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Abstract

While long-tailed semi-supervised learning (LTSSL) has
received tremendous attention in many real-world classi-
fication problems, existing LTSSL algorithms typically as-
sume that the class distributions of labeled and unlabeled
data are almost identical. Those LTSSL algorithms built
upon the assumption can severely suffer when the class dis-
tributions of labeled and unlabeled data are mismatched
since they utilize biased pseudo-labels from the model. To
alleviate this issue, we propose a new simple method that
can effectively utilize unlabeled data of unknown class dis-
tributions by introducing the adaptive consistency regular-
izer (ACR). ACR realizes the dynamic refinery of pseudo-
labels for various distributions in a unified formula by esti-
mating the true class distribution of unlabeled data. Despite
its simplicity, we show that ACR achieves state-of-the-art
performance on a variety of standard LTSSL benchmarks,
e.g., an averaged 10% absolute increase of test accuracy
against existing algorithms when the class distributions of
labeled and unlabeled data are mismatched. Even when the
class distributions are identical, ACR consistently outper-
forms many sophisticated LTSSL algorithms. We carry out
extensive ablation studies to tease apart the factors that are
most important to ACR’s success. Source code is available
at https://github.com/Gank0078/ACR.

1. Introduction
Semi-supervised learning (SSL) is an effective way of

using unlabeled data to improve the generalization of deep
neural networks (DNNs) [1, 10, 16] when only a limited
amount of labeled data is accessible [3, 23, 29, 31]. The
core idea of most SSL algorithms is to generate pseudo-
labels for unlabeled data and select confident ones to train
models. Recent progress on SSL has revealed promising
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performance in various tasks, such as image recognition
[29] and text categorization [35, 39]. However, most exist-
ing SSL algorithms assume the datasets are class-balanced,
i.e., each class is associated with an equivalent number of
samples in both labeled and unlabeled datasets. In con-
trast, class distributions in many real-world tasks are long-
tailed [6, 19, 33, 38, 43]. It is well known that classifiers
trained on long-tailed datasets tend to be biased towards
majority classes, leading to low test accuracy on minority
classes [20, 37, 44].

To improve the performance, many long-tailed semi-
supervised learning (LTSSL) algorithms have been pro-
posed to generate unbiased pseudo-labels. They pursue
class-balanced classifiers using techniques including re-
sampling [18], re-weighting [17], label smoothing [36], and
pseudo-label alignment [14, 34]. These algorithms have
shown strong generalization for the minority class by as-
suming the class distributions of labeled and unlabeled data
are almost identical. However, this assumption is frequently
violated in real-world applications, for instance, if the la-
beled and unlabeled data are collected from different tasks.
The unlabeled data may have a large class distribution gap
from labeled data, and using the erroneous assumption can
severely deteriorate the performance [17, 25].

Contribution. This paper studies the under-explored yet
practical LTSSL problem, i.e., learning from unlabeled data
of unknown class distributions. Notably, we start with three
representative types of class distributions of unlabeled data,
i.e., consistent, uniform, and reversed, as illustrated in Fig-
ures 1a to 1c. We then propose a new simple algorithm
to effectively use unlabeled data through the adaptive con-
sistency regularizer (ACR), which is built upon one of the
most popular SSL algorithms FixMatch [29]. Concretely,
ACR is developed based on two findings: i) to learn a class-
balanced classifier, it is helpful to generate pseudo-labels
biased appropriately toward the minority class, whereas ii)
to learn a better feature extractor, the accuracy of pseudo-
labels is critical. Those two findings seem to contradict.
We thus present a two-branch network, including a bal-
anced branch and a standard branch, to resolve this con-
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(a) Consistent class distribution (b) Uniform class distribution (c) Reversed class distribution (d) F1 gain of pseudo-labels

Figure 1. (1a to 1c): Three typical types of class distribution of unlabeled data. (1d): F1 gain due to our method ACR compares to a
recent state of the art DASO [25] under three types of class distributions of unlabeled data. We can see that ACR significantly improves
the quality of pseudo-labels, showing its great capability of taking advantage of unlabeled data to alleviate the class imbalance problem.

flict. Specifically, ACR learns a class-balanced classifier
via imposing consistency between its predictions and the
adjusted outputs of the standard classifier. The adjusted
outputs are designed to be appropriately biased toward the
minority class. However, for the second finding, it is ob-
served that the accuracy of pseudo-labels produced by the
standard classifier varies as the class distribution of unla-
beled data changes. We resolve this difficulty by refining
the original pseudo-labels to match the true class distribu-
tion of unlabeled data and enhance their accuracy. Impor-
tantly, ACR realizes the adaptive refinery of pseudo-labels
for various distributions in a unified formula by estimating
the true class distribution.

