
a toy experiment to answer what accuracy token pruning
could achieve if it applied the reversed pruning policy in the
first pruned transformer block as Fig. 3 shows. Taking dy-
namicViT [25] as a case study, the performance of reversed
policy is enough to bring extra accuracy complementary to
the original one (denoted by bonus accuracy). Moreover,
this phenomenon would become more significant as prun-
ing continues (red line in Fig. 3.).

To conserve the information from the pruned tokens,
we propose a Joint Token Pruning & Squeezing (TPS)
module to accommodate more aggressive compression of
ViTs. TPS module utilizes a feature dispatch mechanism
that squeezes essential features from pruned tokens into re-
served ones, as shown in Fig. 2 (c). Firstly, based on the
scoring result, the TPS module divides input tokens into two
complementary subsets: the reserved and pruned sets. Sec-
ondly, instead of discarding or collapsing tokens from the
pruned set into a single one, we employ a unidirectional
nearest-neighbor matching algorithm to dispatch each of
them independently to the associated reserved token dubbed
as the host token. This design reduces information loss
without sacrificing computational efficiency. Subsequently,
we apply a similarity-based fusing way to squeeze the fea-
tures of matched pruned tokens into corresponding host to-
kens while the non-selected reserved tokens remain identi-
cal. This design reduces the context information loss while
retaining a reasonable computation budget. We can easily
achieve hardware-friendly constant shape inference when
fixing the cardinality of the reserved token set. Furthermore,
we introduce two flexible variants: the inter-block version
dTPS and the intra-block version eTPS, which are essen-
tially plug-and-play blocks for both vanilla ViTs and hybrid
ViTs.

We conduct extensive experiments on two datasets: Im-
ageNet1K [4] and large fine-grained dataset iNaturalist
2019 [29] to prove our efficiency, flexibility, and robustness.

Firstly, experiments under different token pruning settings
demonstrate the superior performance of our TPS while op-
erating more aggressive compression compared with token
pruning [25] and token reorganization [16]; further compar-
isons with state-of-the-art transformers [8,13,20,28,31,36,
39, 40] show our promising efficiency. Secondly, we man-
ifest the flexibility of our TPS by integrating it into popu-
lar ViTs, including both vanilla ViTs and hybrid ViTs. Fi-
nally, the evaluations under the random token selection pol-
icy confirm the higher robustness of our TPS.

Overall, our contributions are summarized as follows:

• We propose the joint Token Pruning & Squeezing
(TPS) and its two variants: dTPS and eTPS, to con-
serve the information of discarded tokens and facilitate
more aggressive compression of vision transformers.

• Extensive experiments demonstrate our higher perfor-
mance compared with prior approaches. Especially
while compressing GFLOPs of DeiT-small&tiny to
35%, our TPS outperforms baselines with accuracy
improvements of 1%-6%.

• Broadest experiments applying our method to vanilla
ViTs and hybrid ViTs show our flexibility, while the
analysis experiments prove that our TPS is more robust
than token pruning and token reorganization.

2. Related Work
Since the transformer [30] was proved efficacious in

NLP tasks, numerous studies have explored methods to
acclimate the transformer architecture to computer vision
tasks [1,3,5–7,10,17,19,22,24,26,32,37], including vanilla
ViTs and hybrid ViTs.

Vanilla ViTs. Following the “primary ViT”, a series of
vision transformer variants inherit the central architecture
and evolve from diverse perspectives, which we call the
vanilla ViTs in this paper. DeiT [28] surpasses standard
CNNs and ViT by introducing a distillation token to learn
from a teacher network. LV-ViT [13] presents a new train-
ing objective called token labeling. T2T-ViT [38] recur-
sively aggregates neighboring tokens into one token, while
PS-ViT [39] introduces a progressive sampling module that
selects informative tokens.

Hybrid ViTs. Besides, recent studies [15, 31, 33] in-
corporate convolutional layers and employ multi-scale ar-
chitectures to lower the cost of computations and memory,
which we call the hybrid ViTs. Swin Transformer [17]
modified ViT with the multi-stage architecture and shifted
window-based self-attention. CVT [33] presents a hier-
archical architecture facilitated by the convolutional token
embedding layer. PVT [31] introduces the pyramid archi-
tecture of the transformer and develops the spatial-reduction
attention (SRA) to reduce the cost further.

