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Figure 1. Our model produces more consistent stylization results with content affinity preserved for photorealistic image style transfer
(left), and photorealistic video and artistic video style transfer (right). Animations can be found in the supplementary material.

Abstract

Content affinity loss including feature and pixel affinity
is a main problem which leads to artifacts in photorealis-
tic and video style transfer. This paper proposes a new
framework named CAP-VSTNet, which consists of a new re-
versible residual network and an unbiased linear transform
module, for versatile style transfer. This reversible resid-
ual network can not only preserve content affinity but not
introduce redundant information as traditional reversible
networks, and hence facilitate better stylization. Empow-
ered by Matting Laplacian training loss which can address
the pixel affinity loss problem led by the linear transform,
the proposed framework is applicable and effective on ver-
satile style transfer. Extensive experiments show that CAP-
VSTNet can produce better qualitative and quantitative re-
sults in comparison with the state-of-the-art methods.

1. Introduction
Photorealistic style transfer aims to reproduce content

image with the style from a reference image in a photore-
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alistic way. To be photorealism, the stylized image should
preserve clear content detail and consistent stylization of
the same semantic regions. Content affinity preservation,
including feature and pixel affinity preservation [23,25,28],
is the key to achieve both clear content detail and consistent
stylization in the transfer.

The framework of a deep learning based photorealis-
tic style transfer generally uses such an architecture: an
encoder module extracting content and style features, fol-
lowed by a transformation module to adjust features statis-
tics, and finally a decoder module to invert stylized feature
back to stylized image. Existing photorealistic methods typ-
ically employ pre-trained VGG [30] as encoder. Since the
encoder is specifically designed to capture object-level in-
formation for the classification task, it inevitably results in
content affinity loss. To reduce the artifacts, existing meth-
ods either use skip connection modules [2, 14, 40] or build
a shallower network [8, 23, 39]. However, these strategies,
limited by the image recovery bias, cannot achieve a perfect
content affinity preservation on unseen images.

In this work, rather than use the traditional encoder-
transformation-decoder architecture, we resort to a re-
versible framework [1] based solution called CAP-VSTNet,
which consists of a specifically designed reversible residual
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network followed by an unbiased linear transform module
based on Cholesky decomposition [19] that performs style
transfer in the feature space. The reversible network takes
the advantages of the bijective transformation and can avoid
content affinity information loss during forward and back-
ward inference. However, directly using the reversible net-
work cannot work well on our problem. This is because re-
dundant information will accumulate greatly when the net-
work channel increases. It will further lead to content affin-
ity loss and noticeable artifacts as the transform module is
sensitive to the redundant information. Inspired by knowl-
edge distillation methods [8, 35], we improve the reversible
network and employ a channel refinement module to avoid
the redundant information accumulation. We achieve this
by spreading the channel information into a patch of the
spatial dimension. In addition, we also introduce cycle con-
sistency loss in CAP-VSTNet to make the reversible net-
work robust to small perturbations caused by numerical er-
ror.

Although the unbiased linear transform based on
Cholesky decomposition [19] can preserve feature affinity,
it cannot guarantee pixel affinity. Inspired by [25, 28], we
introduce Matting Laplacian [22] loss to train the network
and preserve pixel affinity. Matting Laplacian [22] may
result in blurry images when it is used with another net-
work like one with an encoder-decoder architecture. But it
does not have this issue in CAP-VSTNet, since the bijective
transformation of reversible network theoretically requires
all information to be preserved.

CAP-VSTNet can be flexibly applied to versatile style
transfer, including photorealistic and artistic image/video
style transfer. We conduct extensive experiments to eval-
uate its performance. The results show it can produce better
qualitative and quantitative results in comparison with the
state-of-the-art image style transfer methods. We show that
with minor loss function modifications, CAP-VSTNet can
perform stable video style transfer and outperforms existing
methods.

2. Related Work

2.1. Style Transfer

Gatys et al. [11] expose the powerful representation abil-
ity of deep neural networks and propose neural style transfer
by matching the correlations of deep features. Feed-forward
frameworks [17, 33, 38] are proposed to address the issue
of computational cost. To achieve universal style transfer,
transformation modules are proposed to adjust statistics of
deep features, such as the mean and variance [15] and the
inter-channel correlation [24].