We demonstrate the effectiveness of the proposed ap-
proach under various realistic LTSSL scenarios by varying
the class distributions of unlabeled data. Despite its sim-
plicity, the proposed algorithm improves recent LTSSL al-
gorithms in all test cases, e.g., our method improves DARP
[14], CReST [34], DASO [25] with up to 10.8%, 11.2%,
and 7.2% absolute increase on the test accuracy, respec-
tively. Nevertheless, more importantly, in addition to three
types of representative class distributions, i.e., consistent,
uniform, and reversed, we also test our method under many
other class distributions. As expected, our method signif-
icantly improves the performance when the class distribu-
tions are mismatched between labeled and unlabeled data.

2. Related Work

Semi-supervised learning. A popular class of Semi-
supervised learning (SSL) algorithms use unlabeled data to
improve the performance via learning to predict the pseudo-
labels produced by the model, which can be viewed as
a self-training process [2, 3, 23, 31]. Recent SSL algo-
rithms [2,29] combine pseudo labeling and consistency reg-
ularization, which encourages similar predictions between
two different views of an image, to improve the robust-
ness of DNNs. As a representative approach, FixMatch [29]
achieves significantly more superb performance than many
other SSL algorithms in the image recognition task. Hence,

the performance of SSL algorithm is quite sensitive to the
quality of pseudo-labels. However, most existing SSL al-
gorithms assume balanced class distributions of labeled and
unlabeled data, resulting in poor generalization of the mi-
nority class due to biased pseudo-labels. Recently, Fix-
match has been frequently used as the base model for per-
formance improvement under long-tailed class distribution.
Long-tailed semi-supervised learning. Long-tailed semi-
supervised learning (LTSSL) has received significant atten-
tion for its practicality in many real-world tasks. For in-
stance, DARP [14] and CReST [34] propose eliminating bi-
ased pseudo-labels generated by the model by distribution
alignment to refine pseudo-labels according to the class dis-
tribution of labeled data. ABC [18] uses an auxiliary bal-
anced classifier trained by down-sampling majority classes
to improve the generalization. CoSSL [9] designs a novel
feature enhancement module for the minority class using
mixup [41] to train balanced classifiers. Although these al-
gorithms can significantly enhance performance, they as-
sume identical class distributions of labeled and unlabeled
data. A recent work, DASO [25], proposes to handle this
issue by employing a dynamic combination of linear and
semantic pseudo-labels based on the current estimated class
distribution of unlabeled data. It is noted that the accuracy
of semantic pseudo-labels in DASO relies on the discrim-
ination of learned representations. However, long-tailed
class distribution negatively impacts representation learn-
ing, reducing the reliability of semantic pseudo-labels. We
also demonstrate the gain of pseudo-labels F1 of our method
ACR compared to DASO in Figure 1d.

3. The Proposed Method

In this section, we first introduce the problem setup.
Next, we present the ACR algorithm for handling unknown
class distribution of unlabeled data.

3.1. Preliminaries

Problem setup. In LTSSL, we have a labeled dataset
Dl = {(x(l)

i , y
(l)
i )}Ni=1 of size N and an unlabeled dataset
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Figure 2. Illustration of the proposed framework. ACR uses a dual-branch network which utilizes unlabeled data of various class distribu-
tions by adaptively generating pseudo-labels that are good for representation and classifier learning. H(p, q) denotes the cross-entropy.

Du = {x(u)
j }Mj=1 of size M , where x

(l)
i ,x

(u)
j ∈ Rd are d-

dimensional feature for labeled and unlabeled training sam-
ples, respectively. For the i-th labeled sample, it is asso-
ciate with a ground-truth label y(l)i ∈ {0, 1}C where C is
the size of output label space. Let Nc denote the num-
ber of samples for class c in the labeled dataset, we have
N1 ≥ N2 ≥ ... ≥ NC , and the imbalance ratio of the
labeled dataset is denoted by γl = N1

NC
. Similarly, let

Mc denote the numbers of unlabeled samples for class c,
and its imbalance ratio is γu = maxc Mc

minc Mc
because we do

not require any assumptions on the class distribution of the
unlabeled dataset. Instead, we consider three representa-
tive distributions in this work, i.e., consistent, uniform, and
reversed. Specifically, i) for consistent setting, we have
M1 ≥ M2 ≥ · · · ≥ MC and γu = γl; ii) for uniform
setting, we have M1 = M2 = · · · = MC , i.e., γu = 1; iii)
for reversed setting, we have M1 ≤ M2 ≤ · · · ≤ MC and
γu = 1/γl. Our goal is to train a classifier f : Rd → [0, 1]C

parameterized by θ using Dl and Du.
Semi-supervised learning. Many existing SSL algorithms
seek to minimize a supervised classification loss on labeled
data and an unsupervised regularizer on unlabeled data.
Formally, the objective function is given as follows:

min
θ∈Θ

N∑
i=1

ℓ(f(x
(l)
i ; θ), y

(l)
i )︸ ︷︷ ︸

supervised (Llabeled)