2093



�F��7RNHQ�3UXQLQJ	6TXHH]LQJ��736�

*YWMRK4VYRMRK 1EXGLMRK

���

���

���

���

���

���

���

���

7UYII^MRK

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�D��7RNHQ�3UXQLQJ �E��7RNHQ�5HRUJDQL]DWLRQ

-RTYX�8SOIR 6IWIVZIH�8SOIR 4VYRIH��8SOIR ,SWX�8SOIR *YWMSR�8SOIR�F]�7UYII^MRK*YWMSR�8SOIR�F]�6ISVKERM^EXMSR

Figure 2. Comparison among token pruning [25], token reorganization [16], and our Token Pruning & Squeezing (TPS). Token pruning
discards the pruned tokens; token reorganization aggregates pruned tokens into one without considering the discrepancy among them. To
shrink tokens more efficiently, our TPS excavates the host token hiding in the reserved subset and squeezes similar pruned tokens into
corresponding host tokens.

Token Pruning. Considering the spatial redundancy of
input images, many researchers aim at discarding nonessen-
tial tokens with an acceptable performance drop. Tang et
al. [27] propose to approximate the impact of patches and
discard inattentive patches in a top-down paradigm. Dy-
namicViT [25] and AdaViT [20] employ the learnable heads
to score tokens and discard less informative ones with a
fixed pruning ratio. A-ViT [36] and ATS [8] go further by
sampling tokens with an input-dependent number. How-
ever, mainstream deep learning frameworks do not strongly
support dynamic token length inference. The main disad-
vantage of token pruning models is the pruned informa-
tion loss which leads to a drop in accuracy and limits more
aggressive token pruning. To tackle this, Evo-ViT [35],
EViT [16], and SPViT [14] preserve the background con-
text by collapsing the pruned tokens into one token reorga-
nization, which is called token reorganization. Token re-
organization remits the pruned token information loss, but
a noticeable performance drop can still be observed, espe-
cially regarding a higher pruning ratio of tokens. Further-
more, relevant auxiliary strategies are proposed to facilitate
token pruning. SPViT [14] employs a layer-to-phase pro-
gressive training strategy, while IA-RED2 performs a hier-
archical training scheme. The complicated training schemes
help improve performances but also draw into more hyper-
parameters and optimization difficulties.

We investigate the drawbacks of current token pruning
methods and invent a novel token reduction approach: joint
token Pruning & Squeezing with higher efficiency, robust-
ness, and flexibility, which only requires fine-tuning pre-
trained models easily.
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Figure 3. ImageNet1K results of DynamicViT [25] on DeiT-
small [28] under the original policy and reversed policy. The re-
versed policy means exchanging reserved and pruned tokens in the
first pruned layer. The right vertical axis implies the bonus accu-
racy dedicated by the cases that only the reversed policy predicts
rightly.

3. Method

3.1. Motivation

To quantitatively verify the discarded information of
pruned tokens, we conduct a toy experiment on Dynam-
icViT [25] as Fig. 3 shows. It is easy to agree that the per-
formance of pruned model declines as the pruning becomes
more aggressive. Nevertheless, by exchanging reserved and
pruned tokens (dubbed as the reversed policy in Fig. 3), we
find that the pruned tokens can still handle partial cases cor-
rectly. Furthermore, the bonus accuracy, which is dedicated
by the cases that only the reversed policy predicts rightly,
rises along with the token pruning intensity. It implies that
the exclusive information from pruned tokens matters more
while the token pruning intensity grows.

These fun facts motivate us to assimilate the pruned to-
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(a) The inter-block variant of our TPS: dTPS. (b) The intra-block variant of our TPS: eTPS.

Figure 4. Two variants of our TPS. TPS can be plugged in both the inter-block and intra-block ways. For a fair comparison with Dynam-
icViT [25] and EViT [16], our dTPS and eTPS adopt the same token scoring methods as the two baselines. The legend of tokens is the
same as the Fig. 2.

kens into the reserved tokens to prevent information loss,
as shown in Fig. 1. As shown in Fig. 2 (c), TPS employs
two steps to compress ViTs, including token pruning and
squeezing.

3.2. Token Pruning

In this section, we briefly review the basic procedure of
token pruning. Note that our TPS is compatible with any
token pruning techniques. Here, we introduce two variants
of TPS: dTPS and eTPS, to cover both intra-block and inter-
block token compression shown in Fig. 4. They follow the
pruning parts of two baselines for a fair comparison with
two typical baselines [16, 25].

