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Abstract

Multimodal learning has shown great potentials in nu-
merous scenes and attracts increasing interest recently.
However, it often encounters the problem of missing modal-
ity data and thus suffers severe performance degradation
in practice. To this end, we propose a general framework
called MMANet to assist incomplete multimodal learn-
ing. It consists of three components: the deployment net-
work used for inference, the teacher network transferring
comprehensive multimodal information to the deployment
network, and the regularization network guiding the de-
ployment network to balance weak modality combinations.
Specifically, we propose a novel margin-aware distilla-
tion (MAD) to assist the information transfer by weigh-
ing the sample contribution with the classification uncer-
tainty. This encourages the deployment network to focus
on the samples near decision boundaries and acquire the
refined inter-class margin. Besides, we design a modality-
aware regularization (MAR) algorithm to mine the weak
modality combinations and guide the regularization net-
work to calculate prediction loss for them. This forces
the deployment network to improve its representation abil-
ity for the weak modality combinations adaptively. Fi-
nally, extensive experiments on multimodal classification
and segmentation tasks demonstrate that our MMANet out-
performs the state-of-the-art significantly. Code is available
at: https://github.com/shicaiwei123/MMANet

1. Introduction

Multimodal learning has achieved great success on many
vision tasks such as classification [21, 33, 46], object detec-
tion [26, 45, 53], and segmentation [5, 23, 41]. However,
most successful methods assume that the models are trained
and tested with the same modality data. In fact, limited
by device [32, 39], user privacy [13, 25], and working con-
dition [3, 29], it is often very costly or even infeasible to

Modality Customized Unified Drop

RGB 10.01 11.75 -1.65
Depth 4.45 5.87 -1.42

IR 11.65 16.62 -4.97
RGB+Depth 3.41 4.61 -1.2

RGB+IR 6.32 6.68 -0.36
Depth+IR 3.54 4.95 -1.41

RGB+Depth+IR 1.23 2.21 -0.98

Table 1. The performance of customized models and the uni-
fied model for different modality combinations on the CASIA-
SURF dataset using the average classification error rate. The
‘customized‘ means to train a model for each combination inde-
pendently while the ‘unified’ means to train only one model for
all the combinations. The architectures of all the models are the
same and the feature map of missing modality (such as the IR for
RGB+Depth) is set as zero.

collect complete modality data during the inference stage.
There is thus substantial interest in assisting the incomplete
or even single modality inference via the complete modality
data during training.

A typical solution is to reconstruct the sample or feature
of the missing modalities from the available ones [10, 14,
15, 20, 29, 32]. Nevertheless, this needs to build a specific
model for each modality from all possible modality combi-
nations and thus has high complexity. Recent studies focus
on learning a unified model, instead of a bunch of networks,
for different modality combinations. Generally, many such
approaches [6, 11, 12, 17, 51, 52] attempt to leverage feature
fusion strategies to capture modality-invariant representa-
tion so that the model can adapt to all possible modality
combinations. For example, RFNet [11] designs the region-
aware fusion module to fuse the features of available image
modalities.

Although the existing unified models are indeed able to
increase the efficiency of training and deployment of the
multimodal models, their performance is likely to be sub-
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optimal. As shown in Table 1, the customized models con-
sistently outperform the unified model for different modal-
ity combinations. This is because existing unified mod-
els usually focus on the modality-invariant features while
ignoring the modality-specific information. Note that the
complementary modality-specific information of multiple
modalities can help refine the inter-class discrimination and
improve inference performance [2, 18, 36]. This motivates
us to propose the first research question of this paper: Can a
unified model consider the modality invariant and spe-
cific information simultaneously while maintaining ro-
bustness for incomplete modality input?

To this end, we propose to guide the unified model to
learn the comprehensive multimodal information from the
teacher model trained with complete modality. This regular-
izes the target task loss to encourage the unified model to ac-
quire complementary information among different modal-
ity combinations multimodal information while preserv-
ing the generalization to them. Specifically, we propose a
novel margin-aware distillation (MAD) that trains the uni-
fied model by guiding it to mimic the inter-sample relation
of the teacher model. MAD introduces the classification
uncertainty of samples to re-weigh their contribution to the
final loss. Since the samples near the class boundary are
more likely to be misclassified and have higher classifica-
tion uncertainty [8], this encourages the unified model to
preserve the inter-class margin refined by the complemen-
tary cues and learn the modality-specific information.