+

M∑
j=1

Ω(x
(u)
j ; θ)︸ ︷︷ ︸

unsupervised

, (1)

where ℓ denotes the cross-entropy loss, Ω(x(u)
j ; θ) is a per-

sample reguarlizer. Particularly, in FixMatch [29], Ω is re-

alized by the per-sample consistency regularization:

Lcon =

M∑
j=1

M(x
(u)
j )︸ ︷︷ ︸

sample mask

ℓ
(
f(A(x

(u)
j )), qj

)
︸ ︷︷ ︸

consistency

, (2)

where qj is the pseudo-label of x(u)
j predicted by f , the sam-

ple masks M(x
(u)
j ) := I

(
max

(
δ(f(x

(u)
j ))

)
≥ ρ

)
selects

unlabeled samples whose predicted confidence is higher
than a predefined threshold ρ (ρ = 0.95 for FixMatch).
Here, δ(·) is the softmax function and I(·) is the indica-
tor function. To generate another view for each sample,
A(x

(u)
j ) represents the specific augmentation scheme for

x
(u)
j , such as Cutout [8] and RandomAugment [5]. Incor-

porating the consistency regularizer improves the model’s
robustness to spurious feature patterns. Additionally, it is
worth noting that FixMatch includes all labeled data as part
of unlabeled data without using their ground-truth labels,
and we follow this practice in this work.

3.2. Adaptive consistency regularizer

Latterly, two-stage algorithms have been prevalently in-
spired by the empirical finding that long-tailed datasets suf-
fer a more significant negative impact on classifier learning
than representation learning [13, 42]. Therefore, two-stage
algorithms discover class-balanced classifiers using various
techniques such as re-sampling [13] and label smoothing
[11], based on the feature extractor trained in the first stage.
However, two-stage algorithms are computationally expen-
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sive for SSL [18, 36]. We thus employ a double-branch
network with a standard branch and a balanced branch to
emerge the training of the standard classifier and a class-
balanced classifier. For the standard branch, we employ
FixMatch, which optimizes the standard cross-entropy on
labeled data to learn good feature representations (denoted
by f ). For the balanced branch (denoted by f̃ ), we optimize
the balanced softmax [22,28] which is an improved version
of standard cross-entropy:

Lb-labeled = −
N∑
i=1

log
e
f̃
y
(l)
i

(x
(l)
i )+τ ·log π

y
(l)
i∑C

c=1 e
f̃c(x

(l)
i )+τ ·log πc

, (3)

where πc is an estimate of class prior P(y = c) which is ap-
proximated by the empirical frequency on the training sam-
ples, and τ is a scaling parameter that affects the intensity
of logit adjustment. Through minimizing Equation (3), f̃
can predict more balanced predictive probabilities. For both
the standard and balanced branches, the consistency regu-
larizer is employed, e.g., the balanced branch jointly opti-
mizes Equation (3) and Equation (2). Ultimately, those two
branches are jointly learned with a shared feature extractor.
The diagram of ACR is summarized in Figure 2.

Can the double branch network handle unknown class
distributions of unlabeled data? We respond to this ques-
tion with two findings: i) pseudo-labels biased towards mi-
nority classes can benefit the classifier learning, whereas ii)
pseudo-label distribution that approximates the true distri-
bution helps learn better feature extractor. Inspired by the
first finding, we propose to apply a simple logit adjustment
(a.k.a post-hoc logit adjustment [22]) to the output of the
standard classifier f whose predictions are initially biased
towards majority classes. The refined logits are used to gen-
erate pseudo-labels which will be treated as targets for the
balanced branch. Specifically, the pseudo-label of the j-th
unlabeled data x

(u)
j used in the consistency regularizer in

the balanced branch is generated by:

q̃(x
(u)
j ) = argmax f

(
x
(u)
j

)
− τ · log π. (4)

So that the consistency regularizer for balanced branch is:

Lb-con =

M∑
j=1

M̃(x
(u)
j )ℓ

(
f̃(A(x

(u)
j )), q̃j

)
. (5)

Refining pseudo-labels in a unified formula. Inspired by
the second finding, we strive for accurate pseudo-labels of
unlabeled data for the standard branch. We empirically find
that the standard branch can produce high quality of pseudo-
labels and their overall distribution matches the true distri-
bution in the consistent setting but are biased towards ma-
jority classes in the other two scenarios, with different de-
grees. Fortunately, we overcome this difficulty by a sim-

ple dynamic logit adjustment in a unified formula. Specifi-
cally, ACR automatically changes the intensity of logit ad-
justment, which is controlled by the scaling parameter τ ,
according to the unlabeled data class distribution estimate.