As shown in Fig. 4, dTPS adopts the learnable token
score prediction head from dynamicViT [25] and samples
the binary decision mask by Straight-Through Gumbel-
Softmax [12] for differentiability; eTPS utilizes the class
token attention values to measure tokens’ importance as
EViT [16]. In the inference stage of both variants, based
on token scores, we devise the token selection policy using
the Top-k operation with a fixed given token reduction ratio
ρ. Both variants ensure the constant shape to benefit from
the inference optimization on the computation graph. The
tokens are separated into two subsets, Sr and Sp, where the
reserved tokens are placed in Sr and the pruned ones are
placed in Sp. More implementation details can be found in
our codes.

3.3. Token Squeezing

After reserved & pruned tokens are split, we introduce
our token squeezing part. Considering that the reserved
ones contribute the majority of correct predictions, we aim
to design a procedure that retains most of the attentive to-
kens while compressing information from rest, preserving
the model’s overall performance. To avoid generating ex-
tra tokens as [14, 16], we inject pruned tokens into simi-
lar reserved tokens. So, we apply a unidirectional nearest-
neighbor matching algorithm from Sp to Sr in a many-to-

one manner. After that, we employ a similarity-based fusing
method to assimilate information from pruned tokens into
partial reserved tokens. We summarize the above process
as two steps: matching and fusing.

Matching. Given the two subsets Sr and Sp, Ir and
Ip are the corresponding token indices of Sr and Sp. A
similarity matrix ci,j for all i ∈ Ip and j ∈ Ir represents
the interactions between the tokens for matching. For each
pruned token xi ∈ Sp, we find its nearest token xhost

∗ ∈ Sr

from the reserved token set Sr as its host token:

xhost
∗ = argmax

xj∈Sr

ci,j . (1)

Note that since the token matching step is unidirectional
from Sp to Sr, multiple pruned tokens can share the same
host token and not each reserved token can serve as a host
token. We then record the matching results in a mask matrix
M ∈ RNp×Nr

and its values are decided by:

mi,j =

{
1, xj is the host token of xi,

0, otherwise,
(2)

where Np and Nr denote the token number of two subsets.
The mask helps that the following fusing step can be con-
ducted with regular matrix operations on Sr and Sp while
excluding the influence from non-matched pairs.

Although the attention map is a natural and free choice to
measure interactions among tokens, we can acquire higher
performances with the cosine similarity between Sr and Sp

as the ablation experiment in Section. 4.2 discusses. There-
fore in all of our experiments, the similarity matrix is de-
fined as:

ci,j =
xT
i xj

∥xi∥∥xj∥
, for i ∈ Ip, j ∈ Ir. (3)

Since the similarity matrix ci,j is generated directly from
input features, no extra parameters are introduced in the
matching step.
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Fusing. Simply averaging tokens can lead to feature
dispersion because of discrepancies among the different
tokens. EViT [16] utilizes the token importance scores
to re-weight the aggregated tokens. Separately, we use a
similarity-based weighting scheme. It expands the influ-
ence of closer tokens to the host tokens while also avoiding
potential flaws from imperfect token scoring. As previously
mentioned, the fusing step encompasses all tokens from two
subsets and is controlled by the mask M to ensure that only
host tokens and pruned tokens are mixed. This introduces
a few redundant computations but increases practical train-
ing & inference throughput due to the efficiency of regular
matrix operations.

Specifically, the reserved token xj is updated by fusing
the original feature and pruned tokens’ features as follows:

yj = wjxj +
∑

xi∈Sp

wixi, (4)

where wi is the weight of each pruned token xi ∈ Sp, wj is
the weight of the reserved token itself, and yj is the updated
one. The fusing weight wi depends on the mask value mi,j

and similarity ci,j :

wi =
exp(ci,j)mi,j∑

xi∈Sp exp(ci,j)mi,j + e
. (5)

The reserved token always has the largest fusing weight wj ,
as the similarity between xj and itself equals to 1:

wj =
e∑

xi∈Sp exp(ci,j)mi,j + e
. (6)

According to the above equations, the reserved tokens that
have not been chosen as host tokens remain unchanged,
while the pruned tokens are squeezed into host tokens and
replace the original ones.