Another limitation of existing unified approaches is that
they struggle to obtain optimal performance for the unbal-
anced training problem. To be specific, conventional multi-
modal learning models tend to fit the discriminative modal-
ity combination and their performance will degrade signif-
icantly when facing weak modality combinations. To solve
this issue, existing unified approaches introduce the auxil-
iary discriminator to enhance the discrimination ability of
the unimodal combinations [6, 11, 51]. This utilizes a hy-
pothesis that a single modality is weaker than multiple ones.
However, as shown in Table 1, no matter for the customized
model or the unified model, the single Depth modality out-
performs the RGB, IR, and their combinations. This indi-
cates the combination with multiple weak modalities may
be harder to be optimized than a single strong modality.
Moreover, as shown in Table 3, RGB becomes the strong
modality while Depth and IR become the weak modalities.
This indicates that the modality importance is not fixed but
varies with scenarios. These findings motivate us to propose
the second research question: How to effectively optimize
the weak modality combination in varying scenarios?

To this end, we design a regularization network and
MAR algorithm to assist the training of the unified network.
Specifically, the regularization network generates additional
predictions for all inputs. Then MAR mines and calculates

prediction loss for the sample from the weak combinations.
This forces the unified model to improve its representation
ability for the weak combination. In detail, MAR mines the
weak combination via the memorization effect [1, 16, 49]
that DNNs tend to first memorize simple examples before
overfitting hard examples. As shown in Fig. 5(a), the uni-
fied model tends to fit the samples containing Depth modal-
ity firstly at the early stage. Therefore, MAR first mines the
strong modality via the memorization effect. Then it deter-
mines the combinations of rest modalities as the weak ones.

Finally, we develop a model and task agnostic frame-
work called MMANet to assist incomplete multimodal
learning by combining the proposed MAD and MAR strate-
gies. MMANet can guide the unified model to acquire com-
prehensive multimodal information and balance the perfor-
mance of the strong and weak modality combination si-
multaneously. Extensive comparison and ablation experi-
ments on multimodal classification and segmentation tasks
demonstrate the effectiveness of the MMANet.

2. Related work

2.1. Multimodal Learning for Missing Modalities

Most existing multimodal learning methods assume that
all instances consist of full modalities. However, this as-
sumption does not always hold in real-world applications
due to the device [32, 39], user privacy [13, 25], and work-
ing condition [3, 29]. Recently, many incomplete multi-
modal learning methods have been proposed and can be
roughly categorized into two types: customized methods
and unified methods. Customized methods aim to train a
specific model to recover the missing modality in each in-
complete modality combination. According to the recover-
ing target, the customized methods can be further divided
into sample-based methods and representation-based meth-
ods. Sample-based methods focus on imputing the missing
modality at the input space with generative adversarial net-
works [4,27,32,37]. Due to the complexity of sample recon-
struction, it is usually unstable and may introduce noise to
harm the primary task at hand [34]. Thus the representation-
based methods are proposed to reconstruct the sample rep-
resentation via the knowledge distillation [3, 14, 20, 29] or
matrix completion [30, 35]. Although promising results are
obtained, these methods have to train and deploy a specific
model for each subset of missing modalities, which has high
complexity in practical applications.

The unified methods aim to train one model to deal with
different incomplete modality combinations by extracting
the modality-invariant features. For example, HeMIS [17]
learns an embedding of multimodal information by com-
puting statistics (i.e., mean and variance) from any num-
ber of available modalities. Furthermore, Chen et al. intro-
duce the feature disentanglement to cancel out the modality-
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specific information. Besides, more recent methods, such as
LCR [52] and RFNet [11] focus on extracting the modality-
invariant representation via different attention mechanisms.
Moreover, mmFormer [51] introduces the transformer block
to model the global semantic information for the modality-
invariant embedding. While these methods achieve promis-
ing results, they only consider the modality-invariant in-
formation while ignoring the modality-specific information.
As a result, they usually perform much worse than the cus-
tomized methods, especially when more than one modality
is missing [48].

2.2. Knowledge Distillation

Knowledge distillation aims to transfer knowledge from
a strong teacher to a weaker student network to facilitate
supervised learning. Generally, the distillation method can
be divided into three types: response-based distillation that
matches the softened logits of teachers and students [19],
the representation-based distillation that matches the fea-
ture maps [24,28,40], and the relation-based distillation that
matches the sample relations. [38, 47].

While originating from the resource-efficient deep learn-
ing, knowledge distillation has found wider applications in
such areas as incomplete multimodal learning. Here, it is
used to transfer the privileged modality information that can
only be accessed during the training stage from the teacher
to the student [3,29]. Since the input of the teacher and stu-
dent network is different in incomplete multimodal learn-
ing, transferring knowledge by representation-based meth-
ods may lead to overfitting [15]. Recent methods focus
on transferring the privileged modality information by the
relation-based methods [7,22,48]. However, these prior arts
usually consider different instances equally and ignore their
specificity, which would lead to sub-optimal performance.