Photorealistic style transfer requires that stylized image
should be undistorted and consistently stylized. DPST [28]
optimizes stylized image with regularization term computed

on Matting Laplacian [22] to suppress distortion. Pho-
toWCT [25] proposes post-processing algorithm by using
Matting Laplacian as affinity matrix to reduce artifacts.
However, both of these methods may blur the stylized im-
ages instead of preserving the pixel affinity. The follow-
ing works [2,8,40] mainly focus on preserving clear details
and speeding up processing by designing skip connection
module or shallower network. Content affinity preservation
including feature and pixel affinity preservation remains an
unsolved challenge.

Recently, versatile style transfer has received a lot of
attention. Many approaches focus on exploring a gen-
eral framework capable of performing artistic, photoreal-
istic and video style transfer. Li et al. [23] propose a lin-
ear style transfer network and a spatial propagation net-
work [27] for artistic and photorealistic style transfer, re-
spectively. DSTN [14] introduces a unified architecture
with domain-aware indicator to adaptively balance between
artistic and photorealistic stylization. Chiu et al. [7] pro-
pose an optimization-based method to achieve fast artistic
or photorealistic style transfer by simply adjusting the num-
ber of iterations. Chen et al. [6] extend contrastive learn-
ing to artistic image and video style transfer by considering
internal-external statistics. Wu et al. [39] apply contrastive
learning by incorporating neighbor-regulating scheme to
preserve the coherence of the content source for artistic and
photorealistic video style transfer. While achieving versa-
tile style transfer, VGG-based networks suffer from incon-
sistent stylization due to content affinity loss. We show that
preserving content affinity can improve image consistent
stylization and video temporal consistency.

2.2. Reversible Network

Dinh et al. [9] first propose an estimator that learns a bi-
jective transform between data and latent space, which can
be seen as a perfect auto-encoder pair as it naturally satis-
fies reconstruction term of auto-encoder [4, 34]. Follow-up
work by Dinh et al. [10] introduces new transformation that
breaks the unit determinant of Jacobian to address volume-
preserving mapping. Glow [20] proposes a simple type
of generative flow building on the works by Dinh [9, 10].
Since each layer’s activation of reversible network can be
exactly reconstructed from the next layer’s, RevNet [12]
and Reformer [21] present reversible residual layers to ad-
dress memory consumption during deep network training.
i-RevNet [16] builds an invertible type of RevNet with in-
vertible down-sampling module. i-ResNet [3] inverts resid-
ual mapping by using Banach fixed point theorem to address
the restriction of reversible network architecture.

Recently, An et al. [1] apply flow-based model [20] to
address the content leak problem for artistic style transfer.
However, content affinity may not be preserved due to trans-
formation module and redundant information, which leads
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Figure 2. Architecture illustration of the proposed CAP-VSTNet. See Section 3 for details.

IP RRB RRB Spread𝑓c/𝑓𝑠 𝑧c/𝑧𝑠

Figure 3. Structure of the adopted reversible residual blocks based
channel refinement module (called CR-RRB for short). IP and
RRB denotes injective padding module and reversible residual
block, respectively.

to noticeable artifacts. The proposed method addresses this
issue via a new reversible residual network enhanced by a
channel refinement module and a Matting Laplacian loss
based training.

3. Method
The architecture of CAP-VSTNet is shown in Figure 2.

Given a content image and a style image, our framework
first maps the input content/style images to latent space
through the forward inference of network after an injec-
tive padding module which increases the input dimension
by zero-padding along the channel dimension. The forward
inference is performed through cascaded reversible resid-
ual blocks and spatial squeeze modules. After that a chan-
nel refinement module is then used to remove the channel
redundant information in content/style image features for a
more effective style transformation. Then a linear transform
module cWCT is used to transfer the content representation
to match the statistics of the style representation. Lastly the
stylized representation is inversely mapped back to the styl-
ized image through the backward inference.