As can be seen, our matching and fusing steps ensure
that the number of processed tokens equals the number of
reserved tokens, thereby maintaining a constant shape for
efficient inference.

3.4. TPS on Hybrid ViTs

To prove our flexibility and generalization across differ-
ent transformers, we also conduct experiments in hybrid
ViTs [31, 33]. For plain transformer blocks, our TPS mod-
ules can be easily inserted to reduce the token number and
achieve a significant speedup. If the layer contains opera-
tions that require a complete spatial structured input: e.g.,
convolution or pooling, the operation of our TPS will be
adjusted slightly. For example, in PVT [31] models, the
TPS module is inserted before the first block of each stage
with token pruning applied and generates the decision pol-
icy D. For the attention layer, we decrease the token di-
mension size of the input and consequent query Q. If the

spatial-reduction layer is employed inside, the dropped to-
ken features are complemented with zeros to maintain the
structured spatial input. More details can be found in sup-
plementary materials.

4. Experiment
Datasets and evaluation metrics. We conduct contrast

experiments with two typical baselines: DynamicViT [25]
and EViT [16], and compare our performances with state-
of-the-art transformers. For quantitative comparisons, we
report the Top-1 accuracy, the number of giga floating-point
operations (GFLOPs), and throughput. The input size is set
to 224×224 for all the experiments. The evaluated datasets
include the ImageNet1K [4] and the large fine-grained im-
age classification dataset: iNaturalist 2019 [29].

Experiments Details. We follow the same data aug-
mentations used in DeiT [28]. The model is initialized
with pre-trained models’ weights and fine-tuned with dif-
ferent token pruning locations and keeping ratios. We adopt
the AdamW [18] as the optimizer and a cosine learning
rate scheduler. We compare our dTPS and eTPS with Dy-
namicViT [25] and EViT [16] under multiple pruning set-
tings1. We follow the same training settings and loss func-
tions from [16, 25], except for the basic learning rate is
set to batchsize

1024 × 2.5 × 10−4 and no stage of fixing back-
bone weights in dynamicViT & dTPS. The setting changes
slightly because the training under the original setting ap-
pears unstable, especially with aggressive pruning.

4.1. Main Results

Comparison to baselines. As Fig. 5 shows, we com-
pare our method with the token pruning baseline: Dynam-
icViT, and the token reorganization baseline: EViT, by re-
placing their original pruning modules with our dTPS &
eTPS modules. The contrast experiments involve DeiT-
small&tiny. All the models in this part are fine-tuned 30
epochs under multiple pruning settings. Under all the set-
tings, our method outperforms DynamicViT and EViT. Both
dynamicViT and EViT encounter a larger accuracy drop
along with the progressively aggressive pruning. While
shrinking the computational budgets of DeiT to 35%, our
method can avoid 1%-6% accuracy decline compared with
baselines. Equipped with our TPS, we can accelerate the
throughput of DeiT-small to 1745 images/s, which is be-
yond that of DeiT-tiny: 1686 images/s, and surpass the ac-
curacy of DeiT-tiny by 4.78%.

Visual Comparisons. We demonstrate the cases from
ImageNet1K [4], which DeiT predicts correctly at first but
gives the wrong predictions after being applied with token
pruning. As Fig. 7 shows, the imperfect pruning policy

1The pruning settings include combinations of three multi-layer prun-
ing settings: pruning locations include {4th,7th,10th},{3rd,5th,7th,9th}, and
{4th,6th,8th,10th}, and token keeping ratios ρ ∈ {0.5, 0.7}
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(a) Comparison between our dTPS and dynamicViT on DeiT. (b) Comparison between our eTPS and EViT on DeiT.

Figure 5. ImageNet1K results of our two variants: dTPS & eTPS, and two baselines: DynamicViT [25] & EViT [16], under different
GFLOPs of pruned DeiT-small&tiny [28]. The parameter number of two variants is the same as the two baselines respectively. The
throughput is measured on a single NVIDIA RTX 2080Ti with a batch size of 32. The more aggressively we apply token pruning on
backbones, the more competitive accuracy-computation trade-off our method shows. See supplementary materials for TPS on DeiT-base
and with a 384× 384 input size .