3. Method
3.1. MMANet

In this section, we introduce a general framework called
MMANet to address the challenge of incomplete multi-
modal learning. As shown in Fig. 1, it consists of three
parts: deployment network, teacher network, and regular-
ization network. Specifically, the deployment network is
the inference network. To make it robust to the modality
incompleteness, MMANet introduces the Bernoulli indica-
tor ∆ = {δ1...δm} after modality encoders and conducts
modality dropout during the training stage by randomly set-
ting some components of ∆ as 0. For missing modalities,
the corresponding encoded feature maps will be replaced
by a zero matrix. Besides, MMANet introduces the teacher
network that is pre-trained with complete multimodal data
to transfer the comprehensive multimodal knowledge to
the deployment network via the MAD. This helps the de-

ployment network acquire the modality-invariant and spe-
cific features simultaneously. Finally, MMANet guides the
deployment network to train together with the regulariza-
tion network that produces additional predictions for the
weak modality combination via the MAR. This alleviates
the overfitting for strong modality combinations. The to-
tal loss to guide the training of the deployment network is
defined as follows,

Ltotal = LTL + αLMAD + βLMAR (1)

where α and β are the hyper-parameters. LLT is task learn-
ing loss, which is determined by the primary task at hand.
For example, LLT may be the cross entropy loss when the
primary task is classification. LMAD and LMAR are the
loss of MAD and MAR respectively.

Besides, the other nations used in MMANet are de-
fined as follows. Given a mini-batch multimodal input
x = {x1, ..., xm}, xm ∈ Rb denotes the data of mth modal-
ity. b is the batch size. Et

m and Ed
m denote the encoders

for the mth modality in the teacher and deployment net-
works, respectively. F t and F d denote the fusion mod-
ule used in the teacher and deployment networks, respec-
tively. ∆d ∈ Rb×m is the vector of ∆. zt ∈ Rbt×ct×ht×wt

and zd ∈ Rbd×cd×hd×wd

denote the fused features of
the teacher and deployment networks, respectively. Here,
where b is the batch size, c is the number of output chan-
nels, and h and w are spatial dimensions. P t, P r, and P d

denote the task predictor of the teacher, regularization, and
deployment networks, respectively. yt,yr, and yd denote
the Rb×k prediction matrix of the teacher, regularization,
and deployment networks, respectively. Here, k is the class
number.

3.2. MAD

This section introduces the proposed MAD strategy
for transferring the comprehensive multimodal information
from the teacher network to the deployment network. As
shown in Fig. 1, MAD is conducted between the zt and
zd. zd of a simple is varying due to the random modal-
ity dropout. In contrast, the sample semantic is invariant.
Thus, MAD proposes to transfer the teacher’s knowledge
via relation consistency instead of feature consistency. This
helps avoid overfitting and harming the representation abil-
ity of deployment networks. Moreover, MAD proposes to
measure the class boundaries and guide the unified model
to pay more attention to the samples near them. This can
encourage the development network to inherit the refined
inter-class margin from the teacher network. Nevertheless,
boundaries are usually difficult to detect due to their irregu-
larity. To solve this issue, MAD introduces the classification
uncertainty of each sample to re-weight its contribution for
the total loss. Since the samples near the class boundaries
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Figure 1. Overview of the proposed MMANet. It consists of three parts: the deployment network used for final inference, the teacher
network transferring comprehensive multimodal knowledge to the deployment network, and the regularization network guiding the de-
ployment network to balance weak modality combinations.

Figure 2. The illustration of the proposed MAD.

are more likely to be misclassified and have higher classifi-
cation uncertainty, this can realize attention to them.

The overview of the MAD is shown in Fig. 2. It takes
zt, zd, and yt as the input and consists of three steps: (a)
calculating the relation discrepancy vector gtd ∈ Rb, (b)
calculating the classification uncertainty vector πt ∈ Rb

and (c) calculating the total loss LMAD for MAD.
(a) MAD calculates gtd from zt and zd. Specifically,

MAD first reshape zt and zd into zt
′ ∈ Rbt×ct∗ht∗wt

and
zd

′ ∈ Rbd×cd∗hd∗wd

. Then MAD calculates the relation
matrix rt ∈ Rb×b and rd ∈ Rb×b via the same relation
function R(u,v), respectively. And the rt(i, j) that denotes
the relation between ith and jth sample representations of
the teacher network can be expressed as follows,

rt(i, j) = R(zt
′
(i, :), zt

′
(j, :)) (2)

Besides, the rd(i, j) that denotes the relation between ith
and jth sample representations of the deployment network

can be expressed as follows,

rd(i, j) = R(zd
′
(i, :), zd

′
(j, :)) (3)

Theoretically, R(u, v) can be any metric for measur-
ing the vector distance, such as the Euclidean distance and
the cosine distance. Because the dimension of the feature
vectors of the teacher and the deployment networks could
be very high, to eliminate the curse of dimensionality, we
choose cosine distance as the R(u, v),

R(u, v) =
uT v

∥u∥2||v∥2
(4)

Furthermore, MAD calculates the discrepancy matrix
between rt and rd and sum each row to get gtd.

gtd =

b∑
i=1

(rt − rd)i (5)

Here, gtd(i) denotes the relation gap between the teacher
and deployment networks from the ith sample to other sam-
ples in the same mini-batch.