3.1. Reversible Residual Network

In our network design, each reversible residual block
performs a function of a pair of inputs x1, x2 → y1, y2,
which can be expressed in the form:

x1, x2 = split(x),

y1 = x1+F (x2), y2 = x2.
(1)

Following Gome et al. [12], we use the channel-wise parti-
tioning scheme that divides the input into two equal-sized

parts along the channel dimension. Since the reversible
residual block processes only half of the channel dimension
at one time, it is necessary to perturb the channel dimension
of the feature maps. We find that channel shuffling is effec-
tive and efficient: y = (y2, y1). Each block can be reversed
by subtracting the residuals:

y2, y1 = split(y),

x2 = y2, x1 = y1 − F (x2).
(2)

Figure 2 (a) and (b) show the illustration of the forward
and backward inference of reversible residual block, respec-
tively. The residual function F is implemented by consec-
utive conv layers with kernel size 3. And each conv layer
is followed by a relu layer, except for the last. We attain
large receptive field by stacking multiple layers and blocks,
in order to capture dense pairwise relations. We abandon
the normalization layer as it poses a challenge to learn style
representation. To capture large scale style information, the
squeeze module is used to reduce the spatial information by
a factor of 2 and increase the channel dimension by a factor
of 4. We combine reversible residual blocks and squeeze
modules to implement a multi-scale architecture.

3.2. Channel Refinement

The cascaded reversible residual block and squeeze mod-
ule design in CAP-VSTNet leads to redundant information
accumulation during forward inference as the squeeze mod-
ule exponentially increases the channels. The redundant in-
formation will negatively affect the stylization. In [8, 35],
channel compression is used to address the redundant in-
formation problem and facilitate better stylization. In our
network design, we instead use a channel refinement mod-
ule (CR) which is more suitable for the connected cascaded
reversible residual blocks.

As illustrated in Figure 3, the CR module first uses an
injective padding module increasing latent dimension to en-
sure that the input content/style image feature channel can
be divisible by the target channel. Then, it uses patch-wise
reversible residual blocks to integrate large-field informa-
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(a) Input (b) w/o CR (c) CR-MLP (e) CR-RRB(d) CR-IR

IP RRB RRB SpreadIP IR IR SpreadIP MLP MLP SpreadSpread

Figure 4. Alternative designs of the channel refinement module. (b) Artifacts are produced without any explicit redundant information
removing. (c-d) Pointwise layers like fully connected layers or inverted residual layers cannot preserve good content affinity and result in
aliasing artifacts. Please zoom in to see the details. The structures of the alternative designs are shown on top of the resulting images.

Method AdaIN WCT LinearWCT cWCT
Reversible ✓ ✓ ✓
Stability ✓ ✓ ✓

Learning-free ✓ ✓

Time C=32 0.066 1.186 0.288 0.097
C=256 0.424 3.205 2.419 0.808

Table 1. Design choices of the linear transformation module. The
adopted cWCT is reversible, stable, and learning-free. The exe-
cution time is evaluated on C × 512 × 512 feature maps for 100
times.

tion, after that it spreads the channel information into a
patch of the spatial dimension. There are several alternative
design choices for this CR module. MLP based pointwise
layers can also be used for information distillation. Our pre-
liminary experiments have found aliasing artifacts may ap-
pear when pointwise layers (e.g., fully connected layers or
inverted residuals [29]) are employed (see the results pro-
duced by CR-MLP and CR-IR in Figure 4), but the adopted
CR-RRB design does not have this issue.

3.3. Transformation Module

Existing photorealistic methods typically employ
WCT [24] as transformation module, which contains
whitening and coloring steps. Both of the above steps
require the calculation of singular value decomposition
(SVD). However, the gradient depends on the singular val-
ues σ by calculating 1

minσ(i̸=j)σ
2
i−σ2

j
. If the covariance ma-

trix of content (style) feature map Σc = fcf
T
c (Σs = fsf

T
s )

has the same singular values, or the distance between any
two singular values is close to 0, the gradient becomes
infinite. It will further cause the WCT module to fail and
the model training to crash.