To estimate the true class distribution, we first craft three
anchor distributions, including the class distribution of la-
beled data (πcon), a uniform distribution (πuni), and a re-
versed class distribution of the labeled data (πrev). We take
the pseudo-labels produced by the balanced branch to esti-
mate the distribution and calculate its distance to each an-
chor distribution. Specifically, let πest be the estimate distri-
bution from the model, we calculate the bidirectional KL-
divergence, which is a symmetric distance measure as:

distcon =
1

2
(DKL (πcon∥πest) +DKL (πest∥πcon))

distuni =
1

2
(DKL (πuni∥πest) +DKL (πest∥πuni))

distrev =
1

2
(DKL (πrev∥πest) +DKL (πest∥πrev)) ,

(6)

where DKL(p∥q) =
∑C

c=1 pc log
(

pc

qc

)
. In our implemen-

tation, the model is trained for several iterations of warm-up
before estimating the class distribution to prevent inconsis-
tent results. We update πest using an exponential moving av-
erage with the predicted class distribution of unlabeled data
in each mini-batch. Finally, the anchor distribution corre-
sponding to the smallest of the three distances calculated
above is closest to the true class distribution of unlabeled
data. Based on the distances to anchor distributions, ACR
can adaptively handle various class distributions of unla-
beled data in a unified formula that adjusts the scaling pa-
rameter τ as follows:

τ(t) =
2edist

(t−1)
con

edist
(t−1)
con + edist

(t−1)
uni + edist

(t−1)
rev

, (7)

where t is the training iteration. dist
(t−1)
con represents the

average distance between the predicted distribution at itera-
tion t− 1 and the consistent anchor distribution. The other
two distances are defined likewise. From Equation (7), it is
easy to derive that i) when the class distributions of labeled
and unlabeled data are consistent, edistrev should be much
larger than edistcon so that τ will almost approach 0. The
pseudo-labels for the standard branch are largely depend on
its output. ii) In uniform setting, it yields a moderate value
of τ which is below 1. iii) On the contrary, for the reversed
cases, edistcon will be quite larger than edistrev , and as a result,
τ will be larger than other two cases but less than 2, which
means the pseudo-labels will be more biased towards mi-
nority classes. As expected, empirical results as depicted in
Figure 4d coincides with our analysis. Ultimately, we maxi-
mize the consistency between the standard branch’s outputs
and refined pseudo-labels by the adaptive τ in Equation (7).
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3.3. Sample mask generation

To utilize pseudo-labels that are likely to be correct for
calculating consistency regularizer, the most popular way is
to select unlabeled samples with high predictive confidence.
We follow this principle but introduce another complemen-
tary term to further enhance the quality of pseudo-labels.
We take the balanced branch for an example, and its consis-
tency regularization loss is modified to:

Lb-con =

M∑
j=1

M̃(x
(u)
j )ℓ

(
f̃(A(x

(u)
j )), q̃j

)
,

M̃(x
(u)
j ) = I

(
max

(
δ(f̃(x

(u)
j ))

)
≥ ρ

)
∨

I
(
max

(
δ(f(x

(u)
j )− τ · log π)

)
≥ ρ

)
,

(8)

where δ(·) denotes the softmax function. In this way, we
can select more samples for the minority classes by consid-
ering the balanced branch’s output. The consistency regu-
larizer Lcon for the standard branch can be written likewise,
which can pick more examples that fit the true distribution.
We can obtain more confident samples through the newly
constructed sample mask, which is beneficial for consis-
tency loss to work. Considering that the output logits from
each branch have been well aligned with the target after a
training period, both the original and the adjusted logits are
trustworthy. We demonstrate the effect of the new sample
mask selection principle in Section 4.5.

Overall, each branch of the network has two losses to
minimize, i.e., the classification loss and the consistency
regularizer. Put it together, our total objective function is:

Ltotal = Llabeled + Lcon︸ ︷︷ ︸
standard branch

+Lb-labeled + Lb-con︸ ︷︷ ︸
balanced branch

.
(9)

4. Experiments
We conduct extensive experiments to demonstrate the ef-

fectiveness of the proposed method under various class dis-
tributions of unlabeled data.