Figure 6. Comparison between DeiT & LV-ViT with our TPS applied and other transformer methods, including token pruning [8,9,16,20,
20,25,35], vanilla ViTs [2,13,23,28,38,39] and hybrid ViTs [17,31,34,40]. Our TPS outperforms numerous state-of-the-art transformers
on ImageNet1K image classification with only 30 fine-tuning epochs required.

brings the context information loss, which leads to a close
but incorrect prediction. However, our TPS remedies these
cases by saving the pruned tokens’ information.

Comparison to states of the art. In Fig. 6, we demon-
strate our TPS performances compared with other state-of-
the-art transformers, including token pruning methods [8,
16,20,20,25,35], vanilla ViTs [2,13,23,28,38,39] and hy-
brid ViTs [17, 31, 34, 40]. By integrating DeiT-small&tiny

and LV-ViT-small&tiny with TPS and fine-tuning them only
30 epochs, we can achieve a quite competitive performance
among numerous vision transformers from the perspective
of accuracy-computation trade-off.

Extension on more backbones. As shown in Tab. 1
and Tab. 2, we incorporate TPS into different vanilla
ViTs [28, 38, 39] and hybrid ViTs [31, 40] to prove the flex-
ibility and generalization. For vanilla ViTs, our TPS out-
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Figure 7. Visual comparisons between token pruning [25] and
our TPS. DynamicViT and our dTPS on DeiT-small give the re-
sults. The pruning locations include {4th,7th,8th} and each pruning
stage’s keeping ratio is 0.5. The cases are displayed based on the
results of the first pruning stage. For DynamicViT, the blank areas
denote pruned tokens; for dTPS, we mask each group of matched
tokens as the same color for visualization clarity.

performs EViT [16], Evo-ViT [35], A-ViT [36], IA-RED2

and SPViT [14] with equal or slightly increasing compu-
tation while using DeiT [28], LV-ViT [13] as backbones.
DeiT-small&tiny with TPS applied can surpass the pre-
trained models by 0.3% and 0.7% in accuracy under 100
fine-tuning epochs. For hybrid ViTs, we can compress the
GFLOPS of PVT-tiny by 13% and improve its accuracy by
0.1%.

Fine-Grained Visual categorization. We compare our
dTPS with DynamicViT by fine-tuning DeiT on iNaturalist
2019 [29] as shown in Tab. 3. See the supplementary mate-
rials for the training details on iNaturalist 2019 [29]. Com-
pared with dynamicViT, our dTPS obtains 0.3% accuracy
improvement in DeiT-tiny and 0.2% accuracy improvement
in DeiT-small when fine-tuning 30 epochs, respectively. We
further fine-tune dTPS 100 epochs and observe a significant
improvement in both backbones. Notably, dTPS fine-tuned
with 100 epochs is only 0.1% lower than Deit-small while
shrinking the computational budgets of Deit-small to 65%.

4.2. Ablation Study

Epochs of training. Fig. 8 shows that both variants can
benefit from longer training epochs and surpass the DeiT-
small&tiny with only 65% GFLOPS. However, the benefit
of epochs varies slightly in two variants. Because the class-
token attention scoring requires no extra optimization tar-
get, eTPS performs better than dTPS under 30 epochs. On
the other hand, dTPS can benefit more from longer training
epochs in DeiT-small, for its learnable scoring brings higher
performance upper bound.

Feature Type. We show the effects of feature type used
to establish the matching relationships. Supposing xi is the
full embedding of the token and the position feature pi is the
corresponding positional embedding, we define the content
feature as xi −pi. As Tab. 4 illustrates, the entire feature is

Method Param(M) GFLOPs Top-1 Acc.(%)

DeiT-S 22.05 4.6 79.8

DynamicViT [25] 22.77 2.9 79.3
EViT [16] 22.05 3.0 79.5
ATS† [8] 22.05 2.9 79.7
A-ViT† [36] (100 epochs) 22.05 3.6 78.6
Evo-ViT [35] (300 epochs) 22.05 3.0 79.4
SPViT [14] (75 epochs) 22.13 2.7 79.3
IA-RED2 [21] (90 epochs) - - 79.1
eTPS (ours) 22.05 3.0 79.7
dTPS* (ours) 22.77 3.0 80.1