We use an unbiased linear transform based on Cholesky
decomposition [19] to address this problem. The Cholesky
decomposition is derivable with gradient depending on 1

σ .
It does not require that the two singular values are not equal

Input w/o 𝐿𝑐𝑦𝑐 w/ 𝐿𝑐𝑦𝑐

Figure 5. Ablation results of cycle consistency loss. Numerical
error may results in significant changes.

as SVD, thus is more stable. To avoid overflow, we can reg-
ularize it with an identity matrix: Σ̂ = Σ + ϵI . Another
advantage of Cholesky decomposition is that its computa-
tional cost is much lower than that of SVD. Therefore, the
adopted Cholesky decomposition based WCT (cWCT for
short) is more stable and faster. We show the comparison
of various linear transformation modules [15, 23, 24] in Ta-
ble 1.

3.4. Training Loss

We train our network in an end-to-end manner with the
integration of three types of losses:

Ltotal = Ls + λmLm + λcycLcyc, (3)

where Lm, Ls, and Lcyc denote Matting Laplacian loss,
style loss, and cycle consistency loss, respectively. λm and
λcyc are the weights corresponding to the losses.

The Matting Laplacian loss in our design can be formu-
lated as:

Lm =
1

N

3∑
c=1

Vc[Ics]
TMVc[Ics], (4)

where N denotes the number of image pixels, Vc[Ics] de-
notes the vectorization of the stylized image Ics in channel
c, and M denotes the Matting Laplacian matrix of the con-
tent image Ic.

Directly introducing Matting Laplacian loss in a net-
work training could result in blurry images because Mat-
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Content

Style

LinearWCT [23]

WCT2 [40]

ArtFlow [1]

Ours

Figure 6. Visual comparison of content affinity preservation across various methods.

Full w/o RRB w/o IP w/o CR-RRB w/ CR-MLP w/o Lm&Lcyc w/o Lcyc

SSIM↑ 0.650 0.643 0.648 0.630 0.640 0.421 0.638
Gram loss↓ 0.750 0.811 0.874 0.831 0.803 0.873 0.782

Table 2. Quantitative comparison of different design choices in terms of structure preservation (SSIM) and stylization effect (Gram loss).

ting Laplacian loss will force the network to smooth the
image rather than preserve pixel affinity. Fortunately, in-
troducing Matting Laplacian loss in our reversible network
does not have the issue. It is because the bijective transfor-
mation in our reversible network requires all information to
be preserved during forward and backward inference. The
reversible network does not trick the loss by smoothing the
image as it results in information loss. When performing
linear transform, it depends on covariance matrix Σs. As
the transformation of reversible network is deterministic,
only a few style images with smooth texture may smooth
the content structure. In this situation, it is reasonable to
output a stylized image with the same smooth texture as we
aim to transfer vivid style.

The style loss is formulated as:

Ls =

l∑
i=1

||µ(ϕi(Ics))− µ(ϕi(Is))||

+

l∑
i=1

||σ(ϕi(Ics))− σ(ϕi(Is))||,

(5)

where Is denotes style image, ϕi denotes the ith layer of
the VGG-19 network (from ReLu1 1 to ReLu4 1), and µ
and σ denote the mean and variance of the feature maps,
respectively.

Since all modules are reversible, we should be able to
cyclically reconstruct content image ĨC by transferring the
style information of content image Ic to stylized image Ics.
However, the reversible network suffers from numerical er-
ror and may result in noticeable artifacts (Figure 5). Thus,
we introduce the cycle consistency loss to improve the net-
work robustness.

The cycle consistency loss is calculated with L1 dis-
tance:

Lcyc = ||ĨC − IC ||1. (6)

3.5. Video Style Transfer

Single-frame methods [23,39,40] show that applying im-
age algorithms that operate on each video frame individu-
ally is possible. Since our framework preserves the affinity
of input videos, which is naturally consistent and stable, the
content of stylized video is also visually stable. To constrain
the style of stylized video [13, 23], we have two strategies:
adjust the style loss (Eq.5) with lower layers of VGG-19
network (from ReLu1 1 to ReLu3 1) or add the regular-
ization [36] to Eq.3 and fine-tune the model. Both strate-
gies can achieve good temporal consistency. We choose the
latter one as it can produce slightly better stylization effect.
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Content Style PhotoWCT [25] WCT2 [40] PhotoNet [2] DSTN [14] PCA-KD [8] Ours

Figure 7. Visual comparisons of photorealistic image style transfer. All methods conduct style transfer with the assistance of masks, except
PhotoNet which does not support masks.