4.1. Experimental setup

The experiments we conducted are based on widely used
datasets, including CIFAR10-LT [15], CIFAR100-LT [15],
STL10-LT [4], and ImageNet-127 [9]. Recall that parame-
ter γl is used to control the imbalance ratio of the labeled
dataset, and we can decide the number of labeled samples

for class c as Nc = N1 · γ− c−1
C−1

l once N1 is given. Like-
wise, given the imbalance ratio of unlabeled dataset γu and
M1 (or MC in the reversed setting), we set Mc as we did
for the labeled dataset.

• CIFAR-10-LT: Following DASO [25], we test our
method under N1 = 500,M1 = 4000 and N1 =

1500,M1 = 3000 settings. We report results with im-
balance ratios γl = γu = 100 and γl = γu = 150.
For uniform and reversed settings, we fix γl = 100
and adjust γu ∈ {1, 1/100} to simulate various class
distribution of unlabeled data.

• CIFAR-100-LT: We test our method under N1 =
50,M1 = 400 and N1 = 150,M1 = 300 settings.
The imbalance ratio is set to γl = γu = 10 and
γl = γu = 20. With a fixed γl = 10, we also test
our method under γu ∈ {1, 1/10} for the uniform and
reversed unlabeled data class distributions.

• STL10-LT: Since ground-truth labels of unlabeled
data in STL-10 are unknown, we conduct experiments
by controlling the imbalance ratio of labeled data. We
follow the settings by DASO and set γl ∈ {10, 20}.

• ImageNet-127: ImageNet127 is a naturally long-
tailed dataset, so we do not need to construct the
datasets manually. Following CoSSL [9], we down-
sample the image size to 32 × 32 and 64 × 64 due to
limited resources.

Following previous work [9, 26], we implement our
method using Wide ResNet-28-2 [40] on CIFAR10-
LT, CIFAR100-LT, and STL10-LT; and ResNet-50 on
ImageNet-127. Following FixMatch, we train the network
for 500 epochs with 500 mini-batches in each epoch, with
a batch size of 64, using standard SGD with momentum
[24,27,30]. We use a cosine learning rate decay [21] which
sets the learning rate to ηcos( 7πt

16T ), where η is the initial
learning rate, t is the current training step, and T is the to-
tal number of training steps. Considering the imbalanced
test set in ImageNet-127, we set τ = 0.5 for the balanced
softmax defined in Equation (3), while for other datasets,
we fix τ = 2. To demonstrate the superiority of our ap-
proach, we compare with many existing LTSSL algorithms,
including DARP [14], CReST [34], DASO [25], ABC [18],
TRAS [36]. We measure the performance of all methods us-
ing top-1 accuracy on the test set. We report each method’s
mean and standard deviation of three independent runs in
our experiments.

4.2. Results on CIFAR10/100-LT and STL10-LT

We first evaluate the performance when the class distri-
butions are consistent (i.e., γl = γu) in Table 1. Subse-
quently, in Table 2 and Table 3, we report results when the
unlabeled data class distribution is uniform or reversed (e.g.,
γu = 1 or γu = 1/100).
In case of γl = γu. We compare our approach ACR
with several state-of-the-art LTSSL methods: DARP [14],
CReST+ [34], and DASO [25]. Results are reported in Ta-
ble 1. Without exception, ACR consistently outperforms
existing methods by a large margin, even though most of
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CIFAR10-LT CIFAR100-LT

γ = γl = γu = 100 γ = γl = γu = 150 γ = γl = γu = 10 γ = γl = γu = 20

Algorithm
N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 50
M1 = 400

N1 = 150
M1 = 300

N1 = 50
M1 = 400

N1 = 150
M1 = 300

Supervised
w/ LA [22]

47.3±0.95
53.3±0.44

61.9±0.41
70.6±0.21

44.2±0.33
49.5±0.40

58.2±0.29
67.1±0.78

29.6±0.57
30.2±0.44

46.9±0.22
48.7±0.89

25.1±1.14
26.5±1.31

41.2±0.15
44.1±0.42

FixMatch [29]
w/ DARP [14]
w/ CReST+ [34]
w/ DASO [25]

67.8±1.13
74.5±0.78
76.3±0.86
76.0±0.37

77.5±1.32
77.8±0.63
78.1±0.42
79.1±0.75

62.9±0.36
67.2±0.32
67.5±0.45
70.1±1.81

72.4±1.03
73.6±0.73
73.7±0.34
75.1±0.77

45.2±0.55
49.4±0.20
44.5±0.94
49.8±0.24

56.5±0.06
58.1±0.44
57.4±0.18
59.2±0.35

40.0±0.96
43.4±0.87
40.1±1.28
43.6±0.09

50.7±0.25
52.2±0.66
52.1±0.21
52.9±0.42

FixMatch+LA [22]
w/ DARP [14]
w/ CReST+ [34]
w/ DASO [25]