DeiT-T 5.72 1.3 72.2

DynamicViT(re-impl) [25] 5.90 0.8 71.4
EViT(re-impl) [16] 5.72 0.8 71.9
A-ViT† [36] (100 epochs) 5.00 0.8 71.0
Evo-ViT [35] (300 epochs) 5.72 0.8 72.0
SPViT [14] (75 epochs) - 0.9 72.1
eTPS (ours) 5.72 0.8 72.3
dTPS* (ours) 5.90 0.8 72.9

LV-ViT-S 26.17 6.6 83.3

DynamicViT [25] 26.89 3.8 82.0
EViT [16] 26.17 3.9 82.5
eTPS (ours) 26.17 3.8 82.5
dTPS* (ours) 26.89 3.8 82.6

LV-ViT-T 8.53 2.9 79.1

DynamicViT(re-impl) [25] 8.82 2.0 77.1
eTPS (ours) 8.53 2.0 78.0
dTPS* (ours) 8.82 2.0 78.7

PS-ViT-B/14 [39] 21.34 5.4 81.7

ATS† [8] 21.34 3.7 81.5
dTPS* (ours) 22.07 3.7 81.5

Table 1. Comparison among different token pruning methods ap-
plied to multiple vanilla vision transformers. “*” denotes our
method is fine-tuned 100 epochs. Methods marked with ”†” do not
support constant-shape inference. Prior methods above are trained
30 epochs by default unless otherwise specified. “Re-impl” means
that we implement the method according to the official code. For
a fair comparison with prior methods, we utilize computationally
comparable pruning setups to fine-tune backbones with TPS.

Method Param (M) GFLOPs Top-1 Acc. (%)

PVT-T [31] 13.23 1.94 75.1
dTPS* (ours) 13.85 1.69 (-13%) 75.2 (+0.1)

PVT-S 24.49 3.83 79.8
dTPS* (ours) 25.11 3.14 (-18%) 79.2 (-0.6)

CvT-13 [33] 20.00 4.58 81.6
dTPS* (ours) 20.72 3.04 (-34%) 80.8 (-0.8)

CvT-21 31.62 7.21 82.5
dTPS* (ours) 32.35 4.10 (-43%) 80.9 (-1.6)

Table 2. Experiments of our methods applied to hybrid vision
transformers, including PVT [31] and CVT [33].

more favorable for it contains both the content and position
information.
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Method Param(M) GFLOPs Top-1 Acc.(%)

DeiT-S [28] 22.05 4.6 74.8
DynamicViT(re-impl) [25] 22.77 2.9 74.0
dTPS (ours) 22.77 3.0 74.2
dTPS* (ours) 22.77 3.0 74.7

DeiT-T 5.72 1.26 72.8
DynamicViT(re-impl) [25] 5.90 0.8 71.4
dTPS (ours) 5.90 0.8 71.7
dTPS* (ours) 5.90 0.8 72.4

Table 3. Results of dynamicViT [25] and dTPS on iNaturalist
2019 [29]. The two models are trained 30 epochs by default. “*”
denotes the model is trained 100 epochs. “Re-impl” means we
implement the method on the backbone according to the official
code. See the appendix for the training details of the backbone.

Figure 8. ImageNet1K results of our dTPS & eTPS under different
GFLOPs of the pruned model under 30 & 100 fine-tuing epochs.
Both dTPS and eTPS benefit from longer epochs and surpass the
performances of pre-trained DeiT-small&tiny.

Feature Type Top-1 Acc. (%)

Full 71.90
Content 71.73
Position 70.92

Table 4. Different feature types used in the matching step. Con-
ducted on DeiT-tiny with pruned layers at {4th,7th,8th} and keeping
ratio set to 0.7.

TPM Variant Similarity Matrix GFLOPs Top-1 Acc.(%)

dTPS Cosine similarity 0.810 71.90
Previous attention 0.807 71.35

eTPS Cosine similarity 0.821 72.26
Previous attention 0.818 71.67

Table 5. Comparison between different types of cost matrix. The
baseline denotes calculating the tokens’ cosine similarity; the pre-
vious attention denotes that we reuse it to devise the matching re-
sults. Conducted on DeiT-tiny with pruned layers at {4th,7th,8th}
and keeping ratio set to 0.7.