Method PhotoWCT [25] WCT2 [40] PhotoNet [2] DSTN [14] PCA-KD [8] Ours

SSIM↑ 0.582 0.644 0.608 0.566 0.634 0.650
Gram loss↓ 1.539 0.796 1.970 0.996 1.162 0.750

Time↓ 16.88 0.32 0.19 0.92 0.05 0.12
Parameters 8.35M 10.12M 40.24M 103.45M 334K 4.09M

Table 3. Quantitative comparison of photorealistic style transfer methods. The execution time is evaluated on 1024 × 512 resolution.

4. Analysis
4.1. Content Affinity Preservation

To show the advantages of preserving feature and pixel
affinity, we compare the stylization results with three types
of methods. As shown in Figure 6, LinearWCT [23] applies
linear transform to preserve feature affinity. However, the
image details is unclear and the stylization is inconsistent as
feature and pixel affinity could be damaged by VGG-base
network. WCT2 [40] aims to preserve spatial information
rather than content affinity. While preserving clear details,
it particularly relies on the precise masks, which otherwise
produce noticeable seams. ArtFlow [1] uses the flow-based
model to address content leak problem. However, it typi-
cally generates noticeable artifacts as linear transform and
redundant information damage content affinity. Compared
with other methods, ours model not only preserves clear de-
tails, but also achieves seamless style transfer.

4.2. Ablation Study

We conduct an ablation study to quantitatively evaluate
how much each component (i.e., channel refinement com-
ponents and training losses) affects the visual effects. Ta-
ble 2 shows the ablation study results. When all the design
components are used, the network can obtain the best re-

sults. Replacing residual block (RRB) with inverted resid-
uals [29] degrades performance as the pointwise layer has
smaller receptive field and damages content affinity. Re-
moving injective padding (IP), the model fails to capture
high-level content and style information from pixel image.
Adding the channel refinement module (CR-RRB) helps
remove redundant information for better content preserva-
tion and stylization effect. Implementing the channel re-
finement module with CR-MLP results in aliasing artifact,
which degrades content affinity. Using VGG content loss
(w/o Lm&Lcyc) cannot guarantee pixel affinity due to the
linear transform. With cycle consistency loss (Lcyc), the
network achieves robustness to small perturbations.

5. Experiments

5.1. Implementation Details

We implement a three-scale architecture with 30 blocks
and 2 squeeze modules. For photorealistic style trans-
fer, we sample content and style images from MS COCO
dataset [26] and randomly crop them to 256×256. We set
the weight factors of loss function as: λm = 1200 and
λcyc = 10. We train the network for 160,000 iterations
using Adam optimizer with batch size of 2. The initial
learning rate is set to 1e-4 and decays at 5e-5. For artistic
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Input WCT2 [40] CCPL [39] Ours

Figure 8. Comparisons of short-term temporal consistency on photorealistic video style transfer. The odd rows show the previous frame.
The even rows show the temporal error heatmap.

Input

IEContraAST [6]

LinearWCT [23]

CCPL [39]

ReReVST [37]

Ours

Figure 9. Comparisons of short-term temporal consistency on artistic video style transfer. The odd rows show the previous frame. The
even rows show the temporal error heatmap.

style transfer, we set λm = λcyc = 1 to allow more varia-
tion of image pixel and sample style images from WikiArt
dataset [18]. All the experiments are conducted on a single
NVIDIA RTX 3090 GPU.

5.2. Photorealistic Image Style Transfer

Qualitative evaluation. Figure 7 shows the comparison
of the stylization results with advanced photorealistic style

transfer methods, including PhotoWCT [25], WCT2 [40],
PhotoNet [2], DSTN [14] and PCA-KD [8]. We can see
that PhotoWCT usually generates blurry images with loss
of details. Although WCT2 faithfully preserves image spa-
tial information, it produces noticeable seams. PhotoNet
generates poor stylization effect due to discarding masks.
DSTN stylizes images with noticeable artifacts and distorts
image structure. PCA-KD is not able to produce consis-
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Method Gram loss↓ Temporal loss↓
i=1 i=10

WCT2 [40] 0.665 0.040 0.108
CCPL [39] 0.527 0.069 0.132
Ours 0.435 0.039 0.107

Table 4. Quantitative comparison of photorealistic video style
transfer methods. ’i’ denotes frame interval.