75.3±2.45
76.6±0.92
76.7±1.13
77.9±0.88

82.0±0.36
80.8±0.62
81.1±0.57
82.5±0.08

67.0±2.49
68.2±0.94
70.9±1.18
70.1±1.68

78.0±0.91
76.7±1.13
77.9±0.71
79.0±2.23

47.3±0.42
50.5±0.78
44.0±0.21
50.7±0.51

58.6±0.36
59.9±0.32
57.1±0.55
60.6±0.71

41.4±0.93
44.4±0.65
40.6±0.55
44.1±0.61

53.4±0.32
53.8±0.43
52.3±0.20
55.1±0.72

FixMatch+ABC [18]
w/ DASO [25]

78.9±0.82
80.1±1.16

83.8±0.36
83.4±0.31

66.5±0.78
70.6±0.80

80.1±0.45
80.4±0.56

47.5±0.18
50.2±0.62

59.1±0.21
60.0±0.32

41.6±0.83
44.5±0.25

53.7±0.55
55.3±0.53

FixMatch w/ ACR (ours) 81.6±0.19 84.1±0.39 77.0±1.19 80.9±0.22 55.7±0.12 65.6±0.16 48.0±0.75 58.9±0.36

Table 1. Test accuracy of previous LTSSL algorithms and our proposed ACR under consistent class distributions, i.e., γl = γu, on
CIFAR10-LT and CIFAR100-LT datasets. The best results are in bold.

CIFAR10-LT (γl ̸= γu) STL10-LT (γu = N/A)

γu = 1 (uniform) γu = 1/100 (reversed) γl = 10 γl = 20

Algorithm
N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 500
MC = 4000

N1 = 1500
MC = 3000

N1 = 150
M = 100k

N1 = 450
M = 100k

N1 = 150
M = 100k

N1 = 450
M = 100k

FixMatch [29]
w/ DARP [14]
w/ CReST [34]
w/ CReST+ [34]
w/ DASO [25]
w/ ACR (ours)

73.0±3.81
82.5±0.75
83.2±1.67
82.2±1.53
86.6±0.84
92.1±0.18

81.5±1.15
84.6±0.34
87.1±0.28
86.4±0.42
88.8±0.59
93.5±0.11

62.5±0.94
70.1±0.22
70.7±2.02
62.9±1.39
71.0±0.95
85.0±0.09

71.8±1.70
80.0±0.93
80.8±0.39
72.9±2.00
80.3±0.65
89.5±0.17

56.1±2.32
66.9±1.66
61.7±2.51
61.2±1.27
70.0±1.19
77.1±0.24

72.4±0.71
75.6±0.45
71.6±1.17
71.5±0.96
78.4±0.80
83.0±0.32

47.6±4.87
59.9±2.17
57.1±3.67
56.0±3.19
65.7±1.78
75.1±0.70

64.0±2.27
72.3±0.60
68.6±0.88
68.5±1.88
75.3±0.44
81.5±0.25

Table 2. Test accuracy of previous LTSSL algorithms and our proposed ACR under inconsistent class distributions, i.e., γl ̸= γu, on
CIFAR10-LT and STL10-LT datasets. The γl is fixed to 100 for CIFAR10-LT, while it is set to 10 and 20 for STL10-LT dataset. The best
results are in bold.

CIFAR100-LT (γl ̸= γu)

γu = 1 (uniform) γu = 1/10 (reversed)

Algorithm
N1 = 50
M1 = 400

N1 = 150
M1 = 300

N1 = 50
MC = 400

N1 = 150
MC = 300

FixMatch [29]
w/ DARP [14]
w/ CReST [34]
w/ CReST+ [34]
w/ DASO [25]
w/ ACR (ours)

45.5±0.71
43.5±0.95
43.5±0.30
43.6±1.60
53.9±0.66
66.0±0.25

58.1±0.72
55.9±0.32
59.2±0.25
58.7±0.16
61.8±0.98
73.4±0.22

44.2±0.43
36.9±0.48
39.0±1.11
39.1±0.77
51.0±0.19
57.0±0.46

57.3±0.19
51.8±0.92
56.4±0.62
56.4±0.78
60.0±0.31
67.6±0.12

Table 3. Test accuracy on CIFAR100-LT dataset under uniform
and reversed class distributions. The best results are in bold.

these methods are particularly developed based on the as-
sumption that labeled and unlabeled data share the same
class distribution. This observation verifies the superior per-
formance of our method. By further combing with logit
adjustment (LA) and auxiliary balanced classifier (ABC),
DASO achieves a noticeable improvement. However, its
performance is still 3.7% below ACR on average.