Similarity Matrix. Considering that the dot-product at-
tention of query and key measures tokens’ relationships nat-
urally, we have tried reusing the previous attention to re-

Methods Policy Top-1 Acc. (%)

DynamicViT Original 79.42
Random 76.51 (-3.7)

dTPS Original 79.68
Random 78.19 (-1.9)

EViT Original 79.51
Random 77.47 (-2.6)

eTPS Original 79.66
Random 78.06 (-2.0)

Table 6. ImageNet1K results of applying random token selection
policy to our methods and baselines. The percentages in parenthe-
ses represent the relative performance degradation ratio brought
by random policies.

place the computations of cosine similarities in the match-
ing step. We believe the previous attention is outdated to
measure current tokens’ relations and Tab. 5 shows that
calculating the cosine similarity of current features outper-
forms reusing the attention with only a minor computational
increase.

4.3. Robustness Experiments

We generate random token selection policies to construct
manufactured policy errors that simulate the cases brought
by sub-optimal token pruning strategies. All models are
based on DeiT-small and fine-tuned 30 epochs with iden-
tical pruning setups. We run the experiments under ran-
dom policies 100 times and report the average results. By
comparing the performances of our method with dynam-
icViT [25] and EViT [16], the accuracy drop from the orig-
inal to random policies denotes the robustness under incor-
rect policies. As shown in Tab. 6, our inter-block version
dTPS and intra-block version eTPS have fewer accuracy
drops than dynamicViT [25] and EViT [16].

5. Conclusions and Limitations
In this paper, we presented a novel joint Token Pruning

& Squeezing (TPS) module to compress vision transform-
ers more aggressively. With the capability of conserving
information, our TPS can avoid a significant performance
drop compared to token pruning and reorganization. Our
method has better efficiency than prior token pruning meth-
ods and states of the arts in vision transformers. Extensive
experiments under various backbones and quantitative anal-
yses show our flexibility and robustness.

However, there are still some limitations to our method.
Firstly, structured spatial operations of hybrid ViTs restrict
the straightforward integration of token pruning. Secondly,
the procedure of fine-tuning pre-trained models might be
replaced by more advanced pruning-aware training-from-
scratch schemes to shorten the total training time. In the
future, we will evolve our method to be more adaptive to
hybrid ViTs and apply it to more dense prediction tasks.
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Hervé Jégou. Training vision transformers for image re-
trieval. arXiv preprint arXiv:2102.05644, 2021. 2

[7] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichten-
hofer. Multiscale vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 6824–6835, 2021. 2

[8] Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush
Rezaei, and Sommerlade1 Hamed Pirsiavash2 Juergen Gall.
Adaptive token sampling for efficient vision transformers. 1,
2, 3, 6, 7

[9] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. Advances
in Neural Information Processing Systems, 34:15908–15919,
2021. 6

[10] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. Transreid: Transformer-based object re-
identification. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 15013–15022, 2021. 2

[11] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 1

[12] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 4

[13] Zi-Hang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun
Shi, Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens
matter: Token labeling for training better vision transform-
ers. Advances in Neural Information Processing Systems,
34:18590–18602, 2021. 2, 6, 7

[14] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Xuan Shen, Geng Yuan, Bin Ren, Hao

Tang, et al. Spvit: Enabling faster vision transformers via
latency-aware soft token pruning. In European Conference
on Computer Vision, pages 620–640. Springer, 2022. 1, 3, 4,
7

[15] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc
Van Gool. Localvit: Bringing locality to vision transformers.
arXiv preprint arXiv:2104.05707, 2021. 2

[16] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,
Jue Wang, and Pengtao Xie. Not all patches are what you
need: Expediting vision transformers via token reorganiza-
tions. arXiv preprint arXiv:2202.07800, 2022. 1, 2, 3, 4, 5,
6, 7, 8

[17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 1, 2, 6

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[19] Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi
Feng, Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel
transformer for 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3164–3173, 2021. 2

[20] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan,
Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim. Adavit:
Adaptive vision transformers for efficient image recognition.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12309–12318, 2022.
2, 3, 6

[21] Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang
Wang, Rogerio Feris, and Aude Oliva. Ia-red 2̂:
Interpretability-aware redundancy reduction for vision trans-
formers. Advances in Neural Information Processing Sys-
tems, 34:24898–24911, 2021. 1, 7

[22] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao
Huang. 3d object detection with pointformer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7463–7472, 2021. 2

[23] Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jian-
fei Cai. Scalable vision transformers with hierarchical pool-
ing. In Proceedings of the IEEE/cvf international conference
on computer vision, pages 377–386, 2021. 6
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