(b) MAD calculates πt from yt. In detail, it takes the
information entropy of the logit output of each sample as its
classification uncertainty. And the classification uncertainty
for ith sample, πt(i), can be expressed as follows,

{
πt(i) = H(yt(i, :)) (6)
H(x) = −σ(x) ∗ log(σ(x)) (7)

where σ(.) is the softmax function for normalization. H(x)
is the information entropy of x. A sample that has a higher
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classification uncertainty is usually closer to the decision
boundaries, since it is more likely to be misclassified. Thus,
πt(i), i ∈ [1, b] can also denote the margin from the ith
sample representation to the decision boundary.

(c) Finally, MAD takes πt(i) as the weight for the corre-
sponding component gtd(i) to calculate LMAD,

LMAD =

b∑
i=1

σ(πt)(i) ∗ gtd(i) (8)

This encourages the deployment network to focus on the
samples near the decision boundaries and preserve the inter-
class margin refined by the comprehensive multimodal in-
formation from the teacher network.

3.3. MAR

This section introduces the MAR algorithm that forces
the deployment network to improve its discriminating abil-
ity for weak modality combinations adaptively. As shown
in Fig. 1, MAR takes the yr, yd and ∆d as as the input
to calculate the LMAR. Specifically, MAR first proposes
a contrastive ranking strategy to mine the weak modality
combinations. Compared to simply taking the combination
with a single modality as the weak one, this further con-
siders the combination with multiple modalities and can get
more accurate mining results. Then, MAR calculates the
prediction loss for the weak modality combinations, guid-
ing the deployment network to pay more attention to them.

The overview of MAR is shown in Fig. 3. It consists
of two steps: (a) when E ≤ N , mining the weak modal-
ity combination set Ω, and (b) when E > N , calculating
LMAR. Here E is the current training epoch, and N is the
number of warm-up epochs.

(a) MAR calculates Ω from yd using contrastive rank-
ing. MAR proposes to calculate the predicted output Y O ∈
R(m+1)×n×k of ∆i, i ∈ [0,m], on the train set after each
training epoch.

Y O(i, :, :) = yd(∆i) (9)

n is sample number. ∆i means the ith component of ∆ is 0.
∆0 means none component of ∆ are 0, which must contain
the strong modality. Since the deployment network tends to
first memorize the samples with strong modality, ∆w, w ∈
[1,m] that makes Y O(w, :, :) has the biggest distance with
Y O(0, :, :) is the hard combination that does not contain the
strong modality. And the element of Ω can be determined
as ∆w and the ∆ consists of the modalities in it.

Specifically, to make ∆w robust for the randomness of
neural network learning, MAR introduces two innovations.
Firstly, MAR calculates the prediction discrepancy from the
prediction distribution Y d ∈ R(m+1)×k instead of Y O,{

Y d(i, j) =
∑

(Y D(i, :) == j) (10)

Y D = argmax(Y O, dim = 2) (11)

Figure 3. The illustration of the proposed MAR.

where j ∈ [0, k − 1]. Compared with Y O, Y d needs only
class-wise but not sample-wise consistency. Then the vector
discrepancy vector gd ∈ Rm is defined as follows,

gd(i) = KL(log(σ(Y d(i))), σ(Y d(0))) (12)

where KL(,) means the KL divergence, i ∈ [1,m].
Secondly, MAR introduces a memory bank Md ∈

RN×m to save the gd among the warm-up epochs and per-
forms average filtering to obtain gd,

gd =

N∑
i=1

1

N
(Md)i (13)

where (Md)i is the gd in the ith epoch. And ∆w can be
determined as ∆i where i = argmax(gd).

(b) MAR calculates LMAR from yr, ∆d and Ω. In detail,
MAR first calculates the weak combination mask Mr ∈ Rb

from ∆d and Ω,{
Mr(i) = FALSE if∆d(i) /∈ Ω (14)
Mr(i) = TRUE if∆d(i) ∈ Ω (15)

where i ∈ [0, b − 1], ∆d(i) is the ∆ for the ith sample in
this mini-batch. Then, the LMAR is defined as follows,

LMAR = LTL(y
r[Mr], l[Mr]) (16)

where l is the groundtruth vector for yr. [.] denotes the
index operator.

4. Experiments
We conduct experiments on multimodal classification

and segmentation tasks to evaluate the proposed MMANet.
In the following, we first compare the MMANet architec-
ture with the state-of-the-art on these two tasks. Then, we
ablate the MAD and MAR strategies of MMANet.