Algorithm 32× 32 64× 64

FixMatch [29]
w/ DARP [14]
w/ DARP+cRT [14]
w/ CReST+ [34]
w/ CReST++LA [22]
w/ CoSSL [9]
w/ TRAS [36]
w/ ACR (ours)

29.7
30.5
39.7
32.5
40.9
43.7
46.2
57.2

42.3
42.5
51.0
44.7
55.9
53.9
54.1
63.6

Table 4. Test accuracy on ImageNet-127 dataset. The best results
are in bold.

In case of γl ̸= γu. In real-world datasets, the class distri-
bution of unlabeled data is likely to be significantly incon-
sistent with labeled data. Therefore, we consider uniform
and reversed class distributions, e.g., γu = 1 or γu = 1/100
for CIFAR10-LT. On the STL10-LT dataset, due to the un-
known ground-truth labels of the unlabeled data, we can
only control the imbalance ratio of labeled data. The results
are summarized in the Table 2 and Table 3.
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It can be seen that our method achieves the best results
when the class distributions of unlabeled data are incon-
sistent. For example, ACR obtains 15.6% and 20.1% ab-
solute performance gains over FixMatch under γu = 1
and γu = 1/100 on CIFAR10-LT, respectively. Simi-
larly, the CIFAR100-LT results show that our method out-
performs DASO by an average of 9.3% accuracy increase.
For STL10-LT, ACR achieves the best results with averaged
6.8% accuracy gain compared with DASO, even if the un-
labeled data distribution is unknown. Generally speaking,
empirical results under unknown class distributions of un-
labeled data on three datasets justify that ACR can effec-
tively utilize unlabeled data to alleviate the negative impact
of class imbalance.

4.3. Results on ImageNet-127

ImageNet127 is initially introduced in previous work
[12] and is applied to LTSSL by CReST [34], which groups
the 1000 classes of ImageNet [7] into 127 classes based on
the WordNet hierarchy. Compared with other datasets, we
do not need to construct the dataset artificially because it
naturally follows a long-tailed class distribution with an im-
balance ratio γ ≈ 286. Following CoSSL [9], we down-
sample the original images to smaller sizes of 32 × 32 or
64×64 pixels using the box method from the Pillow library
and randomly select 10% training samples to form the la-
beled set. It is worth noting that the test set of ImageNet-127
is also long-tailed, so we set the scaling parameter τ = 0.5
in balanced softmax to reduce the bias of the classifier to-
wards the minority class. The results are summarized in
Table 4. We can see that ACR achieves superior results
for both image sizes 32 × 32 and 64 × 64 with 11% and
9.5% absolute improvement on test accuracy compared with
TRAS [36], respectively. The results show that our method
can successfully apply to tasks with long-tailed test datasets.

4.4. Results under more class distributions
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Figure 3. Generalize to more re-
alistic LTSSL settings.

To examine the perfor-
mance of our method in
more imbalanced scenarios,
we conduct additional ex-
periments on CIFAR-10-LT
by fixing γl = 100 while
varying the imbalance ratio
of unlabeled data γu from
consistent to reversed by a
step size 20. We set N1 =
500 and M1 = 4000 (MC = 4000 in reversed setting) and
compare the performance with DASO w/ LA [25]. The re-
sults are reported in Figure 3. It can be easily observed
that our method ACR consistently outperforms DASO in all
test cases. Overall, the performance gain becomes increas-
ingly significant as the class distribution of unlabeled data

Ablations
CIFAR10-LT CIFAR100-LT

Con Uni Rev Con Uni Rev

ACR(ours) 81.6 92.1 85.0 55.7 66.0 57.0
w/o sample mask principle 81.7 91.1 84.6 55.0 63.7 55.0
w/o adaptive LA 76.8 92.4 85.1 53.5 62.8 56.1
w/o LA for balanced branch 74.3 90.6 83.5 54.5 66.2 56.7
w/o balanced softmax 76.7 93.0 84.8 55.3 65.6 57.3
w/o gradients from balanced branch 73.7 92.3 85.2 54.3 65.2 56.7
w/o labeled data in unlabeled set 81.0 92.7 79.9 56.1 66.4 56.8

Table 5. Ablation studies of our proposed ACR algorithm. Con,
Uni, and Rev represent consistent, uniform, and reversed for short.

changes from consistent to reversed. This demonstrates the
capability of our method to handle various realistic LTSSL
problems adaptively.