Method Gram loss↓ Temporal loss↓
i=1 i=10

LinearWCT [23] 0.473 0.117 0.237
ReReVST [37] 0.815 0.108 0.235
IEContraAST [6] 1.062 0.141 0.262
CCPL [39] 0.371 0.128 0.251
Ours 0.436 0.104 0.228

Table 5. Quantitative comparison of artistic video style transfer
methods. ’i’ denotes frame interval.

tent stylization. Compared with the existing methods, our
method faithfully preserves image details and achieves bet-
ter stylization effect. Besides, image stylization is consis-
tent without artifacts, which greatly enhances photorealism.

Quantitative evaluation. Following previous works [14,
40], we use structural similarity (SSIM) to evaluate pho-
torealism and Gram loss [11] to evaluate stylization effect.
We use all pairs of content and style images with semantic
segmentation masks provided by DPST [28] for quantita-
tive evaluation. Table 3 shows the comparison of quantita-
tive results. Our method not only preserves structure better,
but also achieves stronger stylization effect. Since the re-
versible residual network naturally satisfies the reconstruc-
tion condition, we reduce network parameters and make it
more lightweight than most of standard VGG-based net-
works. PCA-KD [8] applies knowledge distillation method
to crate the lightweight model for ultra-resolution style
transfer. We note that our model is also applicable for ultra-
resolution (i.e., 4K resolution) and achieves better perfor-
mance as well.

5.3. Video Style Transfer

Photorealistic video style transfer. We compare our
method with state-of-the-art methods [39, 40]. To visual-
ize video stability, we show the heatmap of temporal error
between the consecutive frames in Figure 8. To quantita-
tively evaluate, we collect 20 pairs of video clips of mul-
tiple scenes and semantically related style images from the
Internet. Following [37, 39], we adopt the temporal loss to
measure temporal consistency. We use RAFT [32] to es-
timate the optical flow for short-term consistency (two ad-
jacent frames) and long-term consistency (9 frames in be-

Input PhotorealisticArtistic

Figure 10. Limitation. Both our artistic and photorealistic models
fail to transfer complex textures like milky way.

tween) evaluation. Table 4 shows that our framework per-
forms well against the other methods.

Artistic video style transfer. Figure 9 shows the compar-
ison with four advanced methods [6, 23, 37, 39]. To quan-
titatively evaluate, we use all the sequences of MPI Sintel
dataset [5] and collect 20 artworks of various types to styl-
ize each video. For short-term consistency, MPI Sintel pro-
vides ground truth optical flows. For long-term consistency,
we use PWC-Net [31] to estimate the optical flow follow-
ing [37, 39]. Table 5 shows that our framework achieves
the best temporal consistency, thanks to the content affin-
ity preservation. Our model also produces vivid stylization
effect comparable to CCPL [39].

5.4. Limitation

Preserving content affinity helps to achieve consistent
stylization. However, both our artistic and photorealistic
models fail to capture complex texture and may generate
artifacts (Figure 10). Generating realistic textures remains
a challenge for style transfer and image generation tasks.
Existing stylization methods typically build on small mod-
els (e.g., VGG). Since realistic texture requires much high-
frequency details, an interesting direction is to investigate
whether large models can solve this problem.

6. Conclusion
In this paper, we propose a new framework named CAP-

VSTNet for versatile style transfer, which consists of a new
effective reversible residual network and an unbiased linear
transform. It can preserve two major content affinity: pixel
and feature affinity with the introduction of Matting Lapla-
cian training loss. We show that CAP-VSTNet achieves
consistent and vivid stylization with clear details. CAP-
VSTNet is also flexible for photorealistic and artistic video
style transfer. Extensive experiments demonstrate the ef-
fectiveness and superiority of CAP-VSTNet in comparisons
with state-of-the-art approaches.
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