4.1. Performance and Comparison on Multimodal
Classification

Datasets: We take the face anti-spoofing task as the ex-
ample of the multimodal classification and conduct exper-
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Table 2. Performance on the multimodal classification task with CASIA-SURF. ↓ means that the lower the value, the better the performance.

Modalities ACER(↓)
Customized UnifiedRGB Depth IR SF SF-MD HeMIS LCR RFNet MMFormer MMANet

 # # 10.01 11.75 14.36 13.44 12.43 11.15 8.57
#  # 4.45 5.87 4.70 4.40 4.17 4.67 2.27
# #  11.65 16.62 16.21 15.26 14.69 13.99 10.04
  # 3.41 4.61 3.23 3.32 2.23 1.93 1.61
 #  6.32 6.68 6.27 5.16 4.27 4.77 3.01
#   3.54 4.95 3.68 3.53 3.22 3.10 1.18
   1.23 2.21 1.97 1.88 1.18 1.94 0.87

Average 5.80 7.52 7.18 6.71 6.02 5.93 3.94

Table 3. Performance on the multimodal classification task with
the CeFA dataset.

Modalities ACER(↓)

RGB Depth IR Customized Unified
SF MMFormer MMANet

 # # 27.44 28.51 27.15
#  # 33.75 33.58 32.50
# #  36.17 39.56 35.62
  # 35.62 29.47 22.87
 #  31.62 27.66 23.27
#   36.62 32.17 30.45
   24.15 30.72 23.68

Average 32.20 31.52 27.94

iments on the CASIA-SURF [50] and CeFA [31] datasets.
Both of them consist of the RGB, Depth, and IR modalities.
For CASIA-SURF, we follow the intra-testing protocol sug-
gested by the authors and divide it into train, validation, and
test sets with 29k, 1k, and 57k samples, respectively. For
CeFA, we follow the cross-ethnicity and cross-attack proto-
col suggested by the authors and divide it into train, valida-
tion, and test sets with 35k, 18k, and 54k samples, respec-
tively. Here we report the results on the test set using the
metric of Average Classification Error Rate (ACER) [50].

Implementation: We use random flipping, rotation, and
cropping for data augmentation. All models are optimized
by an SGD for 100 epochs with a mini-batch 64. The learn-
ing rate is initialized to 0.001 with 5 epochs of linear warm-
up and divided by 10 at 16, 33, and 50 epochs. Weight decay
and momentum are set to 0.0005 and 0.9, respectively.

The hyper-parameters of comparison methods use the
suggested ones in the original articles. The (α, β) for
MMANet is set as (30, 0.5) and (30, 0.5) for CASIA-SURF
and CeFA, respectively. The warm-up epoch N is set as 5.

Comparison: Here we compare MMANet with two dif-

ferent unified methods for incomplete multimodal learn-
ing. One is an early method that only focuses on extract-
ing modality-invariant features, such as HeMIS [17] and
LCR [52]. Another is the enhanced method that further con-
siders improving the discrimination ability for single-modal
combinations, such as RFNet [11], and mmFormer [51].

Besides, we introduce two baseline methods, SF and
SF-MD. SF [50] is the benchmark method of the CASIA-
SURF, which is a customized method that trains the model
for each modality combination. SF-MD is the variant of SF
by simply adding the Bernoulli indicator after its modality
encoder. This enables SF-MD to become a unified model
that trains a single model for all modality combinations.

Finally, for a fair comparison, we follow the basic im-
plementation of SF for all the comparison methods. Specif-
ically, we unify the modality encoders of HeMIS, LCR,
RFNet, and mmFormer as the ResNet18 used in SF. Be-
sides, we set the SF model trained with complete multi-
modal data as the teacher network and the SF-MD model
as the development network.

Results: Table 2 and Table 3 show the comparison
results with the state-of-the-art methods on the CASIS-
SURF and CeFA datasets, respectively. Compared with
the second-best unified method, i.e. mmFormer, MMANet
decreases the average ACER by 1.99% and 3.58% on the
CASIS-SURF and CeFA, respectively. Besides, we can
see that MMANet achieves the best performance on both
datasets for all the nine modality combinations for CASIA-
SURF. This shows the superiority of our method on the
incomplete multimodal classification task. More impor-
tantly, MMANet even outperforms the customized baseline
method, i.e. SF, for all the modality combinations on the
CASIA-SURF and CeFA, decreasing the average ACER by
1.86% and 4.26%. This demonstrates the effectiveness of
the proposed MAD and MAR for the incomplete multi-
modal classification task.

20044



Table 4. Performance on the multimodal segmentation task with NYUv2. ↑ means that the higher the value, the better the performance.