4.5. Systematic analysis of the proposed method

To better understand our method, we conduct extensive
ablation studies. Due to limited space, we defer more de-
tailed analysis to supplementary material.
Distribution estimation. Figure 4 illustrates the bidirec-
tional KL-divergence for different unlabeled data distribu-
tions and the τ values during the training. From Figures 4a
to 4c, we can observe that distance between the estimated
and the true distributions is small under three different set-
tings so that our method can accurately determine the un-
derlying distribution of unlabeled data. It implies that the
balanced classifier has a strong generalization ability.
Scaling parameter τ . Our model’s accurate distribution
discrimination ability benefits the proposed adaptive con-
sistency regularizer, which adjusts the value of scaling pa-
rameter τ in Equation (7) to handle various unlabeled data
class distributions. Figure 4d displays the dynamic values
of τ under three settings. We can see that τ increases from
a minimal value for consistent to a relatively large value for
reversed setting, showing good adaptability of our method.
Visualization. Moreover, we visualize the learned repre-
sentations of ACR using the t-distributed stochastic neigh-
bor embedding (t-SNE) [32] and compare them with the
previous method DASO. Figure 5 illustrates the compari-
son results on test set under uniform and reversed settings.
It can be seen from the figure that the representations ob-
tained by ACR allow for clearer classification boundaries.

Additionally, we conduct many ablation studies on
the critical components of ACR on CIFAR10-LT and
CIFAR100-LT. Detailed results are reported in Table 5.
Impact of sample mask principle. To verify the effect of
the mask generation principle, we perform ablation experi-
ments to compare our principle with a standard mask gener-
ation strategy based on the confidence of the pseudo-labels
used as the targets in the consistency loss. With an aver-
aged 1.7% improvement on CIFAR100-LT, it clearly shows
the superiority of our sample mask generation principle.
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Figure 4. (4a to 4c): The average bi-directional KL distance of three settings for each epoch during the training of CIFAR10-LT and the
imbalance ratio for consistent distribution and reversed distribution are 100 and 1/100, respectively. (4d): The dynamic τ values of LA
used in standard branch consistency regularizer.
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Figure 5. The t-SNE visualization of the test set for DASO and
ACR on CIFAR-10-LT dataset in uniform and reversed settings.

Impact of adaptive LA on the standard branch. ACR
adjusts the intensity of LA applied to pseudo-labels in con-
sistency loss according to the current distribution of unla-
beled data. When the intensity of LA applied to the stan-
dard branch is fixed (we set τ = 2 in Equation (7) in this
experiment), the performance decreases in all three settings
on CIFAR100-LT dataset, especially in consistent and uni-
form settings. Also, the performance in consistent setting
decreases 4.8% on CIFAR10-LT, showing the importance of
developing an adaptive LA strategy for the standard branch.
Impact of LA on the balanced branch. To study the influ-
ence of LA on the balanced branch, we remove the LA in
the consistency loss. The results reflect an averaged 0.4%
slightly drop in accuracy on CIFAR100-LT. However, the
performance decreases significantly (3.4%) on CIFAR-10-
LT, indicating the necessity of LA for the balanced branch.
Impact of balanced softmax. We replace the balanced

softmax with standard cross-entropy to study its impact on
performance. The results indicate a 0.2% drop indicating
that balanced softmax is not quite sensitive for CIFAR100-
LT. However, for CIFAR10-LT, the performance penalty in
the consistent setting exceeds 7.3%.
Impact of balanced branch on feature learning. The two
branches in ACR will update the feature extractor together,
as mentioned above. So we explore the effect of the bal-
anced branch on representation learning by blocking the
gradient of the balanced branch to update the feature ex-
tractor. The results in Table 5 indicate that the balanced
branch does not negatively affect representation learning.
Conversely, it has some promoting effects, especially for
consistent setting when the feature extractor is updated by
both branches simultaneously.
Impact of labeled data in the unlabeled set. Following
FixMatch [29], we include all labeled data as part of unla-
beled data without their labels when constructing the unla-
beled set. So when we exclude labeled data from the unla-
beled set during the training, the results decrease dramati-
cally, particularly for reversed setting on CIFAR10-LT.

5. Conclusion

This paper presents a simple and effective method by
minimizing the adaptive consistency regularizer (ACR) for
long-tailed semi-supervised learning with unknown class
distributions of the unlabeled data. Our main idea is to
i) benefit classifier learning by generating pseudo-labels
that are properly biased towards minority classes while ii)
benefit representation learning by generating pseudo-labels
whose distribution approximates the true class distribution.
We implement our idea in a double-branch network and re-
alize ACR through on-the-fly distribution estimation and a
novel dynamic logit adjustment. We empirically show that
our method significantly outperforms all competing meth-
ods under various scenarios, offering a solid baseline for
future studies in this task.
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