Modality mIOU(↑)

RGB Depth Customized Unified
ESANet ESANet-MD HeMIS LCR RFNet mmFormer MMANet

 # 44.22 41.34 33.23 41.91 42.89 43.22 44.93
#  40.55 39.76 31.23 39.88 40.76 41.12 42.75
  49.18 47.23 37.77 47.46 48.13 48.45 49.62

Average 44.65 42.77 34.07 43.08 43.92 44.26 45.58

Table 5. Performance on the multimodal segmentation task with
the Cityscapes dataset.

Modality mIOU(↑)

RGB Depth Customized Unified
ESANet mmFormer MMANet

 # 77.60 76.62 77.61
#  59.11 58.53 60.12
  78.62 78.01 78.89

Average 71.77 71.05 72.20

4.2. Performance and Comparison on Multimodal
Segmentation

Datasets: We take the semantic segmentation task as the
example of multimodal segmentation and conduct experi-
ments on the NYUv2 [43] and Cityscapes [9] datasets. Both
of them consist of the RGB and Depth modalities. Specif-
ically, NYUv2 contains 1,449 indoor RGB-D images, of
which 795 are used for training and 654 for testing. We
used the common 40-class label setting. Cityscapes is a
large-scale outdoor RGB-D dataset for urban scene under-
standing. It contains 5,000 finely annotated samples with a
resolution of 2048×1024, of which 2,975 for training, 500
for validation, and 1,525 for testing. Cityscapes also pro-
vides 20k coarsely annotated images, which we did not use
for training. For both datasets, we report the results on the
validation set using the metric of mean IOU (mIOU).

Implementation: We use random scaling, cropping,
color jittering, and flipping for data augmentation. All mod-
els are optimized by Adam for 300 epochs with a mini-batch
8. The learning rate is initialized with 1e-2 and adapted by
the PyTorch’s one-cycle scheduler [44].

The hyper-parameters of the comparison methods use
the suggested ones in their article.The hyper-parameter
(α, β) for MMANet is set as (4, 0.2) and (10, 0.1) for the
NYUv2 and Cityscapes datasets, respectively. The warm-
up epoch N is set as 20.

Comparison: We also compare MMANet with the
HeMIS [17], LCR [52], RFNet [11], and mmFormer [51].
Here, we set ESANet and ESANnet-MD as the baseline.

ESANet [42] is an efficient and robust model for RGB-
D segmentation, which trains the model for each modal-
ity combination. ESANet-MD is the variant of ESANet
by simply adding the Bernoulli indicator after its modal-
ity encoder. ESANet-MD trains only a single model for all
modality combinations. Finally, for a fair comparison, we
unify the modality encoder of HeMIS, LCR, RFNet, and
mmFormer as the ResNet50 with NBt1 used in ESANet.
Besides, we set the ESANet model trained with complete
multimodal data as the teacher network and the ESANet-
MD model as the development network.

Results: Table 4 and Table 5 list the comparison re-
sults on the NYUv2 and Cityscapes datasets, respectively.
From these results, we can see that MMANet achieves
the best performance on both datasets for all the modality
combinations. In particular, it outperforms the second-best
method, mmFormer, by 1.32% and 1.05% in the NYUv2
and Cityscapes datasets, respectively. This demonstrates the
effectiveness of the MMANet on the multimodal segmenta-
tion task. Moreover, MMANet improves the average per-
formance of ESANet-MD by 2.81% in the NYUv2 dataset
and even outperforms the customized baseline, ESANet, by
0.97% and 0.43% in NYUv2 and Cityscapes datasets. This
shows the effectiveness of the proposed MAD and MAR on
the incomplete multimodal segmentation task.

5. Ablation Study
This section will study the effectiveness of MAD and

MAR and conduct extensive ablation experiments on four
datasets. Limited by page, we only present the results of
the CASIA-SURF dataset and other results can be seen in
the supplementary material.

5.1. The effectiveness of MAD

To study the effect of MAD, we conduct experiments to
compare the performance of the vanilla SF-MD and its vari-
ant with SP and MAD. Here, SP is the degradation method
of MAD that transfers knowledge by directly matching
the cosine distance of the sample representations between
teacher and deployment networks. The results are shown
in Table 6. We can see that the variant of SF-MD con-
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Table 6. Ablation result of MAD on the CASIA-SURF dataset.

RGB Depth IR SF-MD +SP +MAD

 # # 11.75 10.7 10.36
 # 5.87 3.3 2.54
#  16.62 15.03 11.67

  # 4.61 2.52 1.23
 #  6.68 5.16 4.09

  4.95 3.18 1.44
   2.21 1.13 0.77

Average 7.5 5.9 4.57

Figure 4. The prediction distribution of the SF-MD model assisted
by SP and MAD on CASIA-SURF dataset. X-axis represents the
normalized logit output and x=0.5 is the classification boundary.
orange and blue dots denotes two different classes.

sistently outperforms the vanilla SF-MD in all the modal-
ity combination and improve its performance by 1.6% and
2.93% in average. This demonstrates the effectiveness of
transferring comprehensive multimodal information from
the teacher network to the deployment network. Further-
more, the proposed MAD outperforms SP by 1.33%, which
demonstrates the validity of re-weighing sample loss via the
classification uncertainty. This is because the classification
uncertainty re-weighing can encourage the deployment to
focus on the hard samples and thus acquire a more separa-
ble inter-class margin than the conventional SP (see Fig. 4).

5.2. The effectiveness of MAR

To study the effect of MAR, we conduct experiments to
compare the performance of the SF-MAD, namely the SF-
MD with the MAD, and its variant with SR and MAR. Here
SR is the conventional modality regularization strategy con-
sidering only the single modality combination. As shown
in Table 6, SR and MAR improve the performance of SF-
MAD by 0.24% and 0.63% in average, respectively, show-
ing the effeteness to regularize the single and weak modality
combinations. Moreover, MAR outperforms SR by 0.39%
in average, demonstrating the superiority of MAR.

Here the average gain of SR and MAR is less than SP
and MAD since they aim to improve the performance of
only the weak, not all combinations. Specifically, as shown
in Table 6, the three worst-performing combinations are

Table 7. Ablation result of MAR on the CASIA-SURF dataset.

RGB Depth IR SF-MAD +SR +MAR

 # # 10.36 9.17 8.57
 # 2.54 1.89 2.27
#  11.67 10.21 10.04

  # 1.23 1.66 1.61
 #  4.09 4.37 3.01

  1.44 2.12 1.18
   0.77 0.92 0.87

Average 4.57 4.33 3.94

Figure 5. (a) The learning process of different modality combina-
tions on the CASIA-SURF dataset during the warm-up stage. (b)
The corresponding gd ∈ R3 for (dashed line) and its average re-
sult gd (solid line) for the warm-up stage.

‘RGB’, ‘IR’ and, ‘RGB+IR’. However, SR only focuses
on the combinations of single modality, RGB (1.19%), IR
(1.46%), and Depth (0.65%), where ‘Depth’ is exactly a
strong modality. In contrast, Fig. 5(b) shows that the predic-
tion discrepancy between ‘RGB+IR’ and ‘RGB+Depth+IR’
is the largest. And the performance gain of MAR mainly
comes from RGB (1.79%), IR (1.63%), as well as the com-
bination of RGB and IR (1.02%). These results show that
MAR can mine the weak modality combinations more ac-
curately and force the deployment network to improve its
discrimination ability for them.

6. Conclusion
This paper presents an MMANet framework to aid the

deployment network for incomplete multimodal learning.
Specifically, MMANet introduces a teacher network pre-
trained with complete multimodal data to transfer the com-
prehensive multimodal information to the deployment net-
work via MAD. This helps it acquire modality-invariant and
specific information while maintaining robustness for in-
complete modality input. Besides, MMANet introduces a
regularization network to mine and regularize weak modal-
ity combinations via MAR. This forces the deployment
network to improve its discrimination ability for them ef-
fectively and adaptively. Finally, extensive experiments
demonstrate the effectiveness of the proposed MMANet,
MAD, and MAR for incomplete multimodal learning.
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Ourselin, and Tom Vercauteren. Hetero-modal variational
encoder-decoder for joint modality completion and segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 74–82.
Springer, 2019.

[13] Kai Fan, Wei Jiang, Hui Li, and Yintang Yang. Lightweight
rfid protocol for medical privacy protection in iot. IEEE
Transactions on Industrial Informatics, 14(4):1656–1665,
2018.

[14] Nuno C Garcia, Pietro Morerio, and Vittorio Murino. Modal-
ity distillation with multiple stream networks for action
recognition. In Proceedings of the European Conference on
Computer Vision, pages 103–118, 2018.

[15] Nuno C Garcia, Pietro Morerio, and Vittorio Murino. Learn-
ing with privileged information via adversarial discrimina-
tive modality distillation. IEEE transactions on pattern anal-
ysis and machine intelligence, 42(10):2581–2593, 2019.

[16] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with ex-
tremely noisy labels. Advances in neural information pro-
cessing systems, 31, 2018.

[17] Mohammad Havaei, Nicolas Guizard, Nicolas Chapados,
and Yoshua Bengio. Hemis: Hetero-modal image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 469–477.
Springer, 2016.

[18] Jack Hessel and Lillian Lee. Does my multimodal model
learn cross-modal interactions? it’s harder to tell than you
might think! arXiv preprint arXiv:2010.06572, 2020.

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[20] Judy Hoffman, Saurabh Gupta, and Trevor Darrell. Learn-
ing with side information through modality hallucination. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 826–834, 2016.

[21] Danfeng Hong, Jingliang Hu, Jing Yao, Jocelyn Chanussot,
and Xiao Xiang Zhu. Multimodal remote sensing benchmark
datasets for land cover classification with a shared and spe-
cific feature learning model. ISPRS Journal of Photogram-
metry and Remote Sensing, 178:68–80, 2021.

[22] Minhao Hu, Matthis Maillard, Ya Zhang, Tommaso Ci-
ceri, Giammarco La Barbera, Isabelle Bloch, and Pietro
Gori. Knowledge distillation from multi-modal to mono-
modal segmentation networks. In International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention, pages 772–781. Springer, 2020.

[23] Xinxin Hu, Kailun Yang, Lei Fei, and Kaiwei Wang. Acnet:
Attention based network to exploit complementary features
for rgbd semantic segmentation. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 1440–1444.
IEEE, 2019.

[24] Zehao Huang and Naiyan Wang. Like what you like: Knowl-
edge distill via neuron selectivity transfer. arXiv preprint
arXiv:1707.01219, 2017.

20047



[25] Mimansa Jaiswal and Emily Mower Provost. Privacy
enhanced multimodal neural representations for emotion
recognition. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 34, pages 7985–7993, 2020.

[26] Wen-Da Jin, Jun Xu, Qi Han, Yi Zhang, and Ming-Ming
Cheng. Cdnet: Complementary depth network for rgb-d
salient object detection. IEEE Transactions on Image Pro-
cessing, 30:3376–3390, 2021.

[27] Jiang Jue, Hu Jason, Tyagi Neelam, Rimner Andreas,
Berry L Sean, Deasy O Joseph, and Veeraraghavan Harini.
Integrating cross-modality hallucinated mri with ct to aid
mediastinal lung tumor segmentation. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 221–229. Springer, 2019.

[28] Nikos Komodakis and Sergey Zagoruyko. Paying more at-
tention to attention: improving the performance of convolu-
tional neural networks via attention transfer. In International
Conference on Learning Representations, 2017.

[29] Xiao Li, Lin Lei, Yuli Sun, and Gangyao Kuang. Dynamic-
hierarchical attention distillation with synergetic instance se-
lection for land cover classification using missing hetero-
geneity images. IEEE Transactions on Geoscience and Re-
mote Sensing, 60:1–16, 2021.

[30] Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv,
and Xi Peng. Completer: Incomplete multi-view clustering
via contrastive prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11174–11183, 2021.

[31] Ajian Liu, Zichang Tan, Jun Wan, Sergio Escalera, Guodong
Guo, and Stan Z Li. Casia-surf cefa: A benchmark for multi-
modal cross-ethnicity face anti-spoofing. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1179–1187, 2021.

[32] Ajian Liu, Zichang Tan, Jun Wan, Yanyan Liang, Zhen Lei,
Guodong Guo, and Stan Z Li. Face anti-spoofing via ad-
versarial cross-modality translation. IEEE Transactions on
Information Forensics and Security, 16:2759–2772, 2021.

[33] Ajian Liu, Jun Wan, Sergio Escalera, Hugo Jair Escalante,
Zichang Tan, Qi Yuan, Kai Wang, Chi Lin, Guodong Guo,
Isabelle Guyon, et al. Multi-modal face anti-spoofing at-
tack detection challenge at cvpr2019. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019.

[34] Haojie Liu, Shun Ma, Daoxun Xia, and Shaozi Li.
Sfanet: A spectrum-aware feature augmentation network
for visible-infrared person re-identification. arXiv preprint
arXiv:2102.12137, 2021.

[35] Jiyuan Liu, Xinwang Liu, Yi Zhang, Pei Zhang, Wenxuan
Tu, Siwei Wang, Sihang Zhou, Weixuan Liang, Siqi Wang,
and Yuexiang Yang. Self-representation subspace clustering
for incomplete multi-view data. In Proceedings of the 29th
ACM International Conference on Multimedia, pages 2726–
2734, 2021.

[36] Yan Lu, Yue Wu, Bin Liu, Tianzhu Zhang, Baopu Li, Qi Chu,
and Nenghai Yu. Cross-modality person re-identification
with shared-specific feature transfer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13379–13389, 2020.

[37] Yongsheng Pan, Mingxia Liu, Chunfeng Lian, Yong Xia,
and Dinggang Shen. Spatially-constrained fisher represen-
tation for brain disease identification with incomplete multi-
modal neuroimages. IEEE Transactions on Medical Imag-
ing, 39(9):2965–2975, 2020.

[38] Nikolaos Passalis and Anastasios Tefas. Learning deep rep-
resentations with probabilistic knowledge transfer. In Pro-
ceedings of the European Conference on Computer Vision,
pages 268–284, 2018.

[39] Allan Pinto, Helio Pedrini, William Robson Schwartz, and
Anderson Rocha. Face spoofing detection through visual
codebooks of spectral temporal cubes. IEEE Transactions
on Image Processing, 24(12):4726–4740, 2015.

[40] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